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%'e present a thorough analysis of U(1) generators in all possible symmetry-breaking modes that
reduce SU(9) down to SU, (3)XSU~(2))(U{1). Two types of representations that satisfy a set of
grand-unification guidelines are considered. The first type embeds SU{5) trivially and the second

type has nontrivial embedding of SU(5}, Acceptable representations of both types are found in

SU(9). Projection matrices as well as the contribution of U(1) eigenvalues to the weak hypercharge
are given in all physically interesting modes of symmetry breaking. An example is explicitly worked

out for the evolution of coupling strengths to determine the intermediate mass scales responsible for
invisible axions and the delayed decay of the proton while maintaining a satisfactory value of sin 8~
at low energies. Fermion contents are also discussed.

I. INTRODUCTION

The idea of grand unification was suggested more than
a decade ago with a simple gauge group SU(5) to unify the
strong, electromagnetic, and weak interactions. ' Applica-
tions as well as generalizations of this model have been
quite extensive since then, and the subject has reached a
certain maturity in recent years in the sense that a com-
plete list of the anomaly-free, complex, and asymptotic-
free representations of all classical Lie groups is now
available. '

One major reason for searching for all such possible
grand-unification schemes is to understand the problem of
family generations, i.e., to see if it is possible to incorpo-
rate the flavor symmetry into a single grand-unified gauge
group. The problem of the family generation is one of the
long-standing puzzles in particle physics and is one of the
major shortcomings of simple grand-unification theories.
Another problem is the necessity for a hierarchy of two
vastly different energy scales in the Lagrangian. The
gauge hierarchy problem has been discussed by many au-
thors and appears to have been solved in the context of su-
persymmetric grand-unified theories that generate all
mass scales below the Planck mass dynamically. Howev-
er, the problem of flavor generations has not made the
same kind of progress even though the flavor dynamics
has been persuasively emphasized and studied. It still ap-
pears attractive and appealing to find a larger grand-
unification group into which a multiple family struc-
ture of the SU(3) XSU(2) XU(1) subgroup or SU(5) can be
embedded. The family problem is then to make the fami-
ly unification in an appropriate grand-unified model.

Another possible approach to the family problem might
be the composite models in vrhich quarks and leptons are
supposed to be bound states of more fundamental objects,
say, preons. Exactly how preons are forming the elemen-
tary particles and how many of them are needed to give
the desired family structure are still open to solution.

However, within the context of composite schemes, one
will need to know the representations of the fundamental
preons. In this case quarks and leptons then correspond
to certain dynamical condensates of preons determined by
a certain confining metacolor force among preons and the
family generation will be regularity of those condensa-
tions. However, no one has found such a composite
model yet. Though there are many attempts in this direc-
tion, they usually involve additional phenomenological as-
sumptions and we are far from understanding the
metacolor group of preons. For example, we do not have
a consensus as yet if preons are all fermions. ' In some
sense this is related to the deeply rooted question of the
fennion masses, i.e., whether they are generated by spon-
taneous symmetry breaking or rather by a certain dynami-
cal origin. The search for all possible representations of
preons will prove to be useful, anticipating the eventual
understanding of the preon gauge symmetry. However, it
is fair to say at the moment that the family problem
within the context of the ordinary grand-unification
scheme is better defined and perhaps more profitable if
not more promising. That is to say one updates the cri-
teria and improves the approach originally suggested by
Georgi to incorporate the number of families.

In the standard grand-unification approach one family
generation of fermions is given by the simplest anomaly-
free representation, 5'+ 10, of SU(5) or more generally by
the 15 chiral states of SU(3)XSU(2) XU(1) contained in
the minimal SU(5) representation. The representation of
one family generation is characteristically complex with
respect to SU(3) X SU(2) XU(1). This is closely tied to the
fact that these particles have survived as the set of ordi-
nary light fermions when the grand-unified gauge symme-
try breaks down to SU{3)X SU(2) X U(1) at an energy scale
MG. Real representations would have combined to form
SU{3)XSU(2)XU(1)-invariant mass terms of the order
MG. As mentioned already, a complete documentation of
such complex representations of classical Lie groups that
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satisfy the additional conditions of being anomaly free
and asymptotic free was presented recently. Obviously,
any reasonable and realistic grand-unification representa-
tion will have to be anomaly free so as to lead to a renor-

malizable theory. The requirement of asymptotic freedom
implies that all fermions are confined by an infrared
slavery and therefore may be reasonable for preon repre-
sentations. But for ordinary grand unification this re-
quirement can at best be a practical one to limit the di-
mension of the representations. Since gravity will play a
role around the Planck mass scale which is reached
beyond the grand-unification scale, there is no strict
reason for the single unified coupling constant to decrease
forever in high energies. Nevertheless, asymptotic free-
dom is often required to circumvent the highly reducible
nature of particularly SU(N)-type representations.

Another constraint often applied is the condition of the
automatic invisible axion. The axion is the pseudo-
Goldstone boson arising from the spontaneous breaking of
the Peccei-Quinn symmetry Up&(1) which is introduced
to rid the strong CP problem. From the astrophysical
consideration of the energy emission of red giant stars one
finds that' the Upq(1) symmetry is broken at a mass
scale around 10" GeV, which makes the axion invisible"
both in mass and interaction strength with other particles.
In a more natural theory the Up~(1) should arise automat-
ically'2 from the underlying grand-unification symmetry
and undergo a spontaneous symmetry breaking at such a
mass scale. In many instances, however, this Up~(1)
leaves a discrete Z(M) symmetry'~ by QCD instantons,
M being the color anomalousness of the Up~(1} symmetry
thereby leading to degenerate vacua separated by domain-
wall structures in the early Universe. Since such domain-
wall structures are in cotntradiction with modern cosmolo-

gy, a certain amelioration is desired to remove the degen-
eracy. Thus the cosmological requirement of no domain
walls has been added to the list of necessary constraints
that any acceptable theory must obey. A simple way to
satisfy this condition without populating the theory with
more unknown particles is to embed' Z(M) onto the
continuous gauge group of the unified theory. As the
color-anomalous number M is related to the number of
fiavors that contribute to the anomaly term and their

Up@( 1 ) charges, such embedding is not always possible
and therefore provides a nontrivial consequence to the fia-
vor numbers. In other words, the requirement of no
domain walls serves as a useful criterion to choose the ac-
ceptable grand-unified models.

Recently we have reported the results of extensive
searches for the acceptable representations' that have at
least three generations of fermions and yet satisfy all of
those desired conditions. In addition, all particles were re-

quired to be real with respect to SU, (3)XU, (1), a gen-
eralization'6 of Georgi's first condition of model build-

ing. If the representation is SU(3) complex so that the
color gauge symmetry is chirsl, there will be massless

quads. Otherwise the chiral symmetry associated with
confinement will break down spontaneously to SU(2).
Reality under U (1) is also a reasonable requirement be-
cause all charged leptons have mass. It turns out that the
reality condition under SU, (3}XU~(1)is closely related

to the counting of the number of generations particularly
for the spinor-type representations into which a nontrivial
embedding of SU(5) is made. The results of the search'
have shown that there are only a limited number of repre-
sentations that satisfy all these constraints. They are
mostly in SU(9) though two SU(7) and an SU(8) represen-
tations are allowed in the list. In fact there is only one
representation' that has exactly three low-mass genera-
tions, i.e., 4[1']+2[2']+[3]+[4]in SU(9). There are
several four-generation models found in SU(9). In this
respect, the SU(9) group is of particular interest.

In this paper, we study these SU(9) representations and
in particular the various symmetry-breaking patterns that
are possible in SU(9) as well as the contribution of U(1)'s
to the weak hypercharge in each symmetry-breaking
mode. The method we employ is that of the projection
matrix which was shown to be both economical and suc-
cessful for SU(7) models. '

In Sec. II we list the constraints imposed on the repre-
sentations and elaborate on their consequences. Section
ID deals with the possible symmetry-breaking patterns in
SU(9) and the weak hypercharge made of the various U(1)
eigenvalues. Consequences to the evolution of coupling
constants due to different symmetry-breaking modes are
examined in connection with the low-energy value of
sin Hip and the prolonged proton lifetime. Section IV
contains the fermion content of SU(9) models as well as
some concluding remarks.

II. CONSTRAINTS OF GRAND UNIFICATION

Although we are interested in SU(N) and in particular
SU(9) representations, we will summarize here all the con-
straints imposed on the representations. Starting with the
list of complex, anomaly-free, and asymptotically free
representations, we apply systematically the rest of the re-

quirements to narrow down the acceptable ones. The con-
straints to be satisfied by the left handed fer-mian repre-
sentations are as follows.

(a) The representation should be anomaly free.
(b) The representation should be asymptotically free

with respect to the grand-unification group G.
(c) The representation must be real with respect to

SU, (3)XU, (1).
(d} The representation must accommodate at least three

generations.
(e) The representation should contain color singlets,

triplets, snd antitriplets only.
(f) The representation leads to an automatic invisible

axion without suffering from the catastrophic domain-
wa11 problem.

As shown in Refs. 15 and 17, all these constraints can
be satisfied by reducible representations of SU(X}. Al-
though there are other possibilities such as those in SO(10}
and E6, they can overcome the domain-wall difficulty
only at the expense of introducing further heavy fer-
mions. ' However, we choose the domain-wall resolution
through the embedding' of the unbroken discrete symme-
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try of Up(}(1) to the continuous gauge group as this gives
nontrivial consequence to the flavor numbers. Thus we
are left with SU(N) representations only. Constraint (d)
is a generalization of (3eorgi's second rule of model build-

ing and requires the representation to be complex vrith

respect to SU(3) X SU{2)X U(1).
The defining fundamental representation of an SU(N)

group transforms like
N-5

(3, 1,——,
' )+(1,2, —,

' )+ g (1,l,q()

under SU(3) XSU(2) XU(1) subject to the traceless condi-
tion of the charge operator, g, , q; =0. Constraint (e}
can be satisfied by the antisymmetric representations of
SU(N), [M], corresponding to the Young diagrams hav-
ing M boxes in a single column. Thus we write the repre-
sentation of the left-handed fermions in general as

fI.= g C»»i[M] (1)
M=1

where CM is the multiplicity of the representation [M].
In general, not all C~'s will be present because
[M']=[N —M]. Constraint (b) imposes the condition
N —l N —i

g C~I2(M)= g C~, ,
(11N,

M=1 M=1

(2)

G(N) g q( ——0.

For those representations with G(N}&0, we must have

q =—g,. i q; =0, i.e., all q; =0 for the N —5 entries in

the fundamental representation. For those representations
with G(N}=0, not all q s have to be zero provided

gq, =0. Thus it is clear that counting the generation
number will be different drastically depending on whether
or not q =O.

In the case of q =0, only the usual quarks and leptons
appear along with color-singlet neutral components. The
net numbers of 5 and 10 representations of SU(5) con-
tained in Eq. (1) are

N(5~
»

———d i (N —5—)d 2
——,(N —5)(N —6)d 3

+[1——,
' (N —5)(N —6}(N 7)]d4—

N(ip» =G(N); (9)

i.e., the coefficient of q in Eq. (5) is precisely the net num-
ber of SU(5) 10 representation. Furthermore,

G(N) =d2+(N —6)d3+ —,
' (N —5)(N —8)dq .

Note that Eq. (5) reduces to the anomaly-free condition
A (N) =0 for SU(5). But in general for anomaly-free rep-
resentations constraint (c) necessarily reduces to

where Iz(M)=2Tr(T ) evaluated on [M] with the nor-
malization I2(1)=1. This restricts the complex antisym-
metric representations only up to rank 4, i.e., M &4 and
their complex conjugates up to N (12. Constraint {a) is
satisfied if

N((p» —
N(&~» =~ {N)

so that

N((p» =N i =G (N)

(10)

(N —2M)(N —3)!
=„~, "(M—1)!(N—M —i)!

= (3)
for the representations of our interest. Thus G(N) is the
number of generations contained in Eq. (1) when q =0,
I.e.,

in the convention that the anomaly of the defining vector
representation of SU(N) is unity. Because [M']
=[N —M], we wiB use the notation C»(( ~=—C~ and
d»»r

—= C»»r
—C»»'r henceforth. Then Eq. (3) b(xomes

A(N) = d, +(N —4)d, + —,
' (N —3)(N —6)d,

+ —,
' (N —3)(N 4)(N —8)dg ——0 . —

This condition is automatically satisfied by constraint
(c} in the case of SU(5). In general, the representation
must contain exact pairs of (a,q) and (a', —q), u and q
being the quantum numbers of SU, (3) and U, (1), in or-
der to meet constraint (c). In particular the number of
color triplets must be equal to that of color antitriplets.
Also the sum of the charge squares of the particles in the
color-triplet representations is equal to that in the color-
antitriplet representations. One can easily verify that the
former aspect of constraint (c) for Eq. (1}is equivalent to
the anoinaly-free constraint (a) whereas the latter aspect
of constraint (c) of Eq. (1) gives

X—5

A(N)/9+G(N) g q; =0, (5)

fL ~G (N)(5'+ 10)+neutral singlets (12)

under SU(N}~SU(5) breaking. Constraint (d) is satisfied
as long as G (N) & 3.

In the ease of q+0, reality under SU, (3)XU, (1) im-
plies G(N)=0 for the fermion representations. It turns
out that there are only a few anomaly-free representations
that satisfy G(N) =0 when q+0. In fact there are none
for SU(6}. For SU(7), the representations must satisfy
d(..dz.d3 ———1:1:—1, an example of which is the SU(7)
representation [I']+[2]+[3*]which can be embedded
into the 64-dimensional spinor representation of SO(14)
naturally. For SU(8), the representations must satisfy
d(.d2.d3 =—3:2:—1. For SU(9} the representations must
obey di d2 ——6d3+5d4..—..(3d3+2d4), a typical example
of which is [1']+[2]+[3*]+[4]that ' can be reduced
from the complex spinor representation with dimension
2s=256 of SO(18). Since G(N)=0, these representations
become real under SU{5) in the limit of all q;=0 and
therefore counting the number of fermion generations
should be done by considering the SU(3)XSU(2)XU(1)
contents directly. On the other hand, this ~iB require
specific assignments of q s. In other words, the number
of generations depends on judicious choice of the electric
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charge quantum numbers of the SU(5} singlet members in

the fundamental representation. In addition, we should

make sure to satisfy the reality with respect to
SU, (3)XU, (1) for a given assignment of q;. For SU(7),
the only possible assignment is (a, —a) and the represen-
tation [1']+[2]+[3']satisfies constraint (c). This SU(7)
representation was studied extensively2i for integral as
well as fractional values of a and was shown to accommo-
date only two generations of quark-lepton family for the
choice a =1. Thus it is ruled out by constraint (d). For

I

4
[1']~(3',1,—,)+(1,2, ——,

' )+ g (1,1,—q;),

SU{8), there are three different q s, the suin of which
vanishes. The representation 3[1']+2[2)+[3'] is real
with respect to SU, (3)XU, (1) if and only if some pairs
satisfy q;+qj ——0 {ij =1,2,3). Then the charge assign-
ment has to be of the type (0, q, —q). Again this represen-
tation contains only two generations of fermions. For the
SU(9} representation [1']+[2]+[3']+[4], constraint (c}
can be satisfied by many different choices of (qi, q2, q&,q4)
subject to g, , q; =0. Under SU(9)~SU(3) XSU,'2)

XU(1), we have

(13a)

4 4 4
[2]~(3',1, ——', )+(3,2, —,)+(1,1,1)+ g (3, 1,——,

' +q;)+ g (1,2, —,
' +q;)+ g (l, l,q;+qj), (13b)

4
[3']~(3,2, —,

' )+(3', 1, ——', )+(l, l, +1)+ g (3, 1, + —,
' —q;)+ g (3",2, ——,

' —q;)

4 4
(3', 1+—,

' —q,.—q& )+ g (1,1,—1 —q; )+ g (1,2, ——,—q; —q, )+ g (1,1,—q; —q, —q„), (13c)

4 4
[4'] (1,2, ——')+(3' 1,—')+ g (1,1,—1+q )+ g (3' 2, ——+q )+ g (3, 1 —+q )

4 4 4

+ g(3', I, ——, +q;+qj)+ g(3,2, —, +q;+q, )+ g(l, i, i+q;+q, )
i+j i+J i+j

4

+ g (3, 1, ——,'+q;+q, +qz)+ g (1,2, —,+q;+q, +qk)+(1, 1,0) .
i~j~k i+j +k

(13d)

(5')+(10)~ (3,2, —,
' )+(3',1,—,

' )+(3',1,—-', )

+(1,2, ——,)+(1,1,0) (14)

Noting that one family generation consists of (5')+(10)
of SU(5) or

of which are in SU(9}. They are

fL, =4[1']+2[2')+[3)+[41,

ft. ——26[1']+7[2]+[3'] .

(15)

(16)

in the usual SU(3) XSU(2) XU(1) contents, we need

qt+q~ ——0 (i +j ) for the qu~rk doublets (3,2,—,
' +q;+qj ) in

[4]. Then the charge assignment has to be of the form
(a, a,b, b) I—n—this. case, there are four generations in
[1']+[2]+[3']+[4].If we choo' a=b in addition,
two more generations can be unified in this SU(9) model.

Now we come to constraint (f). As we discussed in Sec.
I, the requirement of an automatic invisible axion with no
domain walls is desired. Of the several resolutions sug-

gested, the prescription to embed the remnant discrete
symmetry left unbroken by QCD instantons onto the
center group of continuous gauge symmetry is most in-

teresting and yet nontrivial so far as the number of flavors
is concerned. I.ie groups possess invariant discrete center
groups (subgroups}, i.e., Z(2) for SO(2%+1) and Sp(2N),
Z(4) and Z(2)XZ(2) for SO(2N) with odd and even N,
respectively, Z(3) for E6, and Z(N) for SU(N). All other
classical groups have trivial centers. Vfe have recently re-
ported' the results of searches for the grand-unified
models that satisfy all of the constraints (a)—(f}. In fact,
the no-domain-wall requirement is so restrictive that there
are a small number of models allowed: There are only
two models that possess a natural automatic U~(1) both

The first model contains thrw fiavor generations while
the second has G(9)=4. By relaxing the naturalness re-
striction so as to allow an Upq(l) to exist through particu-
lar choices of Higgs scalars or by considering a further in-
tricacy of the embedding mechanism concerning the gen-
eral congruence class of representations, we found five
more four-generation models, three of which are in SU(9).
All of these are of the type of Eq. (12), i.e., all q; =() for
the N —5 entries in the fundamental representations.
was also shown that ' that SU(9) model

fL =[1']+[2)+[3']+[4]

with the charge assignment (a, a, b, b) for —the ad—di-
tional members in the fundamental representation, could
satisfy the requirement (f} with particular choice of Higgs
scalars. Though G (9)=0, this model accommodates four
fermion generations as pointed out before. In fact, in the
case of G(N) =0 this model is the only one satisfying all
of the constraints (a)—(f}. We note again that this model
is equivalent to the 256-dimensional complex spinor rep-
resentation of SO(18) revived recently by Bagger and Di-
mopoulos. The charge assignment (a, a,b, b) ac-— —
tivates abundant particles with color. Consequently the
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color SU(3) is not asymptotically free in this model
though it has asymptotic freedom with respect to the full
SU(9) gauge group. One needs to split the model and give
those particles with exotic quantum numbers a mass of
the order of the grand-unified scale MG leaving four left-
handed families hght in the low-energy sector. Such split-
ting of heavy from light particles was possible in SO(18)
and a similar scheme can be apphed to SU(9), which has
SU(5) XSU(4) breaking with an extra U(l) symmetry.

All in all we see that SU(9) is of special interest. This is
the only group that admits representations satisfying all
the necessary constraints of model building regardless of
the charge assignments of the SU(5} singlet components in
the fundamental representation. In the case of all q;=0
for the single components, the number of families is given
by G(9). Equations (15) and (16) are two interesting
models in this case. On the other hand, Eq. (17) is the
only acceptable model when all q;+0 and can accommo-
date four families.

In the remainder of the paper, we concentrate on and
study SU(9) models. In the next section we examine all
symmetry-breaking patterns that are possible in SU(9} as
well as the contribution of each U(1) to the weak hyper-
charge in each mode of symmetry breaking.

ID. SYMMETRY-BREAKING PATTERNS IN SU(9)
AND THE %'EAK HYPERCHARGE

The structure of hypercharge operators will depend on
the mode of symmetry breaking. We first study all pat-
terns of symmetry breaking that reduce SU(9) to
SU(3) XSU(2) XU(1). We choose to trace down the maxi-
mal subgroups at each stage of breaking. There are five
U(1) factors in the end that contribute to the charge
operator

Q=Ti+ F, (18)

where T3 is the third generator of SU(2) subgroup and F
is the weak hypercharge operator. The fundamental rep-
resentation of SU(9} embeds that of SU(5) so that 9
decomposes into (3,1) + (1,2) + 4(1,1) under SU, (3)
XSU(2). Since we are interested in SU(9) breakings to
SU(3) X SU(2) X g, , U(1); eventually, the weak hyper-
charge can be written as

F= ga;Y;, (19)

where Y; is the diagonal operator corresponding to the ith
U(1) rotation and

a; =Tr( YY; )/Tr F;

Since the charge operator is a generator of SU(9), the
charge assignment of the fundamental representation is

Q =diag{ —
3

—
3

—3.1 o ei e2 e3 .—ei —qi —e3) .

(21)

The hypercharge operator as given by Eq. (18) is not prop-
erly normalized. To ensure the proper normalization, we
set F=CY'0 with the convention TrT3 ——Tr Fo ———,

' .

Then we obtain from Eq. (18) and Eq. (21) that

Q ~3+ I Y3+2[ei'+ez'+e3'+(e1+'02+'03)'lI '"Yo .

This gives the SU(2)XU(1) mixing angle at the grand-
unification mass scale MG to be

sin 8~(MG )=TrTi /TrQ

=
I 3+2[vi'+q2'+ei'

+(qi+qp+q3)']I ' . (23)

Altogether there are 60 different ways of breaking the
SU(9) symmetry, all of which reduces SU(9) to
SU(3)XSU(2)XU(1). Intermediate stages of symmetry
breaking are of the form g,. SU(n; ) g.U(1)J. There are
four classes of SU(9) breaking distinguished by the first
stages: i.e., SU(9)-+SU(8), SU(7) XSU(2), SU(6) X SU(3),
and SU(5)XSU(4). When we trace down the maximal
subgroups systematically and consider different possibili-
ties of splitting the color SU, (3) and weak SUa (2), these
four classes have 23, 17, 1 l„and 9 subpatterns, respective-
ly. However, a more interesting classification may be to
make use of how SU, (3) and SUa (2) emerge.

Case (A). When SU, (3) and SUu(2) appear at the
sitme time from an intermediate subgroup SU(nl ), the un-
ification mass MG is determined by the energy scale below
which the symmetry is broken to

n

SU(ii, ) SU, (3)x SU (2)x g U(1), .

There are eight such cases, all of which have an inter-
mediate SU(5) reducing to SU, (3)XSUa (2)XU(1) and
therefore have the same MG as in the standard SU{5)
model.

Case (8). When SU(9) has an intermediate subgroup
SU(ni ) breaking at the scale Mi down to SU(nz)
XSUa (2) X followed by SU(n2)~SU, (3)X at
Mq, the color coupling strength a3(p) changes the slope
and decreases faster for p &M2. Thus the unification of
the strong and electroweak interactions that occurs above
p, =Mi will come earlier than in the standard SU(5)
model. There are 19 patterns belonging to this case.

Case (C). If SU(9) goes through an intermediate break-
ing SU(n, ) SU(n, )XSU, (3)X . at M, followed by
SU(n2)~SUii (2)X at Mz, the weak-couphng
strength a2(p) evolves rapidly above p, =M2 with a slope
larger or equal to that of a3(p). In order for a grand uni-
fication to occur at Mi, aq must be larger than a3 m the
interval M2 &}u &M, . Furthermore, if this a2{p,) is to be
extrapolated to the low-energy region realistically, it must
cross az(p, ) at some value p &M2, i.e., there is a prema-
ture false unification of the two interactions in the low-
energy region, the meaning of which is not clear. On the
other hand, if one wants to avoid such a premature unifi-
cation and adjusts a2(p) and a3(p) from low-energy data,
their evolution will not lead to a grand unification at M,
unless many more fermions start to contribute to aq(p)
above p, =M2 preventing a faster decrease. However, it is
hard to imagine how a3(p) can maintain the same slope
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in Table I. The projection operator method is the most
economic way of tracing the branchings of a representa-
tion directly on its Dynkin weight basis. Here we use the
convention that the highest height (ai,aq, . . . , a„) of a
Dynkin basis in SU(n+1) denotes the representation
whose Young tableau has a; columns with i boxes
(i =1,2, . . . , n) By app.lying a projection operator I'
from the right on SU(9) weight basis, 8'9, we obtain
SU(3) X SU(2) X Q, , U(1); weights, i.e.,

8'9P = 8'3 S'2 Y) Y2 Y3 Y4 Y5 . (24)

In other words, the first two columns on the right-hand
side represent the SU(3) projection whereas the third
column is the SU(2) weights. The remaining five columns
are eigenvalues of the U(1) generators. Note that W9 is
an 8/D matrix in which each row represents a weight
component in descending order from the top. An opera-
tor of P matrix on W9 from the right then decomposes
the S XD matrix into the form from which the weights of

above p=M2 in that case. There are 20 subpatterns be-

longing to this case.
Case (D). The final situation is when SU, (3) and

SUir(2) split off the different subgroups SU(n2) and
SU(n3) of an intermediate stage SU(n i )~SU(nz )

XSU(53 ) X . Then there are at least three different
mass scales that influence a3(p) and a2(p). They are Mi
associated with SU{n, )~SU(n~)XSU(n, }X,M2 of
SU( ii2)~SU/(3) X and M3 of SU(ri3)~SUii (2)

. . As long as n& —n3 & 0, there wi11 be a grand uni-
ficatio above p=Mi. Depending on where SU(ni) and
SU(ni) breakings occur, the unification scale Mi can be
reached later or earlier than that of the standard SU(5)
model. In fact, one may determine the hierarchical ratios
M2/Mi and M&/Mi from the experimental inputs such
as sin 8ii and the proton lifetime. Thus this case pro-
vides rich possibilities. There are 12 subpatterns of sym-
metry breaking belonging to this case.

Of the 60 patterns we find 20 symmetry-breaking
modes belonging to either case (A) or case (D) to be poten-
tially interesting and meaningful. While case (B) can give
rise to a meaningful grand unification, models with this
class of symmetry breaking are likely to run into difficu-
lt with the proton lifetime since the best limit presently
available, r/8(p~e+m ) ~2X10 yr, may imply a delay
of grand unification compared to the standard SU(S)
model. We have already elaborated on the physical inap-
titude of the symmetry-breaking patterns of case (C). The
20 symmetry-breaking patterns that are more relevant to
the physics of SU(9) grand-unification models are summa-
rized in Table I. Obviously, different patterns of symme-
try breaking entail different evolutions of coupling con-
stants and sin 8ir. In particular, different combinations
of U(1) generators will appear in the charge and hyper-
charge operators, Eqs. (18) and (19). Thorough investiga-
tion of the five U(1) generators in each and every interest-
ing case of symmetry breaking is needed, but this is not a
simple task. For this purpose, we give also the projection
operators of

SU(9) SU(3) XSU(2) X g U(1);

SU{3), SU(2), and U(1) generators can readily be read.
For example, the fundamental representation [1] of SU(9)
with any one of the projection matrices given in Table I is
decomposed to ([1],.)+(,[1])+ 4(., ~ ) in (SU(3),SU(2)).
We can then identify (SU(3),SU(2),U(1)r) quantum num-

bers from Eq. (21) as

where Eq. (18} is used and g, q; =0. Finally the con-

tributions of each U(1) operator to the hypercharge can be
determined from Eq. (19). Table I shows the results of
charge combinations in each symmetry-breaking case.
Having obtained the U(1) contributions to the total charge
operator, the hypercharge quantuin number of the
(SU(3),SU(2),U(1}r } decompositions of higher SU(9) rep-
resentations can readily be read off from Eq. (25) with the

help of Table I. In particular, this procedure confirms the
results of Eq. (13) based on tensor decompositions. We
note in addition that Table I contains a s of each U(1}
generator for general values of charges q;. Obviously, a
different choice of q; gives rise to a different charge
operator.

We have seen in Sec. II that the number of flavor gen-

erations is counted differently depending on the choice of
q;. When all q;=0, the flavor number is given by the
number of (5 +10) of SU(S) contained in the model.
Two such models are given in Eqs. (15) and (16), which

have the same charge operators in each mode of symme-

try breaking. When none of the q s are zero, Eq. (17}is

the only acceptable model which contains four generations
for qi ———qi =a and q3 ———q4 —band six g—enerations if
a =b in addition. Different choices of q; give different
charge operators for a given symmetry-breaking mode. In
particular the various U(1)'s contribute differently to the
evolution of sini8s and also to the production of mono-

poles. From Eq. (23}, we get sin 8ir(Mo)= —', for the

models of Eqs. (15) and (16), the same as in the standard
SU(5), while sin 8ir(M&} is much smaller for the models
of Eq. (17) for all q;&0. Obviously one needs to increase
(decrease) sin~8ir in the case all q;+0 (all q; =0}when it
is extrapolated to the low-energy region following the
flow of the renormalization-group equations for the cou-
pling constants. This will provide a posteriori preferences
of certain symmetry-breaking modes in each case. The re-
normalization corrections of the coupling constants will
usually depend on two or three parameters coming from
intermcxhate mass scales.

Suppose that SU(9) is broken down to
SU(3) X SU(2) XU(1) in several steps as in the case (13) of
Table I: SU(9)~SU(5) XSU(4) XU(1)q at Mo followed
by SU(4)~SU(3)XU(1)z and SU(5} SU(4)XU(1)c at
Mi, and SU(3)~SUir(2)XU(l)D and SU(4}~SU,(3)
XU(l)z at Mz, and finally at M3 ——Mii, SU(9)~SU, (3)
XU(1), . Assuming that there is a large region between
the successive mass scales where an effective perturbative
theory with the specified intermediate gauge symmetry is
applicable we can write at M3 ——M~ ~Mq

3

a; (Mw)=a9 (Mo)+2 g djln{MJ —i/MJ) ~ (26}
j=1
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TABLE I. Symmetry-breaking patterns, projection matrices, and U(1); contributions to the hyper-

charge.

Symmetry-breaking
pattern Projection matrix U(1); Contributions to

(1)
SU(9)~SU(8) X U(1)1

SU(8)~SU(7) XU(1)p

SU{7) SU(6) XU(1)3

SU(6}-SU(5)xU(1).
SU(S)~SU(3},XSU(2)~XU(1)5

10011112
01022224
00033336
00144443
0005 55 50
00066600
000 7 7000
000 80000

1a)= s (q)+qg+q3}
1 1ax= 56 (q)+q&) —

s q3
1 1a3= 4gq) —7q&

1
a4 6q)

1a5= —
6

(2)

SU(9)~SU(8) XU(1))

SU(8) SU(7) XU(1)&

SU(7) SU(5) XSU(2) x U(l)&

SU(2) ~U(l)g
SU(5) SU(3), XSU(2) ~ XU(1)q

1001 1202
0 1022404
0003 3606
00144803
0005 5 1000
000665 10
000? 7000
000 8 0000

a)= s (q)+q~+q3)1

a& ——~'~ (q)+qz) —
s q3

1
a3 ———,4 (q) +qz)

1a4= T(q) —q~}
1ay= —
6

(3)
SU(9}~SU(8)XU(1),
SU(8)~SU(7) XU(1)&

SU(7} SU(4) XSU(3)XU(1)3

,
SU(3)—+SU(2}g XU(1)4

SU{4) SU(3), XU(1)&

1001 1 301
01022602
0003 3903
000441200
00155810
000 6 6420
0007 7000
000 8 0000

a) ——T(q) +q~+q3)
1

1 1

az =
qq (q) +qz }—s q3

1 1a3= Zs q)
1a4= —Tqg+ 6
1 1a5= —
4 q) —

)p

(4)
SU(9)~SU{8)XU{1))

SU(8) SU(6) XSU(2) XU(1)&

SU(2)~U(1}3
SU(6)~SU(5) XU(1)4

SU(5)-+SU(3), XSU(2) g XU{1)5

10012012
01024024
0003 603 6

00148043
0005 10050
0006 12000
00076 100
000 8 0000

a) ——s (q) +qp+q3)1

1 1a, =
4S q) —

16 (q~+q3}
1

a3 ——T(qq —q3)
1

a4 ———
6 q)
1

ag ———
6

(5)
SU(9)~SU(8}XU(1)1

SU(8) SU(5) XSU{3)XU(1)~

SU(3) SU(2) XU{1}3
' SU(5)~SU(3), XSU(2)~ XU(1}4

SU(2)~U(1)5

1001 3002
0 102 6004
0003 9006
001412003
0005 15000
0006101 10
0007 5 200
00080000

a)= T(q)+q~+q3)
1

a& = —
&& (q) +qz+q3 }

1 1a3= 6 (q)+q~}—
3 q3

1a4= T(q1 —qp }
1as= —
6
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TABLE I. ( Continued).

Symmetry-breaking
pattern Projection matrix U(1), Contnbutions to F

(6)
SU(9)~SU(8) XU(1))

SU(8)-SU(4) XSU(4) XU(1),
SU(4)~SU(3) XU(1)3

SU(4)~SU(3), X U(1)4.

SU(3)~SU(2) g XU(1)»

10014001
0102 8002
0003 12003
0004 16000
0015 12110
00068220
00074300
000 80000

a~ ———(q~+q2+q3)1

1 1

a, = —,z (q, +1)——,q
1

1 1a4= —3q2+ 6
1 1

4q~

(7)
SU(9)~SU(&)XU(l ))

SU(&) SU(4) XSU(4) XU(l)g

SU(4) SU(2) XSU(2) jp XU(1)3

SU(4)~SU(3), X U(1)4

SU(2)~U(1)»

10014001
0102 8002
0003 12003
0004 16000
0015 12200
0006 8400
000742 10
000 8 0000

a~ = s (q~+q2+q
1

a3= —
s (q2+q3
1

1a4= T(q2, —q3)
1a»= —4q& —

rz

(8)
SU(9) SU(7) XSU(2) XU(1),

SU(2)~U(1)2
SU(7)~SU{6)XU(1)3

SU{6) SU(5) XU(l),
SU(5)~SU{3),XSU(2)~ XU(1),

100201 12
010402 24
000603 3 6

001 80443
0001005 50
0 0 0 12 0 6 0 0
000140000
0007 1000

1 )4 (ql+q2)1

1a2= T(q~+q2)+q3
a3= 4g q) —

p
1«= —6q~

a 6

(9)
SU(9)-+SU(7) XSU(2) XU(1))

SU(2) ~U(1)2
SU(7)~SU{5)XSU(2) X U(l))

SU(2)~U(1)4

, SU(5) SU(3), XSU(2)~ X U(1)»

1002020'2
0 1040404
00060606
00180803
0 0 0 10 0 10 0 0
0001205 10
000 140000
0007 1 000

ai =
&& (qi+q2)

a~= 2(qi+q2)+q3
1

a3—,g (qi+qp)
1

a»= —
6

(10)
SU(9) SU(7) XSUQ) XU(1) &

SU(2)~U(1)2
, SU(7) SU(4) XSU(3) XU(1)3

SU(3)—+SU(2) g XU(1)4

1 SU{4) SU(3) XU(l)

1002030 1

01040602
0006090 3

0 0 0 8 0 12 0 0
001100810
000120420
000 140000
0007 1000

a& ———,4 {q~+q2)
Ia2= 2 (q~+q~)+q3
1 1 1a3= 2s q& 2 q2 iz

1 1a4= 3q2+ 6
1a»= —

4 q) —
I2
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TABLE I. ( Continued ).

Sgmmetgf-break mg
pattern Projection matrix U(1)& Contributions to F

{11)
SU(9) SU(6}xSU(3)x U(1)&

SU(3) SU(2) XU(1)2

SU(6) SU(5) XU(1),
SU(2)-+U{1)g

SU(5) SU(3), XSU(2)~ XU(1)5

1003001 2

01060024
0009003 6

001 120043
000150050
000180000
000121100
00062000

1ai ——
~s q

1az= 3qi+ 2 {q2+q»
1a, =-, {q2—q3)

1

a& ————,q&

a

(12)

Su(9}-SU(5)XSU(4}XU(1),
SU(4) SU(3) XU(1)&

SU(5)~SU(3},XSU(2) g XU(1)3

SU(3) SUQ) XU(1)g

SU(2)-+U(1)g

10040002
01080004
000120006
001 160003
000200000
00015 1 1 10
000102200
0005 3000

ta]= —
3 q|

a2 ——
3 (q~+q~+q3)
1 1a3-——,(q)+q2}——,q3
1

4 2{q
1ay= —
6

(13)
SU(9) SU(5) XSU(4) XU(1),

SU(4)~SU(3) x U(l)2
'

SU(5)-SU{4)XU(1).
SU(3)~SU(2) g XU(1)3

SU{4)~SU(3},XU(1)g

1004001 1

01080022
00012003 3

000160040
0 0 0 20 0 0 0 0
001151100
000 102200
0005 3000

a& =
2o (qi+q2 —1}1

a2=-.'{qi+q2)+-,'q3+ —,',
1 1a3= —
3 q3+ 6

1 t 1
a4 —

zo qi s q2 zo
1a&= —4q& iz

(14)
SU(9) SU(5) XSU(4) XU(1)&

SU{4}~SU(2)XSUg) g XU(1)2

SU(5)~SU(4) XU(1)4

SU{2)~U(1)3
SU{4)-SU(3),XU(1),

1004001 1

01080022
00012003 3

000 160040
000200000
001 15 2000
000 104 000
0005 2 100

1

a&
——

2o (q&+q2 —1)

a2 ——s {qi+qq+1)
a3= T(qi+q»+q3
a4= 2o(q~ —1)—5 q2

1 1

4q& )z

(15)
SU(9}-SU(5)x Sv(4}xU{1},

SU(4) SUO) x U(1),
SU(5) SU(3), XSU(2) XU(1}&

SU(3)~SU(2) g XU(1}3

I
SU(2)~U(l)s

I 0040020
0 10 80040
000 120060
00016003 1

000200000
001151100
000102200
0005 3000

Ia, =
~g {q]+qg—1}

a2= & {qi+q2)+ 3q3+ —,'2

1

3q3+ 6
1 1

a4 ———
&~ (q&+q2) —

&&

a5 —,{q)—q2)
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TABLE I. ( Continued).

Symmetry-breaking
pattern Projection matrix U(1); Contributions to

(16)
SU(9) SU(5) XSU(4) XU(1)1

SU(4}~SU(2)g XSU(2) X(1)p

SU(5)~SU(3), X SU(2) XU(1)4

SU(2)~U(1)3

') SU(2) ~U(1)5

10040020
01080040
000120060
00016003 1

0 0 0 20 0 0 0 0
001 15 2000
000 104000
000 5 2 100

a I
——2'o (q I +q2 —1)

az =
8 (qI+qz+1)
I

a3 ———,(qI+q2, )+q3
I I

a4 —
Io (q I+q2 }

I
ag ———,(q1 —qp)

{17)
SU(9)~SU(5) XSU(4) XU{1)1

SU(4) SU(3), X U(1)2

SU{5}-SU(4)x U(1),

SU(4) SV(3)X U(1),

SU(3)~SU(2) g X U(1)5

00140111
000 8022 2

0001203 30
000 160400
000200000
10015 1000
010102000
000 5 3000

a I ——2o {qI+q2+q3+1)
I I

a2 ——
4 (qI+q, +q, }——,z

a3 ———,', (qI+q2+1) ——,
'

q3

a =—
I~ {q,+1)—4q2

I

I Ia5= —
3 qI+ 6

(18)
SU(9) SU(5) X SU(4) XU(1)1

, SU(4)~SU{3},XU(1)&

SU(5) SU(4) XU(1)3

SU(4) SU(2} XSU{2)XU(1)

SU(2)~U{1)5

00140 1 20
000 80240
00012032 1

000 160400
000200000
10015 1000
010102000
0005 3000

a I = —,', (qI+q2+q +1)
I Ia, = —,(q, +q, +q3) —»

a3 2o {qI+q2+ 1 ) —~ q3
I

a4 ———
s (q I+q2 —1)

Ias= T{qI—q»

(19)
SU(9)~SU{5)XSU(4}XU{1)1

SU(4) SU(3), XU(1)&

SU(5)~SU{3)XSU(2) g XU(1)3

SU(3)~SU(2) XU(1}4

SU(2)~U(1)5

000402 1 1

00080420
000 120600
001 160300
000200000
10015 1000
010102000
0005 3000

a = o(qI+q2+q3+
I I

a2 4 {q1+q2+q3)
I I

a3 =
(g (qI +q2+q3)
I I

a4 ——
6 {qI+q~)—3 q3
I

a5 ——,{qI—q2)

(20)
SU(9) SU(5) x SU(4) x U(1)1

SU(4)-SU(3), XU{1),
SU(5) SU(3) x SU(2) x U(1),
SU(2) ~U{1)4
SU(3) SU(2) XU(1)

00 1 40201
00080402
000 120600
0001603 10
000200000
10015 1000
010102000
0005 3000

aI =
2o {qI+qp+q3+ 1)I

Ia2= 4 (qI+q~+q3) —»
a3 ———,', (q 1+1)—Io (q2+q3)

I«= 2 (q2 —q3)
I Ia5= —
3 qI+ 6
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where al, az, and a3 denote U(1)3, SUw(2), and SU, (3)
coupling strengths, respectively, and

2Q.
P» ——a; TrY; /TrY = TrY; (33)

dl b5~ dl b4~ dl b5P1, 5+b4P1,4+blPl, A
3 2 1 1 1 1

d3 b4——, d 3 b3——,3 2

which gives from Table I for q 1
———q3

——a and

q3 = —94=b

d2 b4 1,4+ 3P1,3+bi{Pl,A+ 1,B+PI,C} ~

1 2 2 2 2 2

d3 =b3, d3 =b23 2

d3 ——b3Pi 3+biPi 3

+bi(P1,A +Pl,B +Pl,C+P 1,D +Pl, E)

Pi A
—— , P1B—— (3b+1)9 3 1

10C ' 6C

P 1 c ——(a 4b ——1), P 1 D
——(1—2b)

1 1

10C 3C

P 1 B
—— (1+3a )

1

6C

(34)

p a„=2b„a„
dp

(27}

For SU(n), b„=—(I/12 i)r( 1 ln 2Nf ), Nf—being the
number of fermions. Then it can be easily shown that

Here Pjl; denotes the probability that the U(1)r subgroup
exists in the SU(i) or U(1); subgroup in the jth step and
b„ is the constant appearing in the one-loop renormaliza-
tion equation for a„,

One can use Eqs. (28) and (29) to determine Mo, Ml, and
M3 for given values of sin ew(Mw), a, (Mw), and
a3{Mw) and for each choice of the charges q;. Currently
accepted values are

sin ew(Mw) =0.217+0.014,

n~(Mw) =(127.7)

sin'ew(Mw)

a, (Mw)

~p
ln

a3(Mw) 6m Mw
Mg

cx3(Mw )= —2b 3ln
~m

=0.1—0.2

sin ew(Mw) = 1+ a,m(Mw)cot ew(MO)
siniew(MO)

( 5P1 5 +4P1 4 —4)ln
Mp

1

+ (4P1 +43P1 3 )

M1 M2—31n — —21n

where we have used

1

ai(Mw)

sin'ew(Mw) 1 cos'ew(Mw)

a, (Mw)
'

al(Mw) C3~, (Mw}

cot ew(MO) =C = —', +4(a +b ) .
(30)

so that we identify

Furthermore, the various probabilities of finding U{1)r in
the subgroups of intermediate stages satisfy

1 2 2 3 3P1,5 P1,4+P1,C P1,E+P1,C 3

P1 4 P1 3+Pl B P1 D+P1 B 5

1 2 2 3 3 (31)
1 2 3 2 3 2 3P1,A P1,A P1,A & P1,B P1,B3 P1,C P1,C 3

subject to the condition p31 A+p31, 8+p31,c+p31,D+p31,E= l. In order to evaluate the probabilities, note from Eq.
(19) that after the third stage of symmetry breaking

E
TrY = ga; TrY; (32)

A~ ——0.1 —0.2 GeV .

It can be seen that there are no solutions for the inter-
mediate mass scales Ml and Mi for the models with all

q; =0 with the symmetry-breaking mode under considera-
tion. Thus the spinor-type representation Eq. (17) with all

q;&0 is favored by this gauge hierarchy. In particular,
one finds Mo ——5.2X10" GeV, Ml ——4)&10' GeV, and
M3 ——2.4)&103 GeV for siniew(Mw}=0. 215, a3(Mw)
=0.12, and a, (Mw)=128, and for the charge assign-
ments a =1 and b = ——,'. With this Mo, the proton life-
time can easily be larger than 10 yr.

Renormalization corrections for other symmetry-
breaking modes can similarly be calculated. For each
mode, one can determine the mass scales of symmetry
breaking for the choices of the charges q;. In general, for
the models of all q; =0, the symmetry-breaking class (A)
is preferred and the proton lifetime is more or less com-
parable to the prediction of the standard SU(5) model. On
the other hand, the symmetry-breaking class (D) favors
the charge assignments q;~0. Delay in proton decay is
easily accomphshed by the presence and judicious choice
of various mass scales of gauge hierarchy, but there will
be many more exotic particles, such as fractionally
charged color singlets in this class of model as we will see
in the next section.

IV. FERMION CONTENTS
AND CONCLUDING REMARKS

%e have seen in Sec. II that there are two types of
SU(9) representations that can meet all of the constraints
for grand unification. The first type embeds the SU(5)
fundamental representation into that of SU(9) together
with electrically neutral four SU(5) singlets. In this case,
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the number of fermion generations unified is just the
number of 5'+ 10 of SU(5} contained in the representa-
tion. Equations (15) and (16) are models belonging to this
class having three and four generations each. All other
fermions are superheavy in this type. The second type
embeds the SU(5) fundamental representation together
with electrically charged SU(5) singlets into the SU(9}
fundamental representation. In this case, the reality con-
straint under SU, (3)XU, (1) implies the same as under
SU(5) and the number of fermion generations counts the
number of SU, (3)XSU(2) X U(1) contents of Eq. (14) con-
tained in the representation. There is only one model, Eq.
(17},belonging to this type, which can unify four fermion
generations with the charge assignment (a, a, b—, b)—
with ttb+0 for the four SU(5) singlets. Unlike the first
type of representation, Eq. (23) shows that sinz8~ at the
grand-unification scale is much smaller than —, in this
case and should increase upon interpolation to the low-

energy region. For the model of Eq. (17), it is essential to
go through an intermediate stage of symmetry breaking
before arriving at the low-energy symmetry realm. The
existence of such an intermediate mass hierarchy is in fact
complementary to the concept of an invisible axion. In
Sec. III we treated the example of the symmetry-breakinII
mode (13) in Table I for the choice of a =1 and b = ——,

and determined the intermediate mass scales that could
explain the low-energy value of sin 8n and the prolonged
lifetime of the proton at the same time.

We note that the models having a trivial embedding of
SU(5) are the anomaly-free combinations allowing repeti-
tion of the same irreducible representations, while a non-
trivial embedding of SU(5) can be possible only for the
anomaly-free combination in which no irreducible repre-
sentation is repeated. This is consistent with previous
speculation based on the study of SU(7) models that sa-
tisfied the reality condition under SU, (3), which is a spe-
cial case of our constraint (c).

The fermion content of both types of models can be
studied from the particle content of Eq. (13) in each case
and for the specific assignment of charges qt. The two
types of representations have a rather different fermionic
content: while there are no exotic particles with unusual
charges in the models of the first type, exotic particles are
naturally appearing in the model of Eq. (17) depending on
the choice of q;. Exotic lepton doublets with fractional
charge can app r from (1,2, Ti+ql), (1,2, —2i —q, —q ),
and (1,2, —,'+q;+qj+qk) terms, and exotic quarks with

integral or unusual charges can be present from
(3, 1,——, +q;), (3, 1,—,

' —q;), (3',2, ——,
' —q;), etc., terms.

For the choice q& ———q2
——a and q3

———q4
——b, there are

two combinations for which q;+qj =0 and the 126-
dimensional representation of Eq. (13d) can give two more
ordinary quark doublets with quantum numbers (3, 1,—,

'
)

making a total of four quark doublets in Eq. (17), which
are complex under SU, (3)XSU(2) X U(1). Similarly,
we can see that there are four singlets each of the
type (3', 1,—,

'
) and of the type (3', 1, ——', ) along

with (3, 1,——,'+tI;), (3, 1,—', —qt), (3, 1,—', +q;), and
(3, 1,——,

' —qt). Thus with the usual survival hypothesis,
two in each type of singlet are expected to be substantially
heavier than the other two if we choose qi ———qq

——1 and

q 3 — q4 3 There are six ordinary lepton doublets
which are all complex with respect to SU, (3)
X SU(2) X U(1). In addition there are many exotic quarks
and leptons in Eq. (17) some of which are complex under
SU, (3)X SU(2) XU(1) and therefore expected to be light.
Experimental confirmation on the existence of fractional-
ly charged leptons and hadrons will determine the useful-
ness of this model. The complete weight systems of the
9-, 36-, 84-, and 126-dimensional irreducible representa-
tions of SU(9} with their SU, (3)XSU(2)X g, U(1)J
properties can also be worked out with the aid of projec-
tion operators given in Table I.

We have discussed SU(9} models which satisfy a set of
six criteria of grand unification. Symmetry-breaking pat-
terns are examined thoroughly along with U(1) eigen-
values and the weak hypercharge generator is determined
in each case of symmetry breaking. A case of symmetry-
breaking mode is explicitly treated to determine inter-
mediate mass scales that can be responsible for invisible
axions while supporting the experimental value of sin 8n
and prolonging the proton lifetime. Finally, we have
given the fermion content of SU(9) models.
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