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Signatures of a second heavy neutral vector boson in e+e annihilation
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Some grand unification models predict the existence of a second massive neutral vector boson
which couples to fermions in much the same way as the well-known Z boson in the standard model

of electroweak interactions. Among the possibilities, e+e annihilations at high energies may pro-
vide a means of observing the effects of this particle. We analyze the process e+e ~fj'in the con-
test of a SU(2) XU(1) XU{1)theory with a view to study the anomalies in the angular distribution of
the differential cross section. Two models are worked out as illustrations and low-energy predic-
tions compared with current data from SLAC and DESY.

INTRODUCTION

From a theoretical point of view it is reasonable to ask
if the standard (Salam-Weinberg} model of electroweak in-
teractions is only a close low-energy approximation to a
more general unific theory of interactions. Search for a
candidate grand unification theory' (GUT) of interac-
tions is consequently of considerable interest and currently
popular models predict a simple extension to the standard
SU(2}XU(1) theory at low energies: the gauge group is
SU(2) XU(1)XU(1) and therefore requires the existence of
a second massive neutral vector boson (referred to herein
as Zz) due to the extra U(1) factor.

An example is the group SO(10) which, being one rank
higher than SU(5}, has a second (heavy) neutral vector bo-
son which couples to a specific charge that is the con-
served charge of U(1)A when

SO(10)~SU(5)X U(1)A

Another example is the group

EsDSO(10) XU(1)s

[here the Z2 associated with the U(1)a couples with equal
strength to all known light fermions]. In the following we
examine the possibility of measuring the effects of the
second massive vector boson, either now, or in the near
future, through a more detailed study of the experimental
data on e+e annihilations. In principle either deep-
inelastic scattering or e+e annihilations may be used to
detect anomahes in the standard model. However, we
have analyzed the latter for a simple reason: the process
is easier to work with than an inclusive process of the type
ep~qq+X, where q is some heavy quark.

Because the number of parameters arising from the
Higgs sector is large we take the point of view that it is
reasonable to search only for crude signatures of the parti-
cle and then to test individual models with experiment in
a more refined manner.

A general treatment of the dynamics of the theory is
given in Ref. 5. In Sec. I we present a short review of the
basics relevant to this discussion. Section II describes the
kinematics of e+e annihilations for an SU(2)XU(1}

XU(1) theory. In Sec. III we discuss a simple example
[when the charge of the third U(1) factor does not contri-
bute to the total charge] in the context of the SO(10)
GUT, with intention to point out a procedure which inay
be easily extended to more complex situations. Other pos-
sibilities are discussed briefly in Sec. IV, and in a final
section we present our results.

I. SU(2)XU(1)xU(1): A REVIEW

(~) ~~gi@,(a)(y~(&) (1.2}

where 4I"=q )(0~ (t)" ~0), q; is the eigenvalue of Q;
and g; are the coupling constants associated with each
factor. Since only neutral components of 4"(x) couple
to the neutral vector fields they obey the constraint (see
Fig. 1)

@)+W2+x@3——0 .

Mass eigenstates result from diagonalizing the matrix
(M),z. If Mr) is the matrix of the square masses of the
square masses of the vector bosons then

M =V MV (1.4)

where V is the (orthogonal) diagonalizing matrix of gen-
eral form

We follow somewhat closely the theoretical construc-
tion of Belanger and Feldman and consequently it seems
appropriate to briefiy review what is relevant to our dis-
cussion.

The charge operator is taken to be
A A A
Q =Qi+Q2+xQs,

where Qi is the third component of isospin, Q2 and Q3
are the generators of the U(1) factors„and x =1 (0) corre-

sponds to the charge Q& contributing (not contributing) to
the total charge. Masses are obtained for the neutral vec-
tor bosons in the standard way by introduction of an A

Higgs field and spontaneous symmetry breaking. The
mass matrix is
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Sg T3cv ce V12
Cy

Se 3
V22 Tcz ——ce V~2-

Cy

Sg Sg
+2 Qf V»+x

Cy

Sg
V22 Y', (1.12a)

(1.12b)

FIG. 1. Constraints on the Higgs vectors defined in Eq. (1.3).

Sg 3CV= CeV]3 — V23 T
Cy

Sg Sg Sg+2 Qf V2s +x V33 Vis Y', (1.12c)
Cy

V= Cgcy —SgC~cy —S~Sy —SgS~cy+Syca

CgSy —SgC~Sy +Sacy —SyS~Sy —Cecy

Clearly 8 is the Weinberg angle; P is related to the cou-
pling strengths via

Sg 3
V23 TcA = cp Vli-

Cy
(1.12d)

J

where T is the third component of isospin, Qf is the fer-
mionic charge due to Qs, i.e.,

e e
V) ) —— ——sg, V2) —— ——cgcp,

gi g2

e
V3) ——x =clasp.

g3

Now using Eq. (1.4) and the assumption thats

(Mg) )ii ——0, (MD )»——Mz, , (Mg) )ss ——Mz,

we find [M =(M)ii]
2M

Z]
Cg

tan (a)=
M 2

Z2 2
Cg

(1.6)

(1.7)

A. i A
3
——

2
F'. (1.13)

Inasmuch as the dynamics are concerned these quanti-
ties would be complete if choices of the parameters in
(1.9) could be made without ambiguity, but at the current
level of understanding this is not possible. Indeed we
must make arbitrary, if educated, "guesses, "or use specif-
ic GUT'S for plausible candidates.

It is worth mentioning here that much work has been
done in the past on extended electroweak gauge theories of
this type. For example, Refs. 7—11 have considered the
case x =1 with all fermions assigned zero Qs quantum
numbers. References 12—14 treat the case x =1 with fer-
mions of nonzero Qs quantum numbers and in Refs.
15—17 we can find studies of x =0 theories.

There are five independent parameters which appear in
the Lagrangian, viz. ,

$23
M, 8, $, 8is,

S&2
(1.9)

where s;J =sin(8&J) and 8;1 are defined in Fig. 1. The
heavy-neutral-vector-boson currents are

JZ) =
2cos(8)

gi4r"(cv c~rsW, — (1.10a)

JZ2 2cos(8} gi A"{cv c~r's)iI— (1.10b)

Here we have chosen to express both in tes-ssss of the cou-
pling constant g~ which, taking the charged-current and
neutral-current interactions to be of the same relative
strengths, is related to the Fermi coupling Gz by

(1.11)
8M'

The vector and axial-vector coupling coefficients cv, cz,
cv, c~ can be obtained from Eqs. (1.5) and (1.6):

II. e+e ANNIHILATION: KINEMATICS

At sufficiently high center-of-mass-system (c.m.s.) ener-
gies it is hoped that the effects of Zt become large
enough to manifest themselves quite strongly, though
perhaps not strongly enough to appear in absolute mea-
surements of the differential cross section. We therefore
concentrate on the angular distribution.

The computation of the differential cross section for
the process e+e ~ff taking into account only lowest-
order diagrams {Fig. 2) is straightforward with the obvi-
ous result (the masses of the fermions are taken to be
negligible}'s

=Ap(1+a, )[1+cos (8)]+8 (1+pb )cois{8},a dQ

(2.1)

where we have extracted the coefficients Ap aild Bp,
which have the same form as their counterparts in the
standard model but differ only in the fact that the vector
and axial-vector coefficients appearing in them is slightly
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Mz, -93.2 GeV .

%ith this we can write

(3.1)

8Mz, cos2(8)
(32)

Z2

FIG. 2. Lowest-order diagrams for the process e+e ~fj.

(ii) If we assume canonical symmetry breaking (i.e., if
isospin is broken by Higgs fields that are isospin singlets
or doublets) then (M)ii ——Ma, the mass of the charged
vector boson, which in the limit of weak coupling, is ap-
proximately the experimental value of 81 GeV.

(iii) From a specific GUT and the mass scale of symme-
try breaking, the angle 8 and the ratio golgi are exactly
determined as are the eigenvalues of the charge Qi.

Here, as an example of the above possible simplifica-
tions, we have analyzed the case x =0. From Eq. (1.5)
and (1.6) it is clear that we must take the limit P-+0 in
such s wsy that

different from those predicted therein. The measured
asymmetry is then'9

o &+6
(2.2)

8 Ao 1+

g3
t."ge

(3.3)

g& is now a free parameter so that reexpressing relations
(1.12) in terms of g& we have

where the standard model predicts

3 &o
A st

0
(2.3)

Cv=cp C++ (SssIE) Y
e

(o)
~A Aa ~

(3.4a)

(3.4b)

Here the primes mean that we replace the vector and
axial-vector couplings in Ac and Bc by the corresponding
values predicted by the Salam-Weinberg theory. The
computation is tedious, but the result can be obtained in
closed form; however, a few reasonable simplifications
can be made.

(i) The propagators of the Zi and Z2 bosons have been
approximated by a free propagator with a complex pole at
s =Mz +i IzMz where s is the square of the c.m.s. ener-

gy
(ii} The mass of the Z2 boson is well above c.m.s. ener-

gies so that the contact approximation is justified; there-
fore we have written

[(s Mz )+i I z—Mz ] =— 1+ . (2.4}
Z2 Z2

The coefficients appearing in relation (2.1) are listed in the
Appendix.

III. A SPECIFIC EXAMPLE

To perform numerical computations from the general
theory given in the previous two sections, reasonable
values must be assigned to the five independent parame-
ters in (1.9). How one approaches this problem is a
matter of taste but there are a few immediate possibilities.

(i) When mixing is weak, the mass of the Zi boson
[which arises from the first U(1) factor) is close enough to
the mass of the standard Z boson (Zc) to permit the re-
placement

Cy =Cp SIE+ (Sac~ ) Y
e

(o)
CA =CA S~,

where

eP'=T —2Qfsin (8)

and

c„"'=T'

(3.4c)

(3.4d)

(3.5)

(3.6)

are the couplings predicted by the standard model if sa is
taken to be the observed value (ss2- —,

' ——,
' ). Obviously if

the eigenvalue of Qs is zero, Zi couples very weakly be-
cause, from Eq. (1.8), c~-1 unless the mass of Zt is very
close to Ma . The case Y'+0 is slightly more interesting.
To illustrate the problem we turn to the SO(10) GUT for
values of gs and Y' after requiring that we retain the suc-
cessful numerical prediction (se ——0.23) of the SU(5)
GUT. SO(10) has several advantages over the group
SU(5} as a GUT, ' ' which is our reason for choosing it
in this illustrative example. However, what is important
to this work is that the prediction s~ ——0.23 can be ac-
commodated by SO(10) provided that the mass scale at
which SO(10)~SU(5)XU(1) is the same as that at which
SU(5) further breaks into SU(3)XSU(2)XU(1). Unfor-
tunately, the ability of SO(10) to resolve any problems re-
garding proton decaying is then lost; nevertheless we shall
assume here that se ——0.23. Now after suitable normali-
zation of the generators of the group and the second hy-
percharge, we have '
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(3.7)

(if the breaking is assumed to take place at the Planck
mass, then g3 would be about —', the above value) and

Y'= [5I3a+3(I3L, Qf )] .
2

10
(3.8)

MODEL (e+e -Ill), x=O, Y =0.948 Mzq=lTeV

0.30-
0.25-
0.20 "

O. I 5-
I

O. I 0-
005-
0

-0.05-
-Q. I 0-
-Q. l 5-

20 30 40 50 60 70 80
c.ms. ENERGY (GeV)

We have taken values for the Zt mass ranging from 500
GeV to 2 TeV and computed the vector and axial-vector
couplings for qssssrks and leptons, some of which are listed
in Table I. Figures 3(a)—3(c) are the plots of the differ-
ence A &~—A„as a function of the c.m.s. energy, for lep-
tons and qssssrks, where A~,~ and A„are the asymmetries
in the angular distribution of the differential cross section
predicted by this model and the standard model, respec-
tively. Mz is taken to be 1 TeV. Low-energy data'

from SLAC and DESY are found to be entirely compati-
ble with these, and it is only at higher energies that one
begins to observe a significant difference between the pre-

TABLE I. Vector and axial-vector couplings for e+e «fj'
for the model x =0, Y'=+0.98 for leptons and —0.316 for
quarks. %e have taken %'einberg angle-sin2{8~) =0.023, Fermi
coupling=1. 16' 10 GeV, and Mz ——1 TeV.

Fermion type

Leptons
Up quarks
Down quarks

cv

—0.04
+ 0.20
—0.35

cg

—0.50
+ 0.50
—0.50

cv

—0.67
+ 0.22
+ 0.22

0.00
0.00
0.00

IV. OTHER POSSISII.ITIES

Numerical analysis of x=1 theories is more complex
because of the ambiguities in the Higgs structure; howev-

MODEL'(e+e -tIf), x=l, Y'=0, Mz, (mi'n)= I TeV

I .0- (o)

0.8-

0.6-
I

q Q4-

0.2-

dictions of this model and those of the Salam-Weinberg
theory. For example, at a c.m.s. energy of 80 GeV the
asymmetry predicted by this model is about 19% greater
than the corresponding prediction of the standard model
for e+e ~leptons [see Fig. 3(a)]. Furthermore, unless
Mz is very close to Ma the difference will increase only

slowly with decreasing Mz .

MODEL (e+e--uu), x=0, Y=-0.3I6, Mz~=ITeY

O. I4-
0. I2-
0. IO-

0.08-
O.O6-

+~ 0.04-
0.02-
0

-0.02-
-004-

20 30 40 50 60 70 80
c.m. s ENERGY (GeV)

MODEL (e+e -dd), x=O, Y=-03l6, Mz~=l TeV

0.04

0.02

0
l

~ -0.02

~-0.04
-0.06
-0.08
-0. IO

20 30 40 50 60 70 80
c. m s ENERGY (GeV)

FIG. 3. A ~~—A„vs c.m.s. energy for the process
e+e ~ff taking into account a second massive vector boson
(Zq) in lowest-order diagrams for the case x=0, Y'=OA948
(—0.316) for leptons (quarks) and sin2(8) =0.23.

20 30 40 50 60 70 80
c m s ENERGY (GeV)

MODEL. (e+e -uu), x=i, Y-'-0, Mz~ (min)=ITeV

0.5-
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-0,2
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c m s ENERGY (GeV)

MODEL. (e+e -dd), x=l, Y-'-0, Mz {min)=ITeV

-0.02
-0 04

~~ -0.06
~ -o.os

I

+q, -O. IQ

% -O. I 2
-0 I4
-O. I6
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FIG. 4. A~~ —A„vs c.m.s. energy as in Figs. 3(a)—3(c), but
for thecase x =1 and Y'=0.
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TABLE II. Same as Table I, for the model x =1, Y'=0,
Mz (minimum) =1 TeV.

2

Fermion type

c.m.s. energy A„
(GeV) (%)

~

A„—Ap,~ ~

(%)

TABLE IV. Results for e+e —+uu.

Leptons
Up quarks
Down quarks

—0.04
+ 0.20
—0.35

—0.5
+ 0.5
—0.5

—0.98
3.54

—0.11

+ 0.32
—0.33
+ 0.33

29
35
80

—9.0
—13.7
—56.6

Model: x =0, Y'= —0.316; and Mz ——1 TeV
—25+18 —9.3 0.3
—13+10' —14.4 0.7

—43.4 13.2

er, it is useful to distinguish between two possible types of
theories. (i) Models with F'=0 for all known fermions
and (ii) models with F'&0 for all (some) famions.

The central problem is to assign values to the angles be-
tween the Higgs vectors and the three mixing angles, but
there is an interesting fact that may be used to obtain
crude candidates for the mixing angle tI). From Eq. (1.6),

Model: x =1, Y'=0; e/3 0 and Mz (minimum)=1 TeV
2

29 —9.0 —25.0%18 —13.9 4.9
35 —13.7 —13+10' —21.7 8.0
80 —56.6 —9.9 46.7

'At 34.6-GeV c.m.s. energy.

8i2+ 8zi+ ei i 2n—— (4.1a) V. CONCLUSIONS

$23 $31 $12
(4.1b)

it is possible to find a value for t)) (for fixed 8» and
s2q/s i2) which makes Mz, minimum'

2Dg C13
1 —2ce Sy

fl
(4.2)

where TI =s2s/siz. This is model dependent and we have
analyzed the first category above by taking c» ——0 which,
from Eq. (4.2) gives the condition

2ce Sy = j.2 2 (4.3)

Table II lists the values of the vector and axial-vector cou-
plings computed for ss ——0.23 and P given by Eq. (4.3),
while Figs. 4(a)—4(c) plot the difference Ap,~—A„as a
function of the c.m.s. energy for both leptons and quarks.
It is worth noting, however, that the condition for
minimum mass is only a convenience. Other choices of tI)

have been made in the past. Nevertheless, this is an ex-
treme example of a model that will predict asymmetries
differing greatly from the standard model (about 88.5%
at c.m.s. energy of 80 GeV for e+e ~leptons with
Mz ——1 TeV).

We have proposed the possibility of observing the ef-
fects of a new massive vector boson in the asymmetry of
the angular distribution in e+e annihilations and some
models are found to predict large enough deviations from
the standard model as to be tested directly. Despite the
difficulties in assigning values to the parameters of the
theory, a greater emphasis on the "fingerprints" of this
particle could yield interesting results. Computations
have been performed for two cases: (a) x =0 in the con-
text of the SO(10) GUT, and (b) x = 1 but the eigenvalue
of the third charge operator is zero and the mass of Zt is
minimum.

Tables III—V summarize our results; the low-energy
data have been taken from Naroskas' review (Ref. 19).

A very heavy Zi naturally minimizes the effects of
coupling, which is the reason for our conservative choice.
Although greater differences are expected for low Zz
masses a careful study of Eq. (Al) —(A3) and (1.7)—(1.12)
indicates that the change is relatively small except if the
mass of the Z2 is close to the mass of the charged vector
boson. If this were indeed the case, however, interference
effects, of which we have no evidence from either UA1 or
UA2, should occur at around a c.m.s. energy of 81 GeV.
For this reason we feel justified in using the contact ap-
proximation.

Supersymmetric models have not been considered and,

TABLE III. Results for e+e ~lI. TABLE V. Results for e+e ~dZ

c.m.s. energy
(GeV) (%) (%)

~

A„—Ap,~ ~

(%)
c.m.s. energy

(GeV) (%)
I ~st ~prrrt I

(%)

29
35
80

Model: x=0,
—6.0
—9.2

—73.7

0.4
0.9

18.7

Y'=0.948, and Mz —1 TeV
2

—6.3+0.9 —6.4
—12.4+3. 1 —10.1

—55.0

1.0
2.1

9.2

29
35
80

Model: x =0, Y'= —0.316; and Mz ——1 TeV
—17.6 —16.6
—26.3 —15.0%22' —24.2
—21.8 —31.0

Model.

29
35
80

—9.3
—14.6
+ 14.8

x =1, Y'=0; c13——0 Mz (minimum)=1 TeV
2

—6.0 —6.3+0.9
—9.2 —12.4+3.1'

—73.7

Model.

29
35
80

x —I Y —0 c13 —0; Mz (minimum} = 1 TeV
2
—26.6

—15.0+22' —39.6
—27.4

'At 34.7-GeV c.m.s. energy. 'At. 34.6-6eV c.m.s. energy.
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in fact, the cases worked out are only illustrations. Final-

ly, it may be mentioned that it is possible to construct a
Higgs sector that diminishes the anomalies caused by the

Z2, ho~ever, e+e annihilations at high energies could
provide a useful test of these theories or provide experi-
mental bounds for the various parameters.

U.S. Department of Energy under Contract No. DE-
FG02-85ER40211.

APPENDIX

The coefficients appearing in Eq. (2.1) are obtained by
straightforward computation using the vertex rules [Eq.
(1.10)]
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Zi~ff g ir"(cv c—~}'s»
2cos(e)

ff g i r"«v c~—rs),
2 cos(e)

with the result that

(A2)

Ao ——
Qy +

~
r

~

(c„' +ci )(cq~ +c~z ) 2Q~—Re(r)cvc~z,

80=8
~

r
~

cvcxc~zcz~ 4Re(—r)Q~czcz,

ai —— [ ~

r'
~

(cq' +cP )(c&~ +cy~ ) 2Q~Re—(r')cPcv+2Re(rr'}(cvcP+c~cq'}(cvcv+c~~c„' }],
Ao

b i
—— [8

~

r'
~

cPc~~cz'cI 4Q~Re—(r')cz'c 1+4Re(rr')(c„"ev cv'cz )—(c„'~c~z+c/cq~ )],
8o

(A3a)

(A3b)

(A3c)

where we have defined

v 2GFMz

(s M, ')+i—r,mz

4m.s
(A4)

The differential cross section is then

IAO(1+ai)[1+cosz(8)] +8 (01 +bi)cos(e}I .
4s

where

~z, ce2 2

M

Mz, cg2 2

M
(A9)

Using Eq. (1.8) we find

In order to take color into account, the expression is mul-
tiplied by an overall factor of 3 for quarks, but naturally
does not affect the angular asymmetry.

With Eqs. (1.6) and (4.1}we obtain

1=zc~ +z s~ (A10}

so that z and z' are simultaneously extremized with
respect to P. It is now convenient to extremize the quanti-
ty

Z+Z'= ss +2T)sy ss c+isrl sy (1—cs sy )

2$2C 2

2 2 2 2 2zz =ss sis /fJ sy cy

(A6) Z+Z'
zz'

(A7) from which Eq. (4.2) follows.
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