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Some grand unification models predict the existence of a second massive neutral vector boson
which couples to fermions in much the same way as the well-known Z boson in the standard model
of electroweak interactions. Among the possibilities, e *e ~ annihilations at high energies may pro-
vide a means of observing the effects of this particle. We analyze the process e *e ~— ff in the con-
test of a SU(2) X U(1) X U(1) theory with a view to study the anomalies in the angular distribution of
the differential cross section. Two models are worked out as illustrations and low-energy predic-
tions compared with current data from SLAC and DESY.

INTRODUCTION

From a theoretical point of view it is reasonable to ask
if the standard (Salam-Weinberg) model of electroweak in-
teractions is only a close low-energy approximation to a
more general unified theory of interactions. Search for a
candidate grand unification theory!=* (GUT) of interac-
tions is consequently of considerable interest and currently
popular models predict a simple extension to the standard
SU(2) X U(1) theory at low energies: the gauge group is
SU(2) X U(1) X U(1) and therefore requires the existence of
a second massive neutral vector boson (referred to herein
as Z,) due to the extra U(1) factor.

An example is the group SO(10) which, being one rank
higher than SU(5), has a second (heavy) neutral vector bo-
son which couples to a specific charge that is the con-
served charge of U(1) , when

SO(10)—SU(5)xU(1) 4 .

Another example is the group
EgDSO(10)xU(1)g

[here the Z, associated with the U(1)z couples with equal
strength to all known light fermions]. In the following we
examine the possibility of measuring the effects of the
second massive vector boson, either now, or in the near
future, through a more detailed study of the experimental
data on e*e~ annihilations. In principle either deep-
inelastic scattering or e e~ annihilations may be used to
detect anomalies in the standard model. However, we
have analyzed the latter for a simple reason: the process
is easier to work with than an inclusive process of the type
ep—qq + X, where g is some heavy quark.

Because the number of parameters arising from the
Higgs sector is large we take the point of view that it is
reasonable to search only for crude signatures of the parti-
cle and then to test individual models with experiment in
a more refined manner.

A general treatment of the dynamics of the theory is
given in Ref. 5. In Sec. I we present a short review of the
basics relevant to this discussion. Section II describes the
kinematics of e*e™ annihilations for an SU(2)xU(1)
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X U(1) theory. In Sec. III we discuss a simple example
[when the charge of the third U(1) factor does not contri-
bute to the total charge] in the context of the SO(10)
GUT, with intention to point out a procedure which may
be easily extended to more complex situations. Other pos-
sibilities are discussed briefly in Sec. IV, and in a final
section we present our results.

I. SU@2)XU(1)xU(1): A REVIEW

We follow somewhat closely the theoretical construc-
tion of Belanger and Feldman® and consequently it seems
appropriate to briefly review what is relevant to our dis-
cussion.

The charge operator is taken to be

0=0:+0,+x0;,
where @1 is the third component of isospin, Q,_ and Q;
are the generators of the U(1) factors, and x =1 (0) corre-
sponds to the charge Q; contributing (not contributing) to
the total charge. Masses are obtained for the neutral vec-
tor bosons in the standard way by introduction of an A

Higgs field and spontaneous symmetry breaking. The
mass matrix is®

(M); =3 8:8; PP},
a

(1.1)

(1.2)

where ®\?'=g/9(0|d'?|0), g; is the eigenvalue of Q;
and g; are the coupling constants associated with each
factor. Since only neutral components of ®?(x) couple
to the neutral vector fields they obey the constraint (see
Fig. 1)

¢1+¢2+x¢3=0 .

Mass eigenstates result from diagonalizing the matrix
(M);;. If Mp? is the matrix of the square masses of the
square masses of the vector bosons then

Mpr=vTMV ,

(1.3)

(1.4)

where V is the (orthogonal) diagonalizing matrix of gen-
eral form
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FIG. 1. Constraints on the Higgs vectors defined in Eq. (1.3).

Se CoCa CoSa
V= cgcy —5654Cs+54Cq | - (1.5)

—505,54—CaCy

—S56CaCp —SaS¢

CeS¢ —S6CaS¢+5SaCy

Clearly 6 is the Weinberg angle; ¢ is related to the cou-
pling strengths via

e e
Vii=—=sg, Vyy=—=cgcq ,
11 2 6 21 P oCe

(1.6)

e
Vii=x—=cgsy .
31 2 (AF)
Now using Eq. (1.4) and the assumption that®
(MpH)1=0, (Mplp=Mz?, (MpY)y=Mz>*, (L7
we find [M2=(M)11]

2
Mz
[}
tanz(a)=—]wT— . (1.8)
2
Mzl- 05

There are five independent parameters which appear in
the Lagrangian, viz.,
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M) 9’ ¢7 613, ;1_2' ’ (1-9)

where s;=sin(6;) and 6; are defined in Fig. 1. The
heavy-neutral-vector-boson currents are

Jjzy= —Zcols(e) g1¥r ey —cavs)¥, (1.10a)

jza= g1¥v*(ch —cysh . (1.10b)

i
" 2cos(6)

Here we have chosen to express both in terms of the cou-
pling constant g; which, taking the charged-current and
neutral-current interactions to be of the same relative
strengths, is related to the Fermi coupling G by

Gr g1’

V2 Myt

(1.11)

The vector and axial-vector coupling coefficients ¢y, ¢,
¢y, ¢4 can be obtained from Eqgs. (1.5) and (1.6):

So 3
cy=|ceVia——Vn |T
€y
Se Se Se ,
+2_QIV22+x '.'“V32——'V22 Y ) (1.128)
s S¢ s
So 3
Cqy= Conz-——sz T , (1.12b)
Ce
, S¢
cy= Cera—_stlT3
¢4
Sg Se Sg
+2——Q,V23+x —V33—"‘—V23 Y, (1.12¢)
€y S¢ ¢
N so 3
Cq= C¢V13—ZV23 T , (1.12d)

where T3 is the third component of isospin, Qy is the fer-
mionic charge due to @3, ie.,

Inasmuch as the dynamics are concerned these quanti-
ties would be complete if choices of the parameters in
(1.9) could be made without ambiguity, but at the current
level of understanding this is not possible. Indeed we
must make arbitrary, if educated, “guesses,” or use specif-
ic GUT’S for plausible candidates.

It is worth mentioning here that much work has been
done in the past on extended electroweak gauge theories of
this type. For example, Refs. 7—11 have considered the
case x =1 with all fermions assigned zero Q; quantum
numbers. References 12—14 treat the case x =1 with fer-
mions of nonzero @3 quantum numbers and in Refs.
15—17 we can find studies of x =0 theories.

II. ete~ ANNIHILATION: KINEMATICS

At sufficiently high center-of-mass-system (c.m.s.) ener-
gies it is hoped that the effects of Z, become large
enough to manifest themselves quite strongly, though
perhaps not strongly enough to appear in absolute mea-
surements of the differential cross section. We therefore
concentrate on the angular distribution.

The computation of the differential cross section for
the process e te ~— ff taking into account only lowest-
order diagrams (Fig. 2) is straightforward with the obvi-
ous result (the masses of the fermions are taken to be
negligible)'®

4s do

=Ay(14a;)[1+cos(8)]+By(1+b,)cos(6) ,
a dQ

(2.1)

where we have extracted the coefficients A4, and B,,
which have the same form as their counterparts in the
standard model but differ only in the fact that the vector
and axial-vector coefficients appearing in them is slightly
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FIG. 2. Lowest-order diagrams for the process e te ~— ff.

different from those predicted therein. The measured

asymmetry is then'’

By | 1+b
a=320 |ZH0 (2.2)
8 Ao 1 +al
where the standard model predicts
BI
A =220 2.3)
8 A4

Here the primes mean that we replace the vector and
axial-vector couplings in 4, and B, by the corresponding
values predicted by the Salam-Weinberg theory. The
computation is tedious, but the result can be obtained in
closed form; however, a few reasonable simplifications
can be made.

(i) The propagators of the Z, and Z, bosons have been
approximated by a free propagator with a complex pole at
s=Mz*+iT' ;M where s is the square of the c.m.s. ener-
gy-

(ii) The mass of the Z, boson is well above c.m.s. ener-
gies so that the contact approximation is justified; there-
fore we have written

1
Mz?

2

s
1+
M222

[(s —Mz ) +iTz,Mz]™'=— (2.4)

The coefficients appearing in relation (2.1) are listed in the
Appendix.

III. A SPECIFIC EXAMPLE

To perform numerical computations from the general
theory given in the previous two sections, reasonable
values must be assigned to the five independent parame-
ters in (1.9). How one approaches this problem is a
matter of taste but there are a few immediate possibilities.

(i) When mixing is weak, the mass of the Z; boson
[which arises from the first U(1) factor] is close enough to
the mass of the standard Z boson (Z,) to permit the re-
placement
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le ~93.2 GeV . (3.1
With this we can write
G 2
£ __ & (3.2)

V2 8Mz cos(6) |

(ii) If we assume canonical symmetry breaking (i.e., if
isospin is broken by Higgs fields that are isospin singlets
or doublets) then (M),;=Mpy? the mass of the charged
vector boson,’ which in the limit of weak coupling, is ap-
proximately the experimental value of 81 GeV.

(iii) From a specific GUT and the mass scale of symme-
try breaking, the angle 0 and the ratio g;/g, are exactly
determined as are the eigenvalues of the charge Q;.

Here, as an example of the above possible simplifica-
tions, we have analyzed the case x =0. From Eq. (1.5)
and (1.6) it is clear that we must take the limit ¢—0 in
such a way that

(3.3)

g3 is now a free parameter so that reexpressing relations
(1.12) in terms of g; we have

cyr=clca+ %-(ses,,)Y’ , (3.42)

cs=Pc,, (3.4b)

cp=ciVs, + ge%(s,,ca)y' , (3.40)

cy=cPs, , (3.4d)
where

ey =T>—2Q,sin’(0) (3.5
and

Q=13 (3.6)

are the couplings predicted by the standard model if s4? is
taken to be the observed value (sg~+—1). Obviously if
the eigenvalue of Q3 is zero, Z, couples very weakly be-
cause, from Eq. (1.8), ¢, ~ 1 unless the mass of Z, is very
close to My. The case Y540 is slightly more interesting.
To illustrate the problem we turn to the SO(10) GUT for
values of g3 and Y’ after requiring that we retain the suc-
cessful numerical prediction (sg°=0.23) of the SU(5)
GUT. SO(10) has several advantages over the group
SU(5) as a GUT,2*2! which is our reason for choosing it
in this illustrative example. However, what is important
to this work is that the prediction s4>=0.23 can be ac-
commodated by SO(10) provided that the mass scale at
which SO(10)—SU(5) X U(1) is the same as that at which
SU(S) further breaks into SU(3)xSU(2) xU(1). Unfor-
tunately, the ability of SO(10) to resolve any problems re-
garding proton decaying is then lost; nevertheless we shall
assume here that s4°=0.23. Now after suitable normali-
zation of the generators of the group and the second hy-
percharge, we have?>?3
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172
g tan(0)

3 (3.7

83=

(if the breaking is assumed to take place at the Planck
mass, then g; would be about —§- the above value) and

Y'=%[SI3R+3(I3L—QJ-)] . (3.8)
We have taken values for the Z, mass ranging from 500
GeV to 2 TeV and computed the vector and axial-vector
couplings for quarks and leptons, some of which are listed
in Table I. Figures 3(a)—3(c) are the plots of the differ-
ence Apeq— Ay as a function of the c.m.s. energy, for lep-
tons and quarks, where 4,4 and A4 are the asymmetries
in the angular distribution of the differential cross section
predicted by this model and the standard model, respec-
tively. Mz, is taken to be 1 TeV. Low-energy data"

from SLAC and DESY are found to be entirely compati-
ble with these, and it is only at higher energies that one
begins to observe a significant difference between the pre-

MODEL (e*e =), x=0, Y'=0.948, Mz,=1TeV
(a)

0.30+
0.25¢
0.20
0.15¢
o.10f
005t
o}
-005}
-0.10F
-0.15 L N

20 30 40 50 60 70 80

c.ms. ENERGY (GeV)

Apred —Ast

MODEL (e*e"—ud), x=0, Y'=-0.316, Mz,=ITeV
o.14} (b)
o.12f
o.10f
0.08f
0.06}
004}
002}
¢}

-002}

-004t L

20 30 40 50 60 70 80

cms ENERGY (GeV)

Apred —Ast

MODEL (e*e™—dd), x=0, Y=-03I6, Mz,=| TeV
(c)

00—
20 30 40 50 60 70 80
c.ms ENERGY (GeV)

FIG. 3. Ay eu—Ays vs cans. energy for the process
e*te~— ff taking into account a second massive vector boson
(Z,) in lowest-order diagrams for the case x=0, Y’'=0.948
(—0.316) for leptons (quarks) and sin*(8)=0.23.
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TABLE 1. Vector and axial-vector couplings for e e ~— ff
for the model x =0, Y’'= +0.98 for leptons and —0.316 for
quarks. We have taken Weinberg angle-sin%(8,)=0.023, Fermi
coupling=1.1610"° GeV~2, and Mz, =1TeV.

Fermion type cy C4 cy cy
Leptons —0.04 —0.50 —0.67 0.00
Up quarks +0.20 40,50 4022 000

Down quarks —0.35 —0.50 +0.22 0.00

dictions of this model and those of the Salam-Weinberg
theory. For example, at a c.m.s. energy of 80 GeV the
asymmetry predicted by this model is about 19% greater
than the corresponding prediction of the standard model
for ete~—leptons [see Fig. 3(a)]l. Furthermore, unless
Mgz, is very close to My the difference will increase only

slowly with decreasing M Z,
IV. OTHER POSSIBILITIES
Numerical analysis of x=1 theories is more complex

because of the ambiguities in the Higgs structure; howev-
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FIG. 4. A,— Ay vs c.m.s. energy as in Figs. 3(a)—3(c), but
for the case x =1 and Y'=0.
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TABLE II. Same as Table I, for the model x =1, Y'=0,
M z, (minimum)=1 TeV.

Fermion type cy C4 cy Ca
Leptons —0.04 —0.5 —0.98 + 0.32
Up quarks +0.20 + 0.5 ).54 —0.33

Down quarks —0.35 —-0.5 —0.11 +0.33

er, it is useful to distinguish between two possible types of
theories. (i) Models with Y'=0 for all known fermions
and (ii) models with Y’5£0 for all (some) fermions.

The central problem is to assign values to the angles be-
tween the Higgs vectors and the three mixing angles, but
there is an interesting fact that may be used to obtain
crude candidates for the mixing angle ¢. From Eq. (1.6),

012+ 623+ 65, =27 (4.1a)
and

] o (]

LANCANCNE o

523 $3] S12

it is possible to find a value for ¢ (for fixed 6,3 and
$23/s12) which makes Mz, minimum®

2
259°C13

1
where 7 =s,3/s1,. This is model dependent and we have
analyzed the first category above by taking c;; =0 which,
from Eq. (4.2) gives the condition

1 —2C92S¢2= y (42)

20925¢2=1 . (43)

Table II lists the values of the vector and axial-vector cou-
plings computed for s,2=0.23 and ¢ given by Eq. (4.3),
while Figs. 4(a)—4(c) plot the difference Ajq—Ay as a
function of the c.m.s. energy for both leptons and quarks.
It is worth noting, however, that the condition for
minimum mass is only a convenience. Other choices of ¢
have been made in the past. Nevertheless, this is an ex-
treme example of a model that will predict asymmetries
differing greatly from the standard model (about 88.5%
at c.m.s. energy of 80 GeV for e*e —leptons with
Mz,=1TeV).

TABLE III. Results for e fe ~—1T.
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TABLE IV. Results for e te ~—uii.

c.m.s. energy A A meas Apred | Agt— Apred |
(GeV) (%) (%) (%) (%)
Model: x =0, Y'=-0.316; and Mzz=1 TeV
29 —9.0 —25+18 —9.3 0.3
35 —13.7 —13%10* —14.4 0.7
80 —56.6 —43.4 13.2
Model: x =1, Y'=0; ¢;3=0 and Mz2 (minimum)=1 TeV
29 —-90 —250+18 —13.9 4.9
35 —13.7 —13%10% —21.7 8.0
80 —56.6 —-99 46.7

®At 34.6-GeV c.m.s. energy.

V. CONCLUSIONS

We have proposed the possibility of observing the ef-
fects of a new massive vector boson in the asymmetry of
the angular distribution in ¢ *e ~ annihilations and some
models are found to predict large enough deviations from
the standard model as to be tested directly. Despite the
difficulties in assigning values to the parameters of the
theory, a greater emphasis on the “fingerprints” of this
particle could yield interesting results. Computations
have been performed for two cases: (a) x =0 in the con-
text of the SO(10) GUT, and (b) x =1 but the eigenvalue
of the third charge operator is zero and the mass of Z, is
minimum.

Tables III—V summarize our results; the low-energy
data have been taken from Naroskas’ review (Ref. 19).

A very heavy Z, naturally minimizes the effects of
coupling, which is the reason for our conservative choice.
Although greater differences are expected for low Z,
masses a careful study of Eq. (A1)—(A3) and (1.7)—(1.12)
indicates that the change is relatively small except if the
mass of the Z, is close to the mass of the charged vector
boson. If this were indeed the case, however, interference
effects, of which we have no evidence from either UA1 or
UAZ2, should occur at around a c.m.s. energy of 81 GeV.
For this reason we feel justified in using the contact ap-
proximation.

Supersymmetric models have not been considered and,

TABLE V. Results for e te ~—dd.

c.am.s. energy Ag A meas Apred | Ast— Aprea | c.m.s. energy Ag A eas Aprea | Ast— Aprea |
(GeV) (%) (%) (%) (%) (GeV) (%) (%) (%) (%)
Model: x =0, Y'=0.948, and M22=1 TeV Model: x =0, Y'=-0.316; and Mzz=1 TeV
29 —6.0 —6.31+0.9 —6.4 0.4 29 —17.6 —16.6 1.0
35 —9.2 —12.4+3.1* —10.1 0.9 35 —263 —15.0+22* 242 2.1
80 —-73.7 —55.0 18.7 80 —21.8 —-31.0 9.2

Model: x =1, Y'=0; ¢;3=0 Mz2 (minimum)=1 TeV

29 —60 —6.3+0.9 —-9.3 33
35 —9.2 —12443.1* —14.6 54
80 —73.7 + 14.8 88.5

Model: x =1, Y'=0; ¢;3=0; M22 (minimum)=1 TeV

29 —17.6 —26.6 9.0
35 —26.3 —15.0£22* —39.6 13.3
80 —21.8 —274 5.6

2At 34.7-GeV c.m.s. energy.

#At 34.6-GeV c.m.s. energy.
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in fact, the cases worked out are only illustrations. Final-
ly, it may be mentioned that it is possible to construct a
Higgs sector that diminishes the anomalies caused by the
Z,; however, e e~ annihilations at high energies could
provide a useful test of these theories or provide experi-
mental bounds for the various parameters.

ACKNOWLEDGMENTS

We are grateful to and wish to thank Dr. G. Domokos
for an introduction to the problem and many helpful sug-
gestions. This research has been supported in part by the

Ao=0p%+ |7 | Hc§ +e§ Neh +ef ) —2Q Re(richet,

Bo=8|r|%cfcichcs —4Re(r)Qrcich ,

ay =T[ |7 |22+ e e+ ef ) — 20 Re(r)eifeyf

re tf re

b1=B—[8|r’|2chycAc'f 4Q,Re(r')c fc
0

where we have defined
V2GrMz?

_ Ams.
(s —Mz*)+iT M,

a

(A4)

The differential cross section is then

do _a 2
0= 4 {Ao(1+4a)[1+cos*(0)]+Bo(1+4by)cos(6)} .

(AS5)

In order to take color into account, the expression is mul-
tiplied by an overall factor of 3 for quarks, but naturally
does not affect the angular asymmetry.

With Egs. (1.6) and (4.1) we obtain

Sgt+27s 21347 25421 —cgls4?)
Z+z,a’0¢01377¢ o¢’
7 2547’
2%2%2’

(A6)

zz'=s¢% 132 /7 (A7)

2583

U.S. Department of Energy under Contract No. DE-
FG02-85ER40211.

APPENDIX
The coefficients appearing in Eq. (2.1) are obtained by

straightforward computation using the vertex rules [Eq.
(1.10)]

ff e)gnf Hley—cqvs) (A1)
ff 9)81‘)’ ey —cavs), (A2)
with the result that
(A3a)
(A3b)
+2Re(rr')efeif+cseehef +che’D], (A3c)
c'f +4Re(rr')(cfef —cipeg) e el +cife], (A3d)
r
where
lezc‘g
z= I (A8)
MZZZCg
Z'=T . (A9)
Using Eq. (1.8) we find
l=2c,2+2's4> (A10)

so that z and z’' are simultaneously extremized with
respect to ¢. It is now convenient to extremize the quanti-
ty

z+2'

’

zz
from which Eq. (4.2) follows.
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