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%e study the intrinsic geometry of the surface of a rotating black hole in a uniform magnetic
field, using a metric discovered by Ernst and Wild. Rotating black holes are analogous to material
rotating bodies according to Smarr since black holes also tend to become more oblate on being spun

up. Our study shows that the presence of a strong magnetic field ensures that a black hole actually
becomes increasingly prolate on being spun up. Studying the intrinsic geometry of the black-hole
surface also gives rise to an interesting embedding problem. Smarr shoves that a Kerr black hole
cannot be globally isometrically embedded in I' if its specific angular momentum a exceeds
(W3/2)m -0.866. . .m. We show that in the presence of a magnetic field of strength B, satisfying
2 —~3 &Bim 2 & 2+0 3, a global isometric embedding is possible in R' for all values of the angular
momentum.

I. INTRODUCTION

Smarr' and %'ild and Kerns have investigated the sur-
face geometry of the Kerr black hole and the
Schwarzschild black hole in a uniform magnetic fie}d,
respectively. The question naturally arises of combining
the effects of rotation and magnetic fields. In this paper,
we examine the surface geometry of a Kerr black hole in a
uniform magnetic field. The metric used was obtained by
Ernst and Wild and represents an asymptotically nonfiat,
stationary, axisymmetric, exact solution of the Einstein-
Maxwell equations.

The topology of event horizons is generally that of
Sz &( I '. A spacelike slice of the horizon then has the to-
pology of the compact manifold St, and will be referred
to as the black hole. In Sec. II we obtain the metric for
the Kerr black hole in a uniform magnetic field. A study
of the intrinsic geometry of a black hole provides insight
into their nature. It is well known that black holes have
many of the properties of material bodies. One may ask:
do black holes respond to external forces as material bo-
dies do? For instance, Smarr' shows that a black hole be-
comes more oblate on being spun up, just as a material
body would. Wild and Kerns show that a uniform mag-
netic field makes a static black hole prolate. A natural
way to characterize departure from spherical symmetry is
to measure the equatorial and polar circumferences, quan-
tities that are intrinsic to the black hole. Rotation and the
magnetic field combine to give rise to complicated
behavior: we find that for large magnetic field strengths,
the black hole actually becomes more prolate as it is spun
up and that a correct explanation for this behavior is pro-
vided by the concept of surface tension of a black hole due
to Bekenstein. A11 this is the subject of Sec. III.

Section IV discusses the Gaussian curvature, an intrin-
sic invariant of the black hole. The Gaussian curvature K
plays an important role in an embedding problem: Smarr'
shows that if the specific angular momentum a of a Kerr
black hole exceeds a critical value a„=(~3/2)m
(-0.866. . .m) then the black hole cannot be globally

II. THE METRIC

The three-dimensional event horizon of the Kerr space-
time is degenerate in character. This degenerate nature is
easily seen when the metric is written in terms of an
orthonormal basis of one-forms:

&s '= —(to')'+ (to")'+ (to )'+ (co~) (2.1)

isometrically embedded in I . He also shows that this is
a direct consequence of the fact that for a &a„, the
Gaussian curvature is negative at the poles. This may be
understood by the following argument: a surface in R '
with negative Gaussian curvature at a point p is saddle
shaped in a neighborhood of p; such a surface cannot be
axially symmetric about p. But the Kerr black hole is axi-
ally symmetric (about the poles) for all values of the angu-
lar momentum. It follows that a neighborhood of the
poles cannot be isometrically embedded in R when
Gaussian curvature is negative at the poles.

Wild and Kerns, on studying the intrinsic geometry of
a Schwarzschild black hole of mass m in a uniform mag-
netic field of strength 8, find that Gaussian curvature is
negative at the equator when 8&1/m. From this, they
infer that the black hole cannot be globally isometrically
embedded in I if B&1/tn. In Sec. V we show that
such an inference is not correct. In general, the condition
for global isometric embedding is independent of the ex-
istence of negative Gaussian curvature. In the presence of
axial symmetry, it is negative Gaussian curvature at the
poles which implies nonembeddability. The study of
Gaussian curvature in Sec. IV emphasizes the fact that ro-
tation and magnetic fields counteract each other: the neg-
ative curvature produced by rotation around the poles can
be made positive by a suitable magnetic field. And this
enables us to prove the following result: The Kerr black
hole in a uniform magnetic field can be globally isometri-
cally embedded in R for all values of a for a range of
values of the magnetic field strength. We conclude with a
general discussion in Sec. VI.
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In what follows, we will use the metric (2.11) [or (2.10)].
Note that the volume form on the black hole is

f=g«—= 2 [(r +a ) —ba sin 8],S1Il g 2 22 2 2

p'

h=r 2mr+—a, pi:—r~+a2cos28,

2marN= 0(r'+a ) —b,a'sin28

(2.3)

On the submanifold r =r+ =m+(m —a )'~ =const, the
metric reduces to

(3)1$2 ( e)2+( y)2 (2.4)

8 18 +f(dy comdt)— (2.6)

where A =(r +a ) b,a sin 8—, the prescription to mag-
netize is as follows:~ replace f and to by f' and co' where

f'= I~I 'f
co'=

~

A,
~

~Va)+f 'b, '~ sin8(A, 'V'A, —A VA, ') .

(2.7)

(2.8)

Equation (2.8) can be integrated to yield

a(1 —Bma )
CO = +

r 2 +a 2
(2.9)

The explicit form of P does not concern us since it does
not contribute on the surface r =r+ (b, =0). In the above
expressions, the field k is given by

g2
k=—I — e,

4

(r +a )sin 8+—2mai cos8(3 —cos 8)—2 2 2 2ma sin 6I

r+ia cosO

The parameter 8 is the strength of the magnetic field and
has the dimensions (mass) '. The metric on the black
hole is now found to be

Taking a t =const slice of this degenerate three-manifold
gives the metric on the black hole:

ds =gee18 +g«d g

We are free to take any spacelike slice of the horizon, be-

cause the objects of our study are invariant under
isometrics and because of the following theorem All
two-dimensional spacelike slices of the horizon are
isometric.

We now follow the same procedure for the magnetized
Kerr metric. Writing the Kerr metric in the form

2 Sin 81 2 csin 81 2

f1=~ R~~=pf 18Rdy . (2.12)

III. CIRCUMFERENCES

A natural way to study the effect of rotation on black
holes is to spin it up by injecting particles with nonzero
angular momentum. There are two classes of injection
processes: those which do not change the irreducible mass
of the black hole and those which do; the former are the
reversible transformations, the latter, irreversible. When a
particle with energy 5m and angular momentum 5J is in-
jected into a Kerr black hole, it must necessarily satisfy
the inequality

5m &a)HM,

a
COB =

r+ +a

(3.1)

(3.2)

A =4m(r+ +a ) . (3.3)

where AH is the (constant) angular velocity of the horizon.
Equality in (3.1) corresponds to making reversible
transformations. A measure of the oblateness/prolateness
of the black hole is provided by the equatorial and polar
circumferences c, and cz. The dimensionless number
5=(c,—cz)/c, determines the degree of oblateness (or
prolateness). Smarr' shows that a Kerr black hole which
is spun up by reversible transformations becomes oblate,
just as an ordinary fiuid body would. What is the signifi-
cance of making reversible transformations? There are
two factors which change the circumferences of the black
hole: the mass (energy) of the particle thrown in, and its
angular momentum. We wish to study the effect of add-
ing angular momentum alone —but the relation (3.1) sets a
nonzero lower bound on the mass added. To keep this ex-
traneous addition of mass to a minimum, we choose
equality in (3.1).

Similarly, to study the effect of spinning up the Kerr
black hole in a uniform magnetic field, it would be desir-
able to make reversible transformations —but there is a
problem. A reversible transformation is by definition one
which holds fixed the irreducible mass of the black hole.
But what is the irreducible mass of the Kerr black hole in
a magnetic field? If we think of the surface area as a
measure of the irreducible mass, we are led to the con-
clusion that the irreducible mass is independent of the
magnetic field, since the surface area of the magnetized
Kerr black hole is independent of the magnetic field, be-

ing given by
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This follows trivially from Eq. (2.12). The condition
5A =0 now gives

implies m, & m2. From Eq. (3.9) it now follows that

5m =co~5J . (3.4)
(i) c, i & c,2 if 8 &

m&m2

where co~ is given by Eq. (3.2). But this is not the law for
reversible transformations that one would expect: The
(constant) angular velocity of the horizon of the magnet-
ized black hole is [Eq. (2.9)]

COB
a(1—BJ) (3.5)

P+ +0
and from considerations of particle energetics or other-
wise, one would expect the condition for a reversible injec-
tion to be

5m =a)H5J . (3.6)

(3.7)

Note that injections satisfying Eq. (3.6) will decrease the
surface area of the black hole since coH & roz for nonzero
B. The source of the problem appears to be the fact that
the magnetized Kerr spacetime is not asymptotically flat
and empty, and consequently the usual black-hole
theorems may not apply to it.

To avoid the problem of making reversible transforma-
tions, we will simply make transformations which keep
the surface area constant. To begin, consider a family of
Kerr black holes in a magnetic field, each black hole hav-

ing the same surface area. Inverting Eq. (3.3) provides a
relation between the mass and angular momentum of any
black hole in this family:

4m

16m

(u) c, i &c,z if 8 &
P?2 ) 7?l 2

where c«refers to the black hole (m;,J;). Thus, the effect
of spin upon the equatorial circumference depends on the
strength of the magnetic field. We find [Eq. (3.8)]
for spin up that (i) c, increases monotonically if
8 & —,(1&r/A ), (ii) c, decreases monotonically if
8 &1&r/A, and (iii) if —,

' &8 (A/16m) &1, c, possesses a
maximum. In case (iii), the maximum occurs at that m
where 8 =1/m . Figure 2 illustrates this behavior. For
the polar circumference we find numerically (Fig. 3) that
(i) c, decreases monotonically if 8 ((0.25)(16m./A), (ii)

cz increases monotonically if 8 & (0.35) (16m/A), (iii) if
0.25 &8 (A/16m) &0.35, cz has a minimum.

These results have the following consequences for the
departure from spherical symmetry. Figure 4 shows a
graph of 5 against J for various values of 8 . A positive
slope indicates evolution into an increasingly oblate con-
figuration and negative slope implies a decrease in oblate-
ness (increase in prolateness). It will be observed that for

1.0

Since J & m, it immediately follows that the mass and
angular momentum of a black hole are bounded:

1/2 " 1/2

0&J&2 A
(3.8)

The equatorial and polar circumferences are given by

~e co+ or =0

4am

1+8 m

cp =2f co

The latter integral is elliptic and must be integrated nu-

merically.
The dependence of c, and c~ on the magnetic field

strength 8 is straightforward: c, decreases and c~ in-
creases as 8 increases. The net effect is to make the black
hole more prolate. Figure 1 shows a graph of 5 against
8 which makes this explicit.

The variation of c, and cz with angular momentum
is more complicated. Consider t~o black holes
(mi, Ji), (m2, J2) with the same surface area and let
J»J2. The black hole (m, ,Ji) can be thought of as be-
ing spun up from (mq, Ji) using Eq. (3.4). Also, Eq (3.7).

.0

FIG. 1. A plot of 5 as a function of 8 . The negative slope
indicates increasingly prolate configurations. The point where
each curve cuts the 8 axis corresponds to values of 8 and J
which make c, equal to c~. The curves are labeled by a value of
J.
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magnetic field strengths satisfying 8 A/16m g0.3, the
black hole tends to become more oblate on being spun up,
just as an ordinary fiuid body would. For
8 (A/16n)-0 4, . the black hole initially does become
more oblate, but for large J it is actually less oblate. For
larger values of 8, the situation is completely reversed-
the black hole becomes more prolate on being spun up.
We are not aware of any classical analogs of such
behavior.

The concept of surface tension of a black hole due to
Bekenstein provides a natural explanation for the tenden-

cy of the black hole to become more prolate on being spun
up in the presence of a strong magnetic field. Bekenstein
identifies the surface tension of a black hole with its sur-
face gravity. The surface tension is thus inversely propor-
tional to the mass and angular momentum of the black
hole. It is we11 known classically that lowering the sur-
face tension makes it easier to distort a body, the most
familiar example being soap bubbles —the larger a soap
bubble, the easier it is to distort. This is precisely the ef-
fect seen in Fig. 4. As J increases surface tension de-
creases to a point where the magnetic field can easily dis-
tort it—and the magnetic field always distorts a configu-
ration into a more prolate shape. Increasing Jbeyond this
point only lowers the surface tension further; the magnet-
ic field consequently is much more effective, and increas-
ingly prolate configurations are obtained. The role of sur-
face tension for the J=0 case is noted by Wild and
Kerns.

Cy

|',Ae)'&

o.x

2,.0

FIG. 3. A plot of c~ as a function of J. Labels are values of
B~ in units of 16m/A.

Cg

(Ae)'+
$4e

5.0

$.0
0.$

O. y

-i.O— O.g

O.I—

FIG. 2. A plot of c, as a function of J. Labels are values of
B in units of 16m/A.

FIG. 4. A plot of 5 as a function of J. Labels are values of
B in units of j.6m/A. Positive {negative) slope indicates in-

creasingly oblate {prolate} configurations.
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It will be noticed that for small values of 8, rotation
and magnetic field have precisely opposite effects on the
circumferences. Is it possible to choose values of the pa-
rameters 8 and J so that c, =c&? Figure 1 shows that
this is indeed possible. For any given value of J, these ex-
ists a value of 8 such that 5=0—all the curves in Fig. 1

cut the 8 axis. This does not mean that the black hole is
spherically syinmetric for such values of 8 and J. Calcu-
lation of the Gaussian curvature K for such configura-
tions shows that K is always a function of 8—a spherical-

ly symmetric configuration would have constant Gaussian
curvature. A check reveals that spherical symmetry is in-

compatible with the presence of rotation and magnetic
fields. A similar result is true in the classical domain for
rotating, conducting fiuid balls in a magnetic field.

IV. THE GAUSSIAN CURVATURE

It is convenient to rewrite the metric (2.10) as

"'ds'=E'de'+ a'd~',
E p—/A, f,
G=f' iA,

/

The Gaussian curvature is given by

(4.1)

1 d 1 d z

2EG de EG d8
(4.2)

We first examine the behavior of the Gaussian curvature
at the poles and equator. At the equator (8=m /2)

K(n/2)=
& 4 I2r+ +2a +8 [ ,'(r+ +—a ) (r+ a) m—a r+—(r+ +a )+—', m a (3r+ +ai)]I .

2r+
(4.3)

For the curvature to change sign, E must assume the
value zero for some a and B. It is easy to see that
K (n /2) is strictly positive and never zero unless
a ~0.68. . .m. For a g0.68. . .m, the Gaussian curvature
is strictly positive on the equator for all values of B.

At the poles (8=0)

K(0)= m a (r+ —3a )8 +2p48 +(r —3ai).1 2 2 2 2 4

(4.4)

Clearly, if r+ 3a &0,—this has no zeros. We conclude
that for a &(v 3/2)m [a=(v 3/2)rn = r+ 3a ]--cur-——
vature at the poles is always positive for all 8 (this is the
value that Smarr obtains for the 8 =0 case). If
r+ &3a, note that K(0) can have two positive real
roots. Thus for a &0.866. . .m, there are two values of
the magnetic field which give zero curvature at the poles;
one of these is less than 1/m, the other greater. We also
find that for 2 —v 3 &8

rnid

& 2+~3, K(0) has no zeros.
As a matter of fact, for such a range of values of 8, a
numerical check shows that the Gaussian curvature is
strictly positive all over the black hole.

To understand these features of the Gaussian curvature,
it is instructive to examine the limits a =0 and 8 =0. If
a =0, there is negative Gaussian curvature at the equator
for 8 &1/m and this region of negative curvature can
spread over the entire surface except the poles as 8 is in-
creased. (The entire surface cannot have negative Gauss-
ian curvature. ) If 8 =0, there is negative Gaussian curva-
ture in a neighborhood of the poles for a &(W3/2)m.
The maximum extent of negative curvature is for a =m,
when the "cap" 0&8&54 has negative curvature at each
point. Negative Gaussian curvature due to rotation can-
not spread beyond 8-54' (we are considering only the
"upper hemisphere, " the situation for the "lower hemi-
sphere" being symmetric). Our results for the combined

effect of rotation and magnetic field may now be under-
stood as follows: The magnetic field produces negative
Gaussian curvature near the equator, and rapid rotation
(o &0.68. . .m) can make this positive. (See Fig. 5.) Next,
we consider an example to illustrate the situation at the
poles. Let a =m and 8 =0 initially. (See Fig. 6.) The
Gaussian curvature K at 8=0 then is —0.5. As 8 is in-
creased to (2 —v3)/I -0.26/m, K(0) is zero. To
summarize, rapid rotation produces negative Gaussian
curvature at the poles, and it is always possible to make
the curvature positive with an appropriate magnetic field.
But increasing 8 further produces negative Gaussian cur-
vature again, in this instance for 8 & (2+v 3)/
rn -3.73/rri . It is clear from Fig. 6 that Gaussian cur-
vature at the poles is always positive when 8 satisfies
2 —v 3 &8 m &2+v 3, a result that is important for the
next section.

The counteracting effects of rotation and the magnetic
field near the poles and equator follow as a consequence
of the Gauss-Bonnet theorem which states that for a com-
pact two-manifold

J' Kn=2~X, (4.5)

where 0 is the volume form [Eq. (2.12)] and X is the
Euler characteristic of the black hole. A computation re-
veals that 7=2 (the black hole has the topology of S ). If
such a compact two-manifold were continuously de-
formed so as to produce negative Gaussian curvature at
one point, the Gaussian curvature at some other paint
must increase since the right-hand side of Eq. (4.5) is con-
stant.

V. THE EMBEDDING PROBLEM

For an axially symmetric black hole, it is negative
Gaussian curvature at the poles that is incompatible with
an isometric embedding in I . The argument given in
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' 'ds =r+ ~A,
~

d8+r+ sin8~A,
~

dye

(
A,

)
=1+82m2sin~8, (5.1)

It is convenient to rewrite the metric (5.1) by defining
a new coordinate p,

—=cos8 and a function
Ii(p)=—(1—iLt ) jA, . Note that p is single valued since
0 & 8 & n. The recast metric is

' 'ds =r+ dp, +h(p, )dy
h (p)

(5.2)

the Introduction is obviously not valid for a neighborhood
of the equator. Indeed, we show below that the black hole
considered by VA'ld and Kerns can be globally isometri-
cally embedded in R for all values of the magnetic field
strength.

For a =0, the case considered by %ild and Kerns, the
metric (2.10) simplifies to

(5.4)

where the inner product on the left is the Euclidean inner
product of R i. Since H (the black hole) is axially sym-
metric [Eq. (5.1)], we may attempt to embed it as a sur-
face of revolution in R . There is a standard way of do-

ing this. Define PW~ R by

P(p, ,y) =(F(p, )co~,F(p)sing, G(p )),
where F and G are to be determined. Solving Eq. (5.4)

F(p, ) =r+ h ' (5.5)

A Riemann two-manifold H with metric gk is said to
be isometrically embeddable in R if g;k is the metric
that the embedding induces (from R ) on H I.n practice,
this is verified as follows: I.et PW —+ R be an embedding
and let u ', u denote local coordinates on H. The ques-
tion then is of the solvability of the differential equations

In this coordinate system, the Gaussian curvature is sim-

I ly

h'
G(p)=r+ I "It '~ 1 — dp . (5.6)

(5.3)
But G is the z coordinate in R and must be real and so
Eq. (5.6) demands that

where a prime denotes differentiation with respect to p. /

h'[ &2. (5.7)

f.o t.e ae 4+

0.4

Og

FIG. 5. Gaussian curvature at the equator. Labels are values
of the specific angular momentum a. For a ~0.68. . . , the
Gaussian curvature at the equator is always positive.

FIG. 6. Gaussian curvature at the poles. Labels indicate the
value of the specific an ular momentum a in units of m. For
2—~3 &8 m & 2+ 3, the Gaussian curvature is always posi-

tive.
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This is the condition for global isometric embedding. But
it is easy to check that the condition (5.7) is true for all p
and B. Figure 7 pictorially shows the behavior of Ii'(p, ).
The portion of the curves with positive slope indicates the
existence of negative Gaussian curvature by virtue of Eq.
(5.3). Thus, we have shown that the Schwarzschild black
hole in a uniform magnetic field can be globally isometri-
cally embedded in I for all values of the magnetic field
strength.

We now turn to Smarr's result concerning the
nonembeddability of the Kerr black hole in I s. In the
previous section, we saw that for a Kerr black hole in a
magnetic field there cannot be negative Gaussian curva-
ture at the poles for any J if 2—v 3&B m &2+~3.
Again, using the reasoning given in the Introduction, me

would expect such black holes to be globally isometrically
embeddable in I; and solving Eq. (5.4) for the metric
(2.10) (repeating the procedure above) shows this expecta-
tion to be true. We have proved that the Kerr black hole
in a uniform magnetic field is globally isometrically em-
beddable in R s for all values of the angular momentum if
the magnetic field strength B satisfies 2 —v 3

&B rn &2+@3. This result naturally concludes the in-

vestigations of Smarr and Wild and Kerns.
It is possible to draw embedded diagrams of these black

holes by integrating Eq. (5.6) and Figs. 8 and 9 show the
results. Figure 8 shows the Wild and Kerns result (J=0).
(Compare with their Fig. 1.) Note that the black hole is
slightly nonconvex at the equator when B =2lm, a
consequence of the Gaussian curvature being negative.
Figure 9 shows our result. The innermost configuration is
the a =m hole (in a B =1/m field). The apparent cusp at
the poles is only due a finite-step integration.

FIG. 8. An embedded diagram of a Schwarzschild black hole
in a magnetic field. The spherically symmetric figure is the
Schwarzschild black hole (8 =0). The other figures in order of
increasing prolateness are for 82=0.6, 1.0,2.0. For 82=2.0,
the configuration is slightly nonconvex at the equator.

VI. CONCLUSION

O.I

The metric given by Ernst and Wild is not very success-
ful in describing magnetic black-hole spacetimes. s'i This
can mainly be traced to the asymptotic nonflat character
of the spacetime. The magnetic field strengths described
by the parameter B are rather high. One may use the fol-
lowing formula' to compute the magnetic field strength
in Gauss. Setting P=Bm,

FIG. 7. A schematic to indicate a proof that
~

Ii'
~

&2. The
figure is not drawn to correct scale. The essential point is that
the maximum of h' never exceeds 2. Labels indicate values of
8 . As 8 ~oo, the maximum moves to the p axis. Positive
slope indicates negative Gaussian curvature.

P=8.5X10 '
pyg $012 Q

for a 10mo black hole, P =0.1 corresponds to a magnetic
field of 10' G. For a 10 M. black hole, a reasonable
field of 10 G implies P-10 . Thus, this metric would
describe reasonable black-hole situations only when

P« l.
The fact that magnetizing the Kerr spacetime changes

the angular velocity of the horizon but does not change
the area has curious consequences as noted in Sec. III.
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FIG. 9. Embedded diagrams of a Kerr black hole in a rnag-
netic field 8 =1/m. The outermost figure has a =0. Going in-

wards, a =0.4m, 0.8m, m. Note that it is possible to embed the
a =m black hole because the magnetic field strength 8 satisfies
2 —v 3(am (2+i/3.

a(l —BJ )
COB

f+ +a
is interpreted as the angular velocity of the horizon, one
must set an upper bound on the parameter 8 in the Ernst
and Wild metric: 8 &1/J; otherwise toH is negative. As
to black holes becoming prolate on being spun up in the
presence of a magnetic field, note that it would take very
large field strengths to achieve this, but Fig. 4 shows that
such strong fields still satisfy 8 & 1/J. Whether material
bodies behave thus remains to be seen. For a fiuid body in
rotation in a magnetic field, there is a classical result
which states that it is possible to achieve a spherically
symmetric configuration when the energy of the magnetic
field equals the kinetic energy of rotation (the equiparti-
tion value). We find numerically that it is possible to
achieve configurations that deviate very little from spheri-
cal symmetry by suitably choosing 8 and J. Whether this
has any significance as in the classical case is being inves-

tigated.
We believe we have successfully demonstrated that axi-

al symmetry and negative Gaussian curvature at the poles
are incompatible with a global isometric embedding in
R . Thus, the presence of negative Gaussian curvature at

any point other than the poles does not imply the impossi-
bility of a global isometric embedding. Having observed
this, the fact that the magnetic field can remove negative
Gaussian curvature at the poles allows us to generalize
Smarr's result.

Note added in proof. B. R. Iyer has brought to our no-
tice that Wild, Kerns, and Drish' have also considered
the problem of the Kerr black hole in a uniform magnetic
field. We believe our results to be more general, however.
We thank B. R. Iyer for this information.
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