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The @CD-like sum-rule method is applied to the W boson in the strong-coupling version of the
standard model. For comparison the same methods are applied to the perturbative [Glashow-
Salam-Weinberg (GSW)] version of the modeL It is shown that the method works in the GSW
model with good accuracy independent of the continuum threshold if the definition of the so-called
sum-rule window is changed. In the strong-coupling model, one cannot "predict" the F-boson
mass because the vacuum expectation values (VEV's) are unknown. Instead, a restriction on VEU's

coming from the experimental data can be found when some additional assumptions about the W'

contribution are made. These restrictions can be useful in the application of the sum-rule method to
other channels (Higgs, isoscalar vector, excited fermions, leptoquarks, etc.). The vacuum structure
in the strong-coupling mode1 may differ considerably from the GS%' model.

I. INTRODUCTION

There is significant interest in models containing "new

physics,
"especially naw that the intermediate bosons have

been discovered. ' Among these are composite models of
electroweak interactions. 'o In these models, nat only
fermions but also the W and Z bosons can be made up of
"preons" with spin 0 and —'. Since fundamental methods

of calculation are not available for these types of models,
it seems to be interesting to use semiphenomenological
methods for analysis of the spectrum.

In the present paper we consider the application of the
Shifman-Vainshtein-Zakharov (SVZ) -like sum-rule meth-
od" (SRM) to the strong-coupling versian of the standard
model (SCSM} of electroweak interactions, and its more
familiar perturbative realization [Glashow-Salam-
Weinberg (GSW)]. In particular, we study the $V-boson
channel of these models. For some discussion of the
status of this particular composite model, see Ref. 12.

The SRM within general composite models of elec-
troweak interactions has been considered in Refs. 13—20.
It is a powerful tool in QCD (see, for example, the Refs.
21—24). Our work differs from previaus studies of elec-
troweak interactions using the SRM in two important
points. First, we propose a different definitian of the
"sum-rule window" based on a different criterion for con-
vergence. Since the spectrum and couplings of the SCSM
differ dramatically from QCD, it is not surprising that
the definition of the sum-rule window should be changed.
In particular, the continuum threshold for bosonic corre-
lation functions occurs at a mass (typically twice the
lightest fermion mass} much lower than the lowest pole
term (e.g., the 8' boson). Second, we check our assump-
tions and methods by verifying that we reproduce the
standard model in the GSW limit. Of course, in the GSW
model one can calculate everything without the SRM. We
study the SRM for the GSW model to be certain that we

calculate correctly in the SCSM and to check if there is a
complementarity limit from the SCSM to the GSW
model.

The SCSM Lagrangian is formally identical with the
GSW model. The difference is in the values of the pa-
rameters. Att is large and the parameters of the scalar po-
tential V(P) are such that no spontaneous symmetry
breaking occurs, (P) =0; the SU(2)L gauge symmetry is
exact and confining. All physical particles are SU(2)L
singlets. The left-handed fermions "consist of" a left-
handed fundamental fermion and a scalar; the W and Z
bosons are bound states of scalars; right-handed fermions
are pointlike. The SCSM can reproduce all the low-
energy weak phenomena. '

The SCSM is similar to QCD in its main features: both
are confining and asymptotically free. They differ in that
the chiral symmetries of the SCSM must not break spon-
taneously in order that (composite) quark and lepton
masses be much less than Gy '~i. Standard models for
quark dynamics (e.g., the bag model or the nonrelativistic
quark model) cannot be adopted to this realization of
chiral symmetry. On the other hand, it appears to present
no fundamental problem for the sum-rule method. The
SRM in QCD shows us ' that VEV's are responsible
for the mass-spectra creation, the perturbative growth of
as(M) at small M gives only small corrections to the
zeroth-order approximation and has nothing to do with

mz, my, etc. Numerically, it means that As & mz (in fact,
As ——100—150 MeV «mz had been used in most of the
SRM analyses in QCD); i.e., as(M) is small at M of the
order of typical hadronic masses. The main assumption
of this paper is that this is the case for the SCSM. What
does it mean for Att? If we ignore all other interaction
contributions (Yukawa coupling, self-coupling of the sca-
lar fields, strong interaction, and electromagnetic interac-
tion) to the renormalization-group equation for aH and
take into account only the gauge-boson interaction, then
in the leading-log approximation, we get for aH
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a~(M) =

b =-{————-)-0 7921 22 12 1

If one demands a~(80 GeV) & 1, then A~ & 10 GeV. Such
a small value for A~ may seem to be a difficulty for the
SCSM. This feeling comes from the numerical analogy
with QCD In QCD the characteristic scale which deter-
mines the orbital excitation energy, or the inverse radius
of the composite particle (p meson, proton, . . .) is numeri-
cally related to As as ma —mz -KAs, where K-3—5,
As-100—150 MeV. If we pursue a direct analogy be-
tween QCD and SCSM, then we would expect
mM» —mw-KAH-30 —50 Gev, where mM» is the mass

of an exotic (with respect to the standard model) particle.
Such light exotics siam to be excluded by experiment.

At first sight this seetns to be a serious problem for the
sum-rule method and the SCSM in general. We believe
there is no problem. Instead, the analogy is faulty and the
fault lies in the numerical coincidence between As and
1/R (the nuclear radius) in QCD. R measures the dis-
tance scale at which confining effects become important;
1/As measures the distance scale at which a
prescription-depinident definition of the coupling becomes
infinite. The former is a physical (measurable) parameter;
the latter may or may not be an accurate measure of the
mass scale of the theory. They are related by some (un-
known) renormalization-group equations in the strong-
coupling domain, which may differ markedly between
SU(2)L, and SU{3}. In fact, in lowest order, the coupling
runs much more slowly in SU(2)L, than in SU(3), so al-
though A~- 10 GeV the "confinement radius, " i.e., the
scale at which the SU(2)i bxemes strong is -80 GeV.
Thus, we believe it to be natural to expect

m~» —mg -(10—15)A~ in the SCSM. Since Aii may

not be a good measure of the excitation spectrum it may
be better to pursue a different analogy with QCD. In
QCD typically ma' —mz -K{

I (qq) I
)' where

K-1—3, and (qq) =—(250 MeV)' is the light-quprk
condeiisate (one could use the constituent-quark mass in-
stead). Suppose that the SCSM is analogous: m
—ma -K((P ))'/ where K-1—3, (((} ) &(170 GeV)z
(see the analysis of the VEV's in the SCSM in Sec. III).
This case, where not only the mass of the ground state but
also the excitations are determined by the VEV's {scalar
and gluonic) is very natural from the SRM point of view.

These arguments notwithstanding it may be that A~ is
larger, AH -50 GeV and a~(m~) is large. Then, the SR
analysis cannot be carried too close to m~. The lower
bound of the sum-rule window (SRW) may correspond to
those M where a~{Mi)-1 (the one-loop formula gives
M i -4.5m ~ for Az -50 GeV), but not to those M where
the power corrections 4x:ome too large. This does not de-
crease the SRW to zero (see Sec. III) but it creates a prob-
lem of accuracy in the W mass deterinining from the
SRM (if we knew the VEV's) or in the VEV's estimations
(if we knew the W-boson parameters). For at
M&Mi-4. 5m', exp( —m~ /M ) is close to 1 and is
not sensitive to any value ma &150 GeV. This case

resembles the situation with the m. meson in QCD: if
A~-mg then one cannot "calculate" m„ from the SRM
[but it does not exclude the use of the SRM for the
analysis of more heavier "exotic" states, see case (IV) in
Sec. III].

The purpose of this paper is to see how and why the
SRM works for the W boson in the GSW model and to
get some estimates on VEV's in the SCSM (unfortunately,
one cannot use the SRM in the opposite direction, i.e., to
predict the ma, because the VEV's are unknown).

This work is organized as follows. In Sec. D the SRM
in the GSW model is considered. It is shown that to ex-
tract not only the value of the W mass but also its cou-
pling constant g~&y, one must use the current J„(x)
=—(i/2)gt(x)D„P(x) (see the notation below). Then, a
very short review of the QCD-like SRM is given and the
method is applied to the W boson. The attempt to use the
SRM by SVZ (Ref. 11) without any changes is shown to
fail. In the "sum-rule window" (SRW) defined as SVZ
prescribe, the left-hand side (LHS) of the SR has nothing
to do with the right-hand side (RHS). Therefore, a new
definition of the SRW is suggested. In this SRW, the
LHS is equal to the RHS with the accuracy =4%%uo if the
parameters on both sides are taken from the GSW model.

In Sec. DI we proceed with the SR analysis in the
SCSM. Unlike QCD where there is a lot of experimental
data to fix the VEV's, or the GSW model where the vac-
uum structure is simple, in the SCSM the VEV's are un-
known beforehand. So, one can only try to evaluate the
VEV's from the experimental data on W boson (not vice
versa). This information about VEV's can be useful in the
SR analysis for the other channels in the SCSM. The
question of whether or not the SCSM can be distinguished
from the GSW model from the SRM point of view is dis-
cussed and the assumptions used in the paper are quoted.

In Appendix A the expression for a massless scalar
propagator in x space in an external gauge field is calcu-
lated up to second order. The use of this expression in
Appendix 8 makes the vacuum polarization calculations
for some currents in the SCSM much easier.

II. SUM RULE FOR $V BOSON IN THE GSW MODEL

First of all, let us derive the current which creates the
W boson from the vacuum in GSW and SCSM. The ki-
netic term in the scalar piece of the Lagrangian is the
same for both models:

W~={D„P)(D"P)=—,
' Tr[(D„Q) D"0] .

is the scalar doublet [under SU(2)L, gauge group],
D„=B igloo& ig'YB—„ is —the covariant derivative,
co„=ca&T' and B„, T', and Y, g, and g' are gauge fields,
generators, and couphng constants for the SU(2)L and
U(l) groups, respectively ( Y= —,

' for the scalar doublet}.
The use of the matrix
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—0z

reveals explicitly the global SU(2)x invariance of W ~:

h =e '&r', p'=const.
(2)

The isovector Noether current corresponding to Eq. (2) is

J. 5& 5 Q
5&

5 Qt
5(&„Q)

' 5(5„Q') '

the GSW model, Eq. (9) follows from the fact that in the
unitary gauge the current J& is proportional to co& (see
below).

When q approaches mw2, P (q2) becomes

Fwmw ggyy
W(q )-

z 2
ig —Pl gr

(10)

where Fw is the (dimensionless} coupling of the W boson
to J& and gw~ is the on-shell 8'ff coupling. In the GSW
model

Tr[T—'Q (DqQ) —(D„Q)tQT'] .
2

After some algebra, one can get

J„'=——'y'D„y .
2

(3)
(at the tree level) and gwf~ is g, the SU(2)L, gauge cou-
pling. Fw is defined by

( W+(p, A, )
i J&(x) i

0) =e'&'e„(p)Fwmw v 2 . (12)

To prove (11) write J„+-[Eqs. (4) and (5)] in unitary gauge
where

P(x}=U(x)P'(x)

P'(x) =
1

[u+p(x)]

0 1

1 0, D„=B„2igruq —2ig'Y—B„.
In the SCSM SU(2)i, and SU(2)ii symmetries are exact
(we are ignoring electromagnetism and Yukawa cou-
plings), in the GSW model they both are broken. In both
versions of the model the vacuum (and the Lagrangian) is
symmetric under transformations Q~e'~'Q e
O'I. ~e '

YL, , ~„+e'~'ro-„e '~', a=const, %z is a fun-
damental left-handed fermion. We will refer to this sym-
metry as (weak) isospin.

The normalization of the currents (4)—(6) is fixed by
the current algebra:

[Ju+(x),JD (y)]„0 0=2JO(x)5'(x —y) .

In either version of the model the chiral symmetry
remains unbroken so the matrix element of the current J„'
between light fermions is

(Fi, (p')
~
Jp(0)

~ Fr, (p)) = UL, (p')yy UL, (p)~(q )—(8)

W(0)=1 . (9)

In the SCSM, Eq. (9) follows from the (unbroken) global
SU(2)a invariance and the fact that the composite fer-
mions are SU(2)a doublets. [FL -Q VL, where +L is a
fundamental fermion transforming as a (2,1) under
SU(2)L, XSU(2)ii, transforms as a doublet under (2).] In

[q =(p' —p) ], independent of whether the fermion is
composite (SCSM) or fundamental (GSW). Here FL (p) is
the physical left-handed fermion state with momentum
p(ez, pL, v„v„, . . . ); Ul. are Dirac spinors. In both ver-
sions of the model

U(x) =exp[i@(x)T'/u] .

Then

g(u+p)
CO~ (13)

where co„+-is the field of the SU(2)L gauge boson, identified
directly with the physical W- in the GSW model. Using
gu /4=mw /g, Eq. (11) follows upon combining Eqs.
(12) and (13). In the SCSM, Eq. (11) is true in the limit
that exotic composite particles are heavy and weakly cou-
pled to FI. (Ref. 12). It is the deviation of Fwg&&& from
unity which the SRM relates to the condensate of the
SCSM.

In fact, one can use any currents creating a W boson
from the vacuum for the SR analysis. &%atever is used,
its coupling to fermions as well as to W bosons must be
related to experimental observables. Now let us turn to
the SR analysis with the current (6). Everywhere below
we will consider the SR for intermediate bosons ignoring
electromagnetism. Then, because of the isotopic invari-
ance of the vacuum, the SR's for the charged and neutral
bosons are the same (up to isotopic factor 2), which im-
plies the same masses for 8"-+ and W'. Then we take
into account electromagnetism perturbatively, and the 8'
and B get mixed and give the right mass for Z (Refs. 7, 9,
10, and 12). The advantage of this point of view is that it
allows us to examine the Z boson in the same way both in
the GSW model and in the SCSM (for details see Ref. 12).
%e also convinced ourselves that in the standard model
one can get the right Z mass from the SR for the current
J& with electromagnetism taken into account from the
very beginning [then, new VEV's like (g') ((P YP) ),
g2(g')z(/AT'pp YT'pp Yp}, and so on appear on the
RHS].
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In short, the idea of SRM by SVZ is the follow-
ing. "2' ~ The polarization operator of the appropriate
current is considered:

C3.K V D.C3.
{a)

11~„(x,y) = &0
I TJ~(x)J„(y) I 0),

Il„„(q)=i f d x e's Il„„(x,O) =(q„q„—g„„qi)ll~(qi).

At large Q2= —q2&0, one can look at Il~(q2) from two
different points of view. The first one is to parametrize
ImII (S) phenomenologically in terms of some simple
model and then use dispersion relations (with subtractions
if necessary). This point of view we will call LHS (left-
hand side) hereafter. Thus,

»~(4'&= J ss, —
& && &s&+p01&nOIBlll,w 2

" {—Q'} 1 s
S(S+Q ) ir

(14)—ImII (S)=F~ mnz5(S ma—i)+a8(S t, ) . —

Here, t, is the continuum threshold and a is a factor
which is defined below. As one can see, the zeroth-width
approximation is used for the lowest resonance contribu-
tion and all other contributions [for example, the one
from the W-physical-Higgs-boson, W-two-physical-
Higgs-bosons intermediate states, the presence of which in
the GSW model can be seen from Eq. (13}] are
parametrized by the 8 function.

The other, "theoretical, " side of the SR (this side will
be called RHS, right-hand side} is the Wilson operator-
product expansion ' (OPE) generalized by SVZ (Ref.
11) for the nonperturbative dynamics. The RHS is the
usual perturbative series in att ——g /4m together with a
series of nonperturbative power corrections due to the
VEV's allowed in the theory. For the current (6}, the
RHS looks like

&y')

2

(15)
4&i q4

The graphical representations of Ci, C&i, C&4, and C i
are shown in Figs. 1(a)—1(d), respectively. The coefficient
in front of the unit operator contains all the perturbative
contributions (PC). In a simplified version of the OPE,
the coefficients in front of the power-correction contribu-
tions (PCC) are calculated in perturbation theory, while it
is assumed that the perturbation-theory contribution to
VEV's is absent. In some theories this siinplified version
of the OPE can lead to paradoxes. But it works for our
case. For the theoretical status of OPE, see Refs. 27 and
28 and references therein.

In Eq. (15) we included only the lowest-dimension
VEV's in the GS%' and SCSM model:

&o'& = &o
I oioi+&2&i I o&,

3
«&&'~'&»*& = (o r 4'~'44'T 4 o) .

a=1

&(0'& = &0
I
to„'~„'„I0),

(0 =(}co —(}~ +gMciP t&&„.

c
iieewees + 4~ + 4"

(c)

+ + + +

boa
rye ~eeW

(e)
FIG. 1. Diagrams of lower-dimension VEV's and lower

power in a~, contributing to the OPE of the two-point function
of the current creating a W boson from the vacuum. (a) and (b)
Contributions proportional to the unit operator and &&tti) to-
gether with their first correction. (c) and (d) Contributions pro-
portional to &(&It T'P} ) and &(0~). (e) The only diagram (to
leading order in a~) proportional to the scalar VEV of dimen-
sion d =2n +4 and to the a~+' in the Landau gauge. Solid line
is scalar field, waved line is hypergluonic field, and circle is the
current creating a 8'boson. Broken lines mean nonperturbative
interaction with the vacuum.

The VEV's can depend slightly on Q2 due to the
anomalous dimensions of composite operators. There is
no fermion VEV in our case because we assume the chiral
symmetry of the model remains unbroken. The zeroth-
order contribution to C& is Ci ———a(& ln(Q /p, ),
ac ——(9&r ) '=0.001 (see Appendix B). The next correc-
tion to Ci is ( —ac)(9att/4tr}ln(Q /p ). As we shall
see, one can neglect this correction. Then, according to
the usual model for continuum, the factor a on the LHS
[see Eq. (14)] has to be a =ac.

The method for extracting the mass and the coupling
constant by SVZ in QCD {Ref. 11) is the following. The
numerical values for VEV's are taken either from "some-
thing else" (the quark VEV & qq ) is determined by current
algebra) or from the SR analysis in some channels (gluon-
ic VEV is fixed by the eharinonium sum rule}. The
higher dimension (d =6) quark VEV's are reduced to the
square of the VEV for &qq ) with the help of the "factori-
zation hypothesis" (also called the "vacuum-dominance
hypothesis"). For example,

&OlqyIst'qq7 „t'q IO)= ——", &Olqq IO)

Usually, the coefficients in front of PCC [like C, and

C& in Eq. (15}]are proportional to as (att in our case).



33 SPECTRAL-FUNCTION SUM RULES FOR 8' BOSON IN THE. . . 2619

So, one needs the value of az (or Az) at the resonance re-

gion. This information also comes from external sources
(the J/P decays and so on). Thus, the RHS ("theoreti-
cal") is known after some experimental data are used and
additional assumptions are made. To provide a sense to
the series [Eq. (15)] ( —q ) has to be not too small.

In our case the phenomenological LHS contains few pa-
rameters [Fg,mii, t, in Eq. (14)] which describe the
lowest resonance contribution (RC) (the W boson in our
case} and all the other (continuum) contributions (CC).
The Borel (Laplace) transformation is applied to both
sides of the SR to nullify subtraction terms, to suppress
the CC compared to the lowest state contribution and to
suppress the contributions of high-order terms in the
OPE:

&Il (q )= lim
n, g2~ ce

Q2/n =M2= const

(g 2
)

ll

(n —1)!
IIw(g2)

dg 2

Now the LHS and the RHS look like

F5' mfa —m ~/M2 —j /M2
LHS=

M
e ~ +ae

RHS=a-C, &~'+C &(~"~""'=' '~'M +'~ M
(~')+ Q 4 + 0 ~ ~ ~

Where (at which M ) do these expressions have to be
equal? Theoretically, if we were able to take into account
all intermediate states of LHS and all the perturbative and
nonperturbative contributions to RHS, both sides would
be the same at any M . But we cannot go to small M
because we ignored the high-power contributions and
higher-order perturbative terms in C, (aH grows at small
M }. We cannot go to very large M either, because there
the CC becomes larger than RC [see Eq. (17)]. So, we can
trust our SR only in the sum-rule window (SRW},

. 2 2 2
Mmjg 4 M 4 Mmax

in which, on one hand, the series [Eq. (18)] makes sense
(this determines Mm;„) and, on the other hand, the CC is
small (this determines M,„).This very qualitative defi-
nition of the SRW was specified in QCD by saying that
the power-correction contributions have to be &30% of
the perturbative contribution, and the continuum contri-
bution has to be (30% of the perturbative contribution
(in QCD it happened that the resonance contribution on
LHS at M -Ma is of the order of the perturbative con-
tributions on RHS).

Provided a sum-rule window can be found one can then
proceed to fit the LHS parameters (F~,m~, t, ) to repro-
duce the RHS. By means of the SRM much hadron phys-
ics can be explained and, sometimes a new phenomenon
has been predj

Now let us turn to the SR analysis for the W boson in
the GSW model. In Appendix 8, the two-point function
II&„ is calculated [see Eq. (B8)]. So the coefficients C; in
Eq. (15) are

2

96M p
2

2 C g

1:',
&(ytT'y)'& = 1

4 2

(20)

Besides, in the GSW, where there are only VEV's from
the scalar field, one can use (see also Appendix B) the
next power-correction term on RHS [Eq. (15)]:

(Pt T'QQt Tbggt T'Tbg )C6 6 C~6
———2g

q

By the same assumptions as in Eq. (20), one can get for
this new VEV

1
2

1 2
(21}

The approximations of Eqs. (20) and (21) may be called
naturally "tree approximations. " The q dependence of
VEV's in the GSW model is very slow because
aoH g /4n is a very f——lat function of q .

As it had been shown previously in the GS%' model,
Eii 1/g (m~ ——gu——/2); therefore, the SR is finally

Fg Mg 2

e ~ +ae ' =a+
M 4M

g2V4

—g y2/4M c ~2 2

e +ae
4M

g V

16XSM6
V' g'V4

+
4M 16M

g4 6

+
16XBM6

(22)

(23)

Then the SR [Eqs. (17) and (18)] takes the form

Fp ~g —m /M —~ /M
LHS =

M
e ~ +ae

g'((ytT'y)'& g'( '&

2M M 192m M
(19)

a =(96m ) '=0.00105 .

How does this SR work in the GSW model& The field P
gets a VEV

0
(P & =,/~2

The physical Higgs p and the field co (which is con-
sidered as elementary) have no VEV's, (p) =0, (co') =0.
Thus, ignoring perturbative contributions to (p ), (p ),
(aP) compared to the u, u (for the importance of the
perturbative contributions in VEV's and for examples of a
few simple models, see Ref. 28) one obtains for the VEV's
in the GS%' model
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RHS&a, IHS&0.6a . (24)

The mass scale of the GSW model is set by the scalar
VEV, there is a 1/M term with a large coefficient in
front of it (unlike in QCD). So, not only is the SRW far
away from the mass we wish to estimate, but the LHS has
nothing to do with the RHS in the SRW.

Therefore, let us give a new definition of the SRW for
the W-boson SR. Let us determine M;„2 by the condi-
tion that at M2=M;„~ the contribution of the last term
in the 1/M2 series is of the order of 50% of the whole
series:

g4V6 U2 g2U4

16ySM ' 4M ' 16M

M~~=1.6m'
(25)

The idea of this definition is to make sense of the 1/M2
series by comparing the terms of the series with each oth-
er, but not with the (small) perturbative contribution. One
can give a lot of other definitions with such an idea in
mind. All such definitions give Mm;„- m a . For exam-
ple, one can demand for the last term in the series to be of
the order of 50% of the first, main one:

g4U6 U2

16X8~I 05, , ~;„2=mw2

Let us determine M,„2 by the condition that at
M2=M ~i the continuum contribution is of the order of
30% of the resonant contribution in LHS:

Since a is very small (it is 12 times smaller than the corre-
sponding term for the p meson SR in QCD) the attempt
to define the SRW in analogy with QCD fails. If we
adopt the definition of a SRW described above for QCD
to the present case, we obtain

8000mw &M &0.83fc

and at these M2

The first three terms in the expansion of this exponential
are exactly the first three terms on the RHS of Eqs. (22)
and (23). Equating the coefficients in front of equal
powers of 1/Mi in Eq. (22) in the interval [Eq. (28)),
where one can neglect the CC on the LHS and the PCC
on the RHS, we get

Fw mw

2 4
2 4 g U—~w mw

I

—'I' 'm '= g4U6
w mw

16 8

(29)

These equations are identities in the GSW model where

then the difference between the LHS and RHS is less than
4% at any t, )0 and the CC is less than 4% of the
resonant contribution even at M =M „=100m~ (see
Fig. 2).

Besides, from the new SRW definition, it follows that
within the SRW we can neglect not only the higher-order
perturbative corrections to the RHS [—a~(M ),
aH (M ), etc.] but the main one [a on the RHS in Eqs.
(22} and (23)]. We conclude, therefore, that the SRM does
work perfectly in the GSW model of weak interactions,
provided the definition of the SRW is suitably modified.

A few comments are in order. The first remark is
about the connection of the point of view on the SRM for
the GSW model presented here and the finite-energy
sum-rule constraints in Refs. 18 and 20. The considera-
tion of the first three terms on the RHS of Eqs. (22} and
(23) suggests the idea that the whole series on RHS is the
expansion of

2
g 2U 2

4~2 4~2

-t M 2 03U -g u~ N

4Mm~
(26)

I).o-
I

g)A

The solution of Eq. (26) grows if t, grows. So, the lower
bound for M ~ is obtained if t, =0:

2

Mm~ =0.3 =700mw

The SRW definition given above makes the SRM by
SVZ applicable to the GSW model without any further
changes. There is no contradiction like Eq. (24) anymore;
the LHS is equal to the RHS in the window:

(27)

with good accuracy. Really„ in this interval for any t, & 0
the LHS and RHS differ from each other by less than
26% (the RHS is about 26% larger at M =ms, at
M =2m' this difference is =3%%uo, at M -700m~ the
difference is smaller than 3%, if 0 & r, & 100m~ ). If one
decreases the SR%,

2mw &M &100mw

O.S-

o
IO

FIG. 2. LHS of the sum rule (22) and (30) (solid line) with the
parameters m~ ——81.5 GeV, E~ ——2.28 (values corresponding
to the GS%' model). RHS of (22) (short-dashed line), RHS of
(30) (long-dashed line) with the parameters C2 ——m ~ I~,
C4 ——1.73m~4=0. 76E~~rn g . The W' and continuum contri-
butions can be neglected, see the text. Arrow A indicates the
lower bound of the sum-rule windom defined in text.
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t, &mm 3a+ 24a +2 Sa
(4a +12aigi)

=28m '
The large t, leads the author of Ref. 18 to a large value
for the SU(2)t, gauge field VEV, (xtt&aP&-(I/4)r )t, ~ in
the SCSM (otherwise, the mass mn cannot be much
smaller than t, ).

The point of view on the SRM suggested in the present
paper allows us ta get the correct values for mn and gaff
in the GSW model independent of the choice of t, .

The second remark concerns taking into account the
VEV's of arbitrary dimension in the standard model to
lea~wng order in g~ and, therefore, to extend the lower
bound of the SRW. In Appendix 8 (see also Ref. 16) we
present a calculation of the coefficient in front of the sca-
lar VEV of dimension d =2n +4, n ) 1 for the OPE of
Eq. (15}. It is shown there that in leading order in gi the
OPE in the GSW model is [instead of (15)]

11 (q')=C, &1&+C,, -,
q2

where

+ y$ 4
n=l

vEv~~'

(q2)ll +2

C~= —(g )"+'/2", d =2n +4,

VEV(d)
& yfZay(pter)nylon a'y

&

mn ——gu/2 and, as it has been shown, Fit —1—/g. Note
that Eqs. (29) are very different from the finite-energy
sum-rule (I'hSR) constraints in Refs. 18 and 20. The
FESR constraints in Refs. 18 and 20 can be obtained by
equating the coefficients in front of equal powers of
1/M at M ~00, i.e., there where one cannot ignore the
continuum contribution. As a result, the left-hand sides
of Eqs. (29) depend on t, and that entails the dependence
of the solution (Ea and mn ) on t, . Therefore, the stan-
dard value of mn is obtained in Ref. 20 only for t, =0.
Moreover, in Refs. 18 and 20 a current which is two times
larger than (6) was used for the FV-boson SR. So, there is
no statement in Ref. 20 of how to get the value for gz~
from the SR analysis. Further, the desire af the author of
Ref. 18 to consider the SR with t, y0 (i.e., t,+0) im-
mediately leads him to large values of t, ( t, —1

TeV =156m' }. This is so because the I'hSR con-
straints in Ref. 18 have no solutions with &c0 & & 0, if

' 1/2'

gous to (20) and (21),
5 '2

VEV(d)
U2 1v
2 2 2

' n+2
—=(&y'&)"+'-,' .

2 4

Then on the RHS of Eq. (23) we have

~2 g2U4
RHS=a+

4M~ 16M
a+1

el ( 1 )II + i g2U2 U2

(n + 1)' 4M 4M~

This is exactly the expansion of the first exponential in
the LHS of Eq. (23}. So, for example, in the SRW
0.16m n (M (100m ', the SR is obeyed with the accu-
racy of the order 4% for any t, )0. Note that both the
lower and upper bounds of the SRW are determined now

by the condition of the CC to be less than 4% af the
resonant contribution. There is na doubt, af course, that
the SR for the W boson in the standard model would be
an identity at any M if we would calculate all radiative
corrections to the RHS, perturbative contributions to the
scalar VEV's, the finite width of the W boson and all oth-
er intermediate states on the LHS (instead of a simple

-t /M~
continuum model a e " ).

111. SUM RULE FOR THE S'(1}=1-(1}
CHANNEL IN THE SCSM

where

c,=-,' &y'&,

As was mentioned before, the Lagrangians of the
SCSM and GSW models are the same except for the sca-
lar potential. Therefore, the RHS of the SR far the
SCSM model is identical to Eq. (19) (if we neglect the sca-
lar field self-couplings), where g =4mtt, with att un-
known but not too large, for example, att (0.7. There is
no advantage to knowing C&6 since other power correc-
tions (like C 3,C&») of the same dimension are not cal-
culated.

In composite models of weak interactions, a rich spec-
trum of new particles may exist. To be definite, pick out
the first-excited-state contribution ( W' boson) from the
whole "soup" of the continuum contributions:

+8 ~8 — ~/M ~H" ~W' — /M —t /M~

~2 ~2
W'

e ~ +ae

C2 C4=a + —,(30)

Applying the Borel transformation (16) one can get, for
the RHS in the standard model,

"'='+
2M M

( ) (g ) VEV(g)
) (n+I)!(M )"+ 2"

Using the tree approximation for VEV' ' one gets, analo-

C4 =4n att & ($ T'P }i
&
—

& a)i &,
48m

Fz ~ is the W' coupling constant to the current (6), an't is
SU(2)t strong running coupling constant, and m)t" is the
8"-boson mass.

"Complementarity" in gauge theories with scalars in
the fundamental representation, as described by 't Hooft
and Dimopoulos, Raby, and Susskind, leads us to expect
that the SR in the SCSM reduce to the GS% results in an
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appropriate limit. {For further discussion of complemen-
tarity in the SCSM see Ref. 12.) This limit is obtained by
letting the parameters on both sides of the SR go to their
GSW values [aH~a0=0. 032, (co )—+0, ((P T P) )

,' (u—/2},(P )~u /2, Frr ~0 and/or mir ~oo]. If
the SCSM is to describe nature, the left-hand side of the
SR must be rather close to the GSW limit (since the GSW
model works well} without the fundamental parameters
being close to their GSW values. This is clearly possible
since C2 and C4 [see Eq. (30)] can clearly have (approxi-
mately) their GSW values even though (co )&0,
((P T'tI)) )+4 (P ), and a~&&0.032. The situation
when ((tA) T'P) ) & —,

' (P ) is preferred from the point of
view of composite models of weak interaction. This
preference is based on the analogy with QCD.

As mentioned above, in QCD the vacuum-dominance
(or factorization) hypothesis (VDH) works rather well. It
allows one to reduce the high-dimension quark VEV's to
the lowest one. For our case it means that in doing the
contraction of the scalar fields P; and Pk inside the VEV
((P T'P) ) one need take into account only the vacuum
intermediate state and ignore all the others:

&ol 0
. 0; lo&--'sk&y'&&0I

%e get

VEV's through the anomalous dimensions and try to find
"experimental values" for VEV's from the SR [Eq. (30)].

What is known about the LHS from the experiment?
Fa is no longer 1/g~f7, because the normalization condi-
tion for the weak form factor of composite fermions [Eq.
{8)]with the W' contribution taken into account becomes

7+F~'grr'f7 (31)

The experimental value of m a from Ref. 31 is
81.5+ 1+1.5 GeV. The W-boson coupling constant g&f7
and the W' coupling constant are related to the Fermi
constant

2 2
gwf7 gwf7 82+
mar mir~ v 2

(32)

The analysis of the experimental restrictions on the pa-
rameters of the phenomenological model with two com-
posite W'(Z) and W'(Z') bosons and isoscalar vector bo-
son F was carried out in Ref. 32 (see also Ref. 33). The
allowed two-dimensional region for the parameters
&z=(F~./Fir)2, p2=miri/ms ~, was found to be depen-
dent on r =(gir, /7/girf7) . We will use the restrictions
for E, p, at given r to estimate the allowed values for
Fq and Fq" through the equations

(y'T yy'r'y & =-'(y')'Tk T'I S,S„,= ,' (y'&'-
F~ 2 g 2F~2 (33)

that is as much as —,
'

times larger than the tree approxi-
mation [see Eq. (20)]. The VDH seems more natural in
the composite model. If there is no Higgs mechanism, the
lowest-dimension scalar VEV is (P ) not (P), so then
there is no preferred direction:

&(y'T'y)2) = &((('T'(t )'& = &(y'T'y}')

and so on, whereas in the GSW model

(y', y, ) =0, (y,'y, ) = ~O,

&(y' 'Ty)'&=&(y' 'Ty)'&=0,

and so on. If the VDH is used, then the GSW limit
Fs ~Fs 1/girf7=1/0. 6——3, mir ~g u /4, Fg ~0 (or
m ir ~ oo ) is obtained if

2 a'
&co'&~12m u4 ——2' 2 cxH

Now let us turn to the SR analysis in the SCSM itself.
The parameters on the RHS of the SR (a~ and VEV's)
are a priori unknown in the SCSM. So there is no way to
predict the parameters of the LHS (ma, Fs, . . . ) as in
QCD. Therefore, let us assume that aH(M —mar ) is not
large [for example, aH(mir ) & 0.7] and is a smooth func-
tion of M, so that one can neglect the Mi dependence of

1+r p,

4~2GFmg (1+rE)
(34)

The available experimental data (on m a, rnz
sin8ir, . . . } do not impose very strong constraints on the
parameters of the first excited intermediate boson. '~ Of
course, when the total width of W and Z (it determines

giflf7 ) and I z t (it determines Frr) are measured

then Eqs. (31}and (32) will give good bounds on the W'

parameters.
Meanwhile, let us consider four different sets of W' pa-

rameters not excluded by the data and which cover all the
interesting possibilities of the SCSM vacuum structure.
The first two are those with a large two-particle-channel
coupling constant: g~.f7=g~f7 (i.e.„r =1); the last ones
are those with small (or medium'?) g~f7-0.22girf7 (i.e.,
r =0.05). In both cases, we will consider "small" and
"large" W'-boson masses. In all cases we will be interest-
ed in the maximum possible W' contributions. (Small
changes in the maximum possible W' contribution do not
affect qualitative conclusions on the SCSM vacuum. )

(1}The W' boson is strongly coupled to the fermion-
antifermion channel: g~.f7 ——+g~f7 (the plus sign is for
definiteness); ma" is small; for example, mir ——3mir2.

The maximum allowed K in this case is =0.023 (Ref.
32), and according to Eq. (33) the maximum W' contribu-
tion to the LHS of Eq. (30) is proportional to
(Fa ~ ) ~=0.023Fs, i.e., is less than 7%%uo of W contribu-
tion even at large M —100—200m~ . But at such M
the continuum contribution (which is of the order of
a =0.001) is (4% of the W contribution, so there is no
meaning in separating the W' contribution from the
whole "soup" of the continuum. On the other hand, at
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So, the equation LHS(M -100mw } =RHS(M
—100m w ), which is true up to 4% (the CC are of the or-
der of 4% at such M ) gives

Cz=Fw mw (1+0.04) . (35)

This equality reminds us of the finite-energy sum-rule
constraint's ~ but it does not contain t, and is correct for
any t, (it is obtained not at M ~ 00, where the continu-
um contribution is much larger than the resonant one, but
at those M where the continuum contribution is much
less than the resonant one}.

The next power correction C~/M comes into the game
when we go to smaller M2. One cannot go to too small
M b~use unknown higher power corrections become
significant ( Cs/M, etc.). The smaller M2, the worse the
accuracy of the RHS. Let us use the GSW model as a
rough guide to the accuracy. There, the RHS is known at
M with the error of the order of mw /2M, if only two
terms are used. So let us require for LHS and RHS to
coincide with each other at M =3mw (for example) up
to 17%:

(1+0 17)
w ™Iv lv (36)

3m~ 9%i~

small M -few mw the W' contribution (which is
(3.5% of the W one) also can be neglected because the
RHS is poorly known here. Therefore, in the case under
consideration, one can neglect the 8" contribution on the
LHS of the SR, Eq. (30},when determining C2 and C4.
From Eq. (34) at r =1, E =0.023, p = —,',
mw ——81.5+1+1.5 GeV (Ref. 31) one gets Fw =2.28. In
Fig. 2, the graphs for the LHS with the parameters listed
and for the RHS with C2 ——2.28mw -Fw mw,
C4 ——1.73mw -0.76Fw2mw are shown and the lower
bound of the SRW is indicated.

The fitting of C2 and C& is carried out as follows. In
our case (unlike in QCD) the continuum which comes
from the discontinuity of the perturbative diagrams is nu-
merically very small. Therefore, one can work at almost
"infinite" M2, where all power corrections except the
main one C2/M are practically zero. On the other hand,
at such M the LHS is almost a hyperbole:

I'g mg Fg 2

M2 M2 M2

Cg
mw —— =5960 GeV (1+0.5),

C2 0.85+0.42

mw-77 GeV(1+0.25) .

(38)

From Eq. (31), one gets for gwfZ (neglecting the W' con-
tribution)

gwfy
—— ——0.63(1+0.25) .1

~'f (39)

Using instead of Eqs. (35}and (36) a different fitting pro-
cedure and the same accuracy requirement, one would get
numbers close to Eqs. (38}and (39) with the same accura-
Cy.

The estimates [Eqs. (38) and (39}] were obtained by
neglecting the W' contribution on the LHS. But we do
not know a priori whether that is reasonable. Therefore,
we would have to check how the W' contribution may af-
fect Eqs. (38) and (39) and what can be said about the W'

parameters. Trying to fit the SR, Eq. (30), with nonzero
one can get an upper bound on it. The m~ value

seems to be unrestricted because it is impossible to investi-
gate the small contribution on the LHS with only two
terms on the RHS. Since the VEV's are unknown, we will
not pursue these speculations further.

The estimates, Eqs. (35) and (37), do not change very
much for any mw (10mw, so we conclude that for
these rnw and gw.f~

——gwf~ the experimental data con-
strain the SCSM vacuum parameters to be close to the
ones in the GS% model:

If we require for the continuum contribution to be ( 12%
of the resonant one, then the following SRW is obtained:

1.6m' (M (270m'

As one can see from Fig. 2, agreement between LHS
and RHS in the SRW is good. As was to be expected, the
vacuum parameters (Ci and C4) obtained are close to the
GS%' values because the 8" contribution has been
neglected.

Now let us imagine what might have happened if some-
one told us that C2 and C4 are I 5X10"GeV and
0.76X 10 GeV, respectively, and asked us to evaluate the
spectrum in the J (I)=1 (1) channel. Solving Eqs. (35)
and (36) one gets

Fwi=C2(1+0.04)/mw =2 SX(1+0 5}

The main point of Eq. (36) is to define clearly what we
mean by accuracy of C4. Equations (35) and (36) give, for
C4,

2C2 —(p2) =3X10 GeV (1+0.04),

C, =47ra„&(ytT'y)')—
48m

(40)

C, =(0.85+0.42 }Fw'm w' . (37)

Instead of Eq. (36) one could use other criteria, for ex-
ample, the equality of the area under the LHS and RHS
in the SRW, the equality of the LHS and RHS at
M =4m~ and so on. All these methods give similar
values for C4.

The lower bound of the SRW is indicated in Fig. 2, cal-
culated according to the recipe given in Sec. II:

C2 C4
0.5- =, M( -1.6m@

M) Mi

=0.76X10 GeV (1+0.5) .

(2) Let us investigate the large mw value case at
gw.&y=g fj, for example, mw ——100mw . Then, the2 2

maximum allowed K is =0.0051 (Ref. 32) and according
to Eq. (33), the maximum W' contribution is proportion-
al to (Fw ) ~=O.OOS1Fw . One cannot neglect such a
contribution at large M and it should be separated from
the whole soup of the continuum at M —100m~ . From
Eq. (34) at r =1, E =0.0051, p, =0.01,
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mw ——81.5+1+1.5 Gev (Ref. 31}one gets Fw~-2. 0. In
Fig. 3, the graphs for the LHS with the parameters listed
and the RHS with Ci ——2.94m w =(Fw mw
+Fw ~ mw ), Cq ——60.3mw =0.59Fw ~ mw are shown
and the lower bound of the SRW is indicated. The fitting
procedure is similar to the one described before, but now
C2 is determined by the behavior at M2-500—looom wi
(not -loomw, as before). C4 is determined by the
behavior at medium Mi, i.e., M —100m w (not -3mw
as before}. The accuracy of Cz is of the order of 12% (at
M -500mw the CC is about 12% of the resonant con-
tributions), the accuracy of C4 is about 70%. The SRW
15

0.41mw' ——41mw'&M'& 500mw'=5mw'

if one requires the CC to be less than 12% on the upper
bound of the SRW.

As one can see, the vacuum parameters may consider-
ably differ from the GSW values:

( '&=4XIO'G V'(1+O. 12),
(41)

4 ~~((p'T'p)') — (~') =2.75 X 1O' GeV'(1+O. 7) .

Note, that as far as C2 feels both resonances
(Cx-Fw mw +Ew ~ mw ), Cq is determined mostly by
the heavier resonance contribution ( Cq -0.59Ew xm w ).

Now let us again imagine inverting the analysis. Sup-
pose we know Cz and Cq and are going to say something
about W and W' bosons. We will fail in trying to fit the
LHS with a single resonance with ma -mw, but it can
be done with the parameters Fa2-3.75, ms2-20mw2.
But then the normalization conditions (31) and (32) will

be violated even if the errors in Fs and ma are taken into
account. So we have to include the second resonance in
our fit. In any case these values for Ci and C4 would in-
dicate the presence of a structure at large M )20mw .
To investigate both resonances more precisely we would
need to know the next power corrections (C6/M, . . . )

and, perhaps, the dependence of the VFV's on M to ex-
tend the SRW. On the other hand, if we knew the W-
boson parameters and C2, C4 we could predict something
mare definite about the 8"boson.

(3) The W' boson is weakly coupled to the two-particle
channel r =0.05, gw&y-0. 22gw&j', the W' mass is medi-

um, say, mw = lomw2. This case of the medium cou-
pling constant and mass of the W' boson seems mast
reasonable for the SCSM. Then the maximum allowed
Ex is =0.1 (Ref. 32) and the maximum W' contribution
is proportional to (Ew2) ~=0.1Fwi. From Eq. (34) at
r =0.05, E =0.1, p =0.1, mw ——81.5+1+1.5 (Ref. 31)
one gets Fw =2.29. In Fig. 4 the graphs for the LHS
with the parameters listed and the RHS with

Ci ——4.45mw =Fw ~ mw ~ +Fw mw2 2 2 2 2

C4 ——14.75m w =0 633Ew imw'~

are shown and the lower bound of the SRW is indicated.
The accuracy of Cz is —12%; the accuracy of C4 is
-60%. The SRWis

0 67mw. 2 6 7m——w .&M &550mw 55m——w
if one requires for the CC to be less than 12% on the
upper bound of the SRW. Again, the vacuum parameters
may differ considerably from the GSW values:

)=5.9X10 GeV (1+0.12),
(42)

((y T'y) ) — ( ) =6.5X10 GeV(1+0.6) .
48m

Again, Ci feels both resonances; C4 is determined almost

0.02-
1.0

O.OI-

0.5-

0
~ ~ ~ ~ ~

~ ~ 1PIIC ~ 0 ~ ~ ~ ~ ~ ~ ~ ~ 1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 4 ~ ~ ~ ~ ~ t ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 ~ ~ ~ ~ ~ 0 \ ~ ~ ~ 0 ~ ~ ~ ~ ~0 I I

0 400 200 500 +00 M /m N

FIG. 3. LHS of the SR (30) (short-dashed line) with the pa-
rameters m g ——81.5 GeV, Eg ——2.0, m g ——100m g 2,

Eg2 ——0.0051E~2. Solid line —8'-boson contribution to the
LHS; dashed-dotted line—F'-boson contribution to the LHS;
dotted hne shows the order of magnitude of the continuum con-
tribution to the LHS and perturbative contribution to the RHS
which were neglected. RHS of the SR (30) (long~a@bed line)
with the paraineters C2 ——2.94m ~2-(Eg ~m ~2+E~~rn I 2),
C& ——60.3m~~ -0.59E~~m~~. Arrow A indicates the lower
bound of the SRVif defined in text.

V /m

FIG. 4. LHS of the SR (30 (short-dashed line) with the pa-
rameters m ~——81.5 GeV, E~ ——2.29, m ~ ——10m ~,
Eg ——E~ . RHS of the SR (30) (long-dashed line) with the pa-
rameters C2,——4.45m ~~-E~2m ~2+E~~m ~2, C& ——14.75m~4
=0.63E~~m~~. Solid line —W'-boson contribution to the LHS.
The continuum contribution to the LHS and perturbative contri-
bution to the RHS can be neglected, see text. Arro~ A indicates
the lower bound of the SR% defined in text.
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by the heavier resonance. If we try to investigate the LHS
having VEV's on the RHS according to (42) we would not
succeed by doing this with a single resonance without
violating the normalization conditions (31) and (32). If we
know the 8' parameters and Cz, Cq then we would be able
to investigate the 8"boson more precisely.

(4} The W' boson is weakly coupled to two-body chan-
nel, r =0 05., g~,f&-22g~&~', the W' mass is large, say,

mii ——100rns . The maximum allowed IC is =0.09
(Ref. 32) and the maximum W' contribution is propor-
tional to (Fz ) =0.09Fa . From Eq. (34) at r =0.05,
E2=0.09, @2=0.01, m~ =81.5+1.0+1.5 GeV (Ref. 31}
one gets I'~ =2.14. In Fig. 5, the graphs for the LHS
and the RHS with C2 ——20.2m~ -1.04F~ ms ~,
C4 ——1162m' =0.6Ep" ms are shown. The accuracy
of Ci is —12%; the accuracy of C4 is -50%. The SRW
1S

1.14m' ~ ——114m' &M &2550m' ——25.5m' ~

This case is similar to case (1} in the sense that one can
take into account on the LHS only one resonance contri-
bution. In this case it is W': the W contribution is
&20% of the W' contribution in the SR%. But in the
normalization conditions (31) and (32) the W boson is
dominating, so we cannot fit the LHS with a single reso-
nance. Both Cq and C4 feel now almost only the W' bo-
son; Cz is determined by its coupling Fa,C4 by its
mass, m~ . Roughly speakin~, the order of the heavier
resonance mass is -(C&/C2) . The W boson is far
away from the SRW, so to investigate it carefully one
should know the next power corrections
(Cs/M, Cs/M', . . . ) to be able to extend the lower
bound of the SRW up to few M~ . In the case under
consideration the W boson resembles the m meson in
QCD in the sense that its (mass)i is much less than the or-
der of the lower dimension VEV's. The possible analogy
between the W boson and the m meson suggests the idea
that the W mass can be of the order of AH —the mass
scale where aH becomes large. Then, as in QCD, one can-

O.iS-

I

I

0.$0— I

FIG. 5. The same as in Fig. 4, but for parameters m~
=81.5 GeV, Fg ——2, 14, mg ——100m@, Eg ——0.09Fg,
Cg ——20.2m' -1.04' mg C4, ——1162mg -0.6Eg mp

not "calculate" the W boson mass from the SRM.
As one can see from the cases considered, the experi-

ment does not yet exclude the possibility that the VEV's
in the SCSM are very different from the ones in the GSW
model. This is encouraging because it is known from oth-
er approaches that the SCSM can account for weak phe-
nomena without apparent fine-tuning of parameters. ' In
the SRM approach similarly it appears that the current
data do not force the VEV's to be tuned to their GSW
values. For the strong coupling of W' with ff and small
masses M~ &10m~ one can neglect the 8" contribu-
tion to the LHS (more precisely not to separate it from
the rest of continuum contributions) and C2, C4 are close
to their GSW values. But still there is a possibility of
having (r0 )&0. For large m~ or weak W'ff coupling,
values for C4 (and even for C2) which differ very much
from the GSW VEV's are possible.

How can one distinguish between the SCSM and GSW
models from the point of view of the SRM when the ac-
curacy of the experiment improves? Of course, if the W'

boson were found experimentally, the SCSM would be
preferable and having W' parameters one would be able to
say something definite about the VEV's. For example, if
the LHS with the W' contribution measured would have
two peaks (from the Wand W' bosons) then one could es-
timate the next power-correction term, Cs/M .

But what if the experiment agrees with the GSW model
better and better? Does it mean that the SCSM can be re-
jected from the SRM point of view'? The answer is no, if
we consider the SR only for J (I)=1 (1) channel.
Indeed, the SCSM vacuum contains more parameters.
Besides the scalar condensates (P }, ((P T'P) },etc. , it
has VEV's (co }, (ro },etc., and mixing VEV's, for ex-
ample, (P co„'„T'co„„TP), etc. Even if combinations of
VEV s of given dimension must obey relations, like Eq.
(40) for C4 (with better accuracy} these relations can be
satisfied with (c0 )+0, (co')+0, etc. The SR analysis
for other channels may be helpful in distinguishing the
SCSM from the GSW model. If experiment will tell us
that there are no excited fermions, leptoquarks, and so on
up to very high energies, it would mean that the VEV's in
the SCSM must obey a nontrivial system of relations,
which obviously must have the solution with (co ) =0,
( r03) =0, etc. (if the GSW model agrees with experiment).
The existence of another solution with (co )+0, (ro )+0,
etc. , would not be forbidden but would seem unnatural.

IV. CONCLUSIONS

We have considered the application of the QCD-like
sum method" to the W boson in the GSW and SCSM of
weak interactions. It is sho~n that the method works in
the GS%' madel if one changes the definition of the sum-
rule window: instead of the requirement for the nonper-
turbative power corrections to be small compared with the
perturbative contributions (which are small in our case),
one can require the last calculated power correction to be
small compared with the first (main) one. In the sum-rule
window so defined, the LHS and RHS are equal to each
other with the accuracy -4% independent of the contin-
uum threshold for the GSW values of the parameters
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mg, giifj, (P ), (((I} T'P) ), etc.
In the SCSM, the VEV's are unknown. Even the at-

tempt to "calculate" the 8'-boson mass by means of the
SRM may be wrong if aH(mir) is very large. But, if
reasonable assumptions are made, then one can get some
information on VEV's from experimental data. It is
shown that the vacuum structure in the SCSM (i.e.,
VEV's) may differ considerably from the one in the GSW
model and still reproduce the structure in the J =1
channel. Arguments are given that one cannot rule out
the SCSM from the SRM point of view even if experi-
ment excludes the existence of excited intermediate bosons

up to rather high mass.
It is interesting to carry out the sum-rule analysis in the

spirit suggested in the present paper in other channels:

Higgs boson, isoscalar vector, fermion, leptoquark. At
present, little is known about the vacuum and a~ in the
composite models of weak interaction. But, in the future
the SRM in composite models with accumulating experi-
mental data and theoretical progress may become power-
ful and predictive as it is in QCD.

c}z
—igc0»(x) ig—co»(z) D(z,y) =5 (z —y)

c}z»

D(z y) =Do(z y)+Dl(z, y)+D2(z~y)+ ' ' ' (A4)

where DD is the free propagator, Do(z,y) = id—ol(z —y),
do ——1/4ir, Di and D2 are terms proportional to g and

g . The requirement (A3) in zeroth, first, and second or-
der gives

H, DO(z, y) =5 (z —y), CI, =
az»az„

'

8
2igco»(z—)WDO(zy)+a, D, (z,y) =0,

c}z»

(A3)

up to the terms -g . Here D(z,y} is a 2&&2 matrix, and

g is the gauge coupling [the calculations can be easily ex-
tended to SU(N)].

The solution of Eq. (A3) in a perturbative series looks
like

ACKNOWI EDGNENTS —g co»(z)~(z)DO(z, y)
(A5)

We are grateful to M. Claudson, E. Farhi, C. Korpa,
and Z. Ryzak for useful discussions. One of the authors
(S.D.) is grateful ta the International Research and Ex-
changes Board and the Center far Theoretical Physics at
Massachusetts Institute of Technology for support and
hospitality. This wark was supported in part by funds

provided by the U.S. Department of Energy under Con-
tract No. DE-AC02-76ER03069.

2igco»(z)—B",Di (z,y) +CI,D2(z,y) =0 .

The calculations significantly simplify if we are interested
only in the singlet part of co~co»,», with respect to Lorentz

and color indices (only such an operator may have a
nonzero vacuum expectation):

In this appendix, we derive the expression for the mass-
less scalar propagatar in x space in the external gauge
field in the Pock-Schwinger gauge:

x»c0»(x) =0 . (A 1)

This expression simplifies the calculations of the coeffi-
cients in front of VEV's in the operator-product expan-
sian in the SCSM (see examples in Appendix 8) like the
similar expression for the light-quark propagator s does
in QCD (Ref. 35).

The calculations are similar to those in QCD (for a
technical review, see Ref. 37). The gauge [Eq. (Al)] is
useful because the gauge fields co»(x} can be expressed in
ta'ms of the field strength tensor co„'„(0) and its deriva-
tives at x =0 (Ref. 38):

co»(x) = ,'x»a)~(0)+ ,
' x x—»[DNa)~(0)].—

where co» ——T'aP„, co»„=T'co„' T' are generators of the
gauge group [here SU(2)], D is the covariant derivative.
We will use the operators with dimension (4, so the
external field has a form

co„(x)=—,
' x»co~(0) .

To find the propagator up to second order, one has to
solve the equation

where co„'„=c)»aP„c}~»+g8'+—co„co'„[for SU(2)], (coz )
= (0 i c0»„(0)co»„(0)i

0) .
Then, as one can verify, the solutions of (A5) are the

functions
ldo

Do(z,y)=—,r =(z —y)2,
p 2

Di(z,y)= —di, , d, =NpZP
r (4n )z

Dz(z y) =ldz[ —T~r +2f (z y)],
gl(~2)
12(1&r)' '

f (z,y)=
Z2 2

( )2

p 2

This answer can be abtained as follows. Let us multi-
ply Eq. (A3) by Do(x,z) and integrate over d~z:

f d ZDO(x, z)[CI, —g co»(z)cP(z)

2igco»(z}d,"]D(z,y—) =Do(x,y) .

Here C3, and cP, are acting on the right, the relation
c}»'co'»(z}=0, which is true in the gauge (Al), was used.
After integrating by parts and having in mind the equa-
tion for the free propagator, Cl,DO(x,z)=5 (x —z), one
gets
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D(xy)=Dz(xy)+ I g zDz(x, z)[g'ruz(z)aF(z)+gigruz(z)P, ']D(xy) .

From the integral equation (A7) one gets the standard perturbative series

D(x,y) =Do(x,y)+Di(x, y)+Dz(x, y)+

Di(x,y)=2ig f d zDo(x, z)co„(z)di'Do(zy},

Dz(x,y)=D~z"(x,y)+D2 '(x,y)=g f d zDo(x, zoo„(z)oil'(z)Do(z, y)+2ig f d zDo(x, zko„(z)g},"D&(z,y) .

The divergent integrals in Eq. {AS) have to be regularized in some way. We perform the detailed calculations for
Di(x,y) in the dimensional regularization scheme. The calculations for Dz(x,y} are similar but more cumbersome. The
explicit calculation yields

2 ppD~(x,y) = ig—
d ohio~ dz:—ig—dooi~I~(x, y) .

(x —y) (z —y)

zi2(yi —zi ) ~1I~=i dpi —— i—
2 4 1d'z,

(x, —z, ) (z, —yi) &y)„(x,—z, ) (z, —y, )
2 2

2 (xi —yi)
(xf+yf) ——ln

E' Xp

i 17 8

'|lying

i 'Ir 2g~ ——ln—
2 E'

(» —y)' 2(x~+y~)(y" x")—
Xp

2 +
(x —y}2

The integral I~ in the dimensional regularization is (after transition to Euclidean space and then back)

i &0'& ~2—=—&0
I

4'1 41(0)+((2((2(0)10&
2

one gets

i(Pz} ido dicot y
D(x,y) =

r 2 2

+id2[ '
, r +2f (x,y—)], — (A9)

D(y, x)=
2

ldo dicot y
r 2 +

r

+id2[ —, r +2f(x,y)] . — (A10)

Here we calculate the vacuum expectation of some
currents in the SCSM. Although all momentum-space

Here @=4—d, d is dimension of the Euclidean space,
x i,y i,zi are Euclidean vectors, x

~ ix, ——x i ——x,0 0 k k

(x~) = —(x) = —(x ) +(x), and xo&0 is the normali-
zation point. Taking into account the antisymmetry of
m&„we get

2gdon p „x&y"
D)(x,y) =— cop„x~y"= d)oip„—

71, 2 r 2

2g
(4n. )

Note that Di(x,y)+Di(y, x). Adding the possible vac-
uum expectation

correlation functions considered are known, '9 zo the
method of working in x space seems to be easier. We
demonstrate it in the examples of IV-boson, Higgs, and
fermion (J= —,

'
) channels.

We will use the propagators (A9) and (A10) from Ap-
pendix A, and the massless quark propagator which for
the SU(2) gauge group is

2dor &'d&(ry~y& y&y~r)o) ii—
S(x,y) =

4 4r

2idirco~, x&yi' dzf(x, y)r+
r 4r2

where do, d„d„f(x,y),co~, are defined in Appendix A,
r~ =x~ —p~s r =r~g~.

1. Calculation in the J~(I)= 1 (1) channel

At first we calculate the correlation function for the
currents (4) and (5) using the current (6) for W boson be-
cause it is easier. The W boson mixes ~ith the photon
and gives the Z (Refs. 7, 9, 10, and 12},but without elec-
tromagnetism the correlators for 8" and 8' are the
satne. More precisely, the scalar field VEV of dimension
4 for the changed W bosons is —(P"eT'PP T'egty } in-
stead of ((gtg T'gtg) }. Up to isotopic factor of 2, these
VEV's are the same if we apply the vacuum-dominance
hypothesis or the tree approximation. In fact, the isotopic
invariance of the vacuum in both standard model and
SCSM provides the following relation for the scalar
VEV's:
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Diagrams with the lower dimension VEV's and low or-
der in a~ are pictured in Figs. 1(a)—1(d). The diagrams
in Fig. 1(a) are the usual perturbative series. The first dia-
gram in Fig. 1(a) is zeroth order in aH, the last four are
the corrections -a~ calculated in Ref. 20. As was men-
tioned before, in our SR& the main perturbative contribu-
tion is small, so we will not take into account corrections
to it. The main diagram proportional to (tt) ) is the first
on Fig. 1(b). Again, we will not take into account correc-
tions to it [last diagrams in Fig. 1(b)]. The diagrams in
Fig. 1{c)are proportional to aH((gtptT'gfg)2). In the Lan-
dau gauge, where the hypergluonic propagator is trans-
verse [i.e., in momentum space D„'s=( i5 /—K )(g„„—K&K„/K2)] the last three diagrams in Fig. 1(c) are zero
because each of them contains at least one vertex

]

-K,D~ 0——. The first diagram in Fig. 1(c) is calculated
below. The diagrams in Fig. 1(d) are proportional to
aH (~').

To calculate

II&„(q)=i I d x e~(0
~
TJ„(x)J„(0)

~
0),

let us calculate

lI&~(x,y) = (0
~
TJ&(x)J (y)

~
0),

Jqi ————P (x)Dqf(x),

D~ ——D~ —D nt D~ =cfog —igcoig(x);

D n =Bit+ igcoig(x)

and then make a Fourier transformation. After some
algebra

H„'& '(q) =—i d'x eall„'& '(x,O) =ig2(gtgtT'gtgp T'gag)( i)5'—, g„„",—=—,(q„q, q'g„}—
{82)

To get Il&„(x,O) in the Fock-Schwinger gauge, one has to take derivatives first and then put y =0. The last two terms in
(82) are zero because co„(y =0)=0 [see (A2)], if cia is a classical field. If ei& is a quantum field, then the last term in (82)
describes the first diagram in Fig. 1(c), which is the only diagram -aH ((!! ) in the Landau gauge:

II„'~ '(xy)=g (gtg~T'PgtT P)(Tcoq(x)ebs(y)) .
So one gets the answer at once in momentum space:

ttz(t„"(g)—= i f d'xze*ttz(t„)(*,o)= g'&d)t'dd)t'ed&( )g" g—
q2((yfTay)2)

(qI()qv qgIgv) . —

One can also calculate (to leading order in g ) the coefficient in front of the scalar VEV of arbitrary dimension
d =2n +4, n & 1. The simplest way is to work in the Landau gauge. Then, any diagram containing a vertex proportion-
al to f)g&1(x)=p (x)igei„P'p(x)+H. c., where at least one of the fields t!!) "goes to vacuum, " is nulhfied. As we are go-
ing to evaluate the coefficient proportional to the lowest power of g 2 at given dimension of the scalar VEV, we have to
break both scalar field lines so there is the only diagram left, which is shown in Fig. 1(e).

To calculate it, let us notice that any term proportional to the lowest power in g in the Landau gauge comes from the
expression:

tl„„(x,y) g(t'(t (x)mz(xld(x)=exp ( f dz ted'(z) d (y)ez„(y)ddy))),
z

where

&W(z) =g'gtg (z)e2~(z)~(z)P(z) .

Then the term of dimension d =2n +4 pictured in Fig. 1(e) is

tt „(xy) gt'd (x)eez(x)d(x)=f dz, (tW(z, l f dzz(tW(zz) . f dz OW(z„ld (y)ez (y)d(y)) .
n!

Counting the number of a)~ contractions one gets in momentum space

n+1 N 2 n+1
II&„(q}=iI d x e+"II&~„(x,O)=ig

1
g„„"(g)" —n!VEV' '= —

2 2 {q&q„qq„„)VEV' ', —
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where

VEV(d)
& ytTa(pter)ny fr'ay

&

To calculate the diagrams in Fig. 1 proportional to unity, & (() & and aH & o) &, it is easier to work in x space using the
propagators (A9) and (A10) and then making a Fourier transformation.

We restrict our.wives to terms in ll„„up to g, which are proportional to VEV's, so (82) can be written in terms of the
scalar propagator (A9) and (A10):

ll»~(x, o)=II„"„'(x)+11»(2„)(x),

11„"„)(x)=-,'Tr[a"„D(y,xe~(x,y)+a„D(x,y)a~(y, x)—a~~(x,y)D(y, x)—D(x,y)a"„a~(x,y)]
~ „,, (83)

ll„"„'(x)= — Tr[B+(x,y)o)»(x)D (y,x)—D (x,y)o)»(x)(}+(y, x)] ~ „=p .
PV

The first and second derivatives of D (x,y) and D (y,x) from (A9) and (A10) are

D(x, O) =D(O,x)=
2

'do 3.
ldtx

X

2ldpx»
a„D(y,x}~„,=a„D(,y) )„,=," —3d,x„,x'

cP+(x,y) ~„p+, =it+(y, x) ~& —p—
x2

2ld()X»
+3ldgxv,

X

d)
B»c}+(x,y)

~ y ()+ 2 o)»
2o)~ x» d ) 2o)~ x»=a'„a~(y, )

I

2ldp 4X»X»

X4 x' g»v +—3ld2g»v .

II'{ ) =II'()+II'(~ )+IIi{1„){") IIi{2-)=rIp{2.)(" }

ll„„(x)=2d()(p) 2
(X g»v —2X»X»)

x'
do&0'&

(x g„„—4x„x„), (84)

II(1){a2)
PV

II(2)(a)2)
PV

24dodz
x~xv,

gdod)&~ &

48x
(X g»» —X»X»)

SdOd2
4 (X g»v —X»X»} .

Putting these expressions in (83), doing some alI);ebra, tak-
ing the trace and grouping terms in II»„' and II„„'propor-
tional to unity, & (t)

2
& and & o) &, we get

11("')(x)= rl() )("')+llPV PV Pl V

8dodg
(x2g„„+2x„x„). (85)

iqx '( —1) 2 m
( i)a —21 ( i)

1 (n —1)1 (n)

4/i
+76f ~ lpga

d'x
(x ie)—

The graphic representation of II„'o„', ll»(4„'', and II„'"„' is
shown in Figs. 1(a}, 1(b},and 1(d), respectively. Note that
in the gauge (Al} and at y =0 each of the last two dia-
grams in Fig. 1(d) is zero.

The transition to the momentum space is performed by
means of the main formulasss'3q

Note that as Tr(co»„)=0, the terms in D(x,y) and D(y, x)
PrOPOrtiOna1 tO d1 dO nOt COntribute tO H&„) and viCe ver-

sa, only those terms contribute to ll„'„'. Note also that, as
was expected, each term in ll„„(proportional to unity,
& P &, & o) &) is transverse:

[11('„)(x)]= [11„'~"(x)]
Bx~ Bx~

[II~~ '(x)]=0,
Bx~

One can get, for 11»„',

11(p„'(q)=l f d'x e~il(o)(x)

1=(q q„—q g „) — ln( —qi)
96m

II(~„)(q)=i f d'x e" II((„'"(x)

=( — )= q»qv qg»v—



S. A. DEVYANIN AND R. L. JAFFE 33

II„'„'(q)=if d xe~II„'"„'(x)

g2( 2)= qpqv q—gpv
ig

Finally, the operator-product expansion for the two-point
correlation function of the current creating W boson from
the vat. uum in the GSW and SCSM's up to the VEV's
with dimension d (4 is

r

2

Il„„(q)= (q„q„q2g„—„) — ln( —q)2—
96 2q

g2((ytTay)2) g2(2)
4 +

q 192m q

(88)

2. Current creating left fei~ions from the vacuum

Consider the two-point functions of the current:

u =1,2, . . . , 12 (er, qL ), (89
Jf{y}= [Jf'(y)]~rp= Pf.4(y),
Ilf(xy) = (0 ( TJf{x}Jf(y}

I
{)&

=(T4' { )—{1—r )y( )y(y) —,
' (I+y )y(y)) .

(810)

Ilf is a 4X4 matrix. Terms proportional to unity ({r}2)
and (aP) one can express by means of the propagators of
the fermion {Bl)and scalar (A9)

Ilf(x,y) =—Tr[D(x,y) —,
' (1—y5)S(y, x) —,

'
( I+y5)]

(811)
(the trace acts on color indices only). As there are no
derivatives in llf one can set one of the coordinates to be
zero:

t'

1 l &(y2) idp 3id2x
llf (x,O}= —Tr[D (x,O) —,( 1 —|5)$(0 x)]= ——,( I —) s)Tr

X
r

X4

1= —,(1—y5)
2jdp({{})x 4ldp x 6ldpdzx

X X

Making a Fourier transformation by means of formulas
(86) or their derivatives on q„one gets

llfa(q}=—i f d xe~lIf(x, O)
r

=—,(1—ys)q — ln( —q ) — 2

(~')
16&

g'&~'& +0 g'&0'&

(16n) q q

(812)

3. Current creating Higgs boson from the vacuum

Consider the two-point functions of the current

JH(x) =P (x}P(x),

rlyr(x, y) = (0
~
TJH(x)JH (y )

~
0)

Tr[D{x,y)D(y, x)]—.

There are no derivatives in IIH, so using (A9) and (A10)
one gets

i(y2) idp 3id2x
IIH(x, O}=—Tr

2 x2 2

2d, &y2& (y2)2+6dpd2+
X4 X2 2

—3d2&y')x'.

0 g'&~'& 0 g'&P'&
(813)

The last term in {813)comes from the fact that the dia-
grams proportional to g (P ) are zero for the same
reason as the last three diagrams in Fig. 1{c).

The last three terms give a 5 function or its derivative
after Fourier transformations. We are interested only in
the q2 ~0 region, so we get

Ilier(q2)=i f d4x e'e III'(x, O)

ln( —q )—2(y2)
Sm

2
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