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The two different forms of stochastic Lagrangian in the literature which stem from a common deter-

ministic model L(x, x, t) - 2
mx2+A(x, t) x- V(x, t} are analyzed referring to the question Nelson raised

in his recent book Quantum Fluctuations, and a resolution is presented. It is argued that there exists a self-

contained framework of stochastic mechanics, different from Nelson's original proposal, which is prescribed

by (i) a-
2 (DD+D,D~)x for the stochastic acceleration, (il) the same procedure as Nelson of connecting

both sides of the stochastic differential equation for the process x(t) with the current and osmotic velocities
but with entirely real-valued wave functions, and (ill) a special relation between Vand A which conforms
the above L to the Onsager-Machlup Lagrangian.

The notion of stochastic mechanics was introduced by
Nelson' to discuss a rederivation of the Schrodinger equa-
tion for (nonrelativistic) quantum mechanics. He proposed
a series of mathematically satisfactory steps to deduce this
equation by combining the two well-established frames of
classical physics, namely, Newtonian mechanics and the
theory of diffusion processes, anticipating that by this com-
bination the long historical endeavors to understand quan-
tum mechanics in pure classical languages, apart from the
physical postulate of introducing the Planck constant, could
become one of the major theoretical disciplines in physics.
Stochastic mechanics, according to Nelson, is not just the
usual mathematical tool of describing diffusion processes,
because it includes a prescription of how to reverse the time
axis of the diffusions and how to associate the acceleration
of the pertinent Brownian particle with a mechanical force
acting on it. These may be summarized by the stochastic
Newton's law

(with an appropriate stochastic definition of the a). We see
from the literature, in fact, that Nelson's reconstruction of
quantum mechanics has attracted interest and been extend-
ed steadily in the last decade under the name of "stochastic
quantization. "

Up to the present, the terminology "stochastic mechan-
ics" has been used almost exclusively in accordance with
Nelson to imply a basic framework on which quantum
mechanics is to be reconstructed. Here, I wish to point out
the existence of another framework which is entirely self-
contained to say, "it is nothing to do with quantum
mechanics;" instead, to say, "a basic framework on which
nonequilibrium thermodynamics could be formulated. "

By
this terminology I mean that the dynamics is described in
part by an explicit use on the probability concept for a sys-
tem, and in part purely therrnodynarnically for the back-
ground to which the system is in contact; the same concep-
tion as "mesoscopic level of description, " as is exemplified
by van Kampen. 4 A direct use of this framework is the con-
struction of a satisfactory formulation of the Onsager-
Machlup theory' beyond linear (Gaussian) processes.

I have been motivated by Nelson's6 lectures as an extend-
ed version of his original work, ' in particular, from the

vie~point of the variational principles pertaining to stochas-
tic mechanics, where two recent important contributions to
the subject have been cited and discussed, namely, stochastic
calculus of variation by Yasue' and quantization of dynamical
systems and stochastic control theory by Guerra and Morato.

Nelson9 noticed the two different choices of the stochastic
Lagrangian for the variational principle adopted in the above
two papers which are incompatible with each other, express-
ing his desire to understand the reason for this difference,
and also noting that Yasue's choice naturally leads to the
original definition' of the stochastic acceleration a in the
Newtonian law (I), i.e. ,

a= y(D+D+ DDe)x

where D and D+ imply the well-known (again, what Nelson
introduced) mean forward and backward derivation in time,
respectively, applied to any quasimartingale process.

In reply to Nelson's question, I would like specifically to
note that the other choice of the stochastic Lagrangian
adopted by Guerra and Morato, when set in the variational
principle that is compatible with Yasue's procedure, ' leads
us to another definition of the stochastic acceleration,
denoted by a to be distinguished from (2); thus

a ~(DD+ DaD+) x

Note that the possibility of defining the stochastic accelera-
tion in this form was mentioned by Nelson at the beginning
of his work in connection with the Einstein-Smoluchowski
process for overdamped oscillators, and that later David-
son'0 noted the nonuniqueness of a by mixing the term (3)
with the original definition (2) to derive the unique
Schrodinger equation. It would be of interest to investigate
the consequence of (3), when incorporated into Nelson's
other prescriptions, to obtain another framework of "sto-
chastic mechanics. "

Specifically, let us consider a modified stochastic Newtoni-
an equation,

r

-r(DD+D~D, )x= —F=2v vxcurIA — —V V, (4)1 9A
m Bt
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where the inverse mass is replaced by t~ice the diffusion
coefficient v (a single scalar, &0)," which is compared
with

ed to the two drifts 1 and 1+, i.e.,

v(x, t) = ~[b(x, t)+b, (x, t)]—= 2v(V —A),
u(x, t)=~[ —b(x, t)+b (x,t)]—= vVp

(7a)

&(D,D+DD, )x= —vxcurlA — —V &
1 9A
ill Bt

considered first by Nelson for deriving the Schrodinger
equation. Thus, a combination of Eq. (4) with both-sided
stochastic differential equations

dx- b(x(t), t) dt+ dw(t) (6a)

-b (x(t), t)dt+dw, (t) (6b)

under the Gaussian white-noise assumptions for w(t) and
wi(t) with strength 2v, together with Nelson's rest
prescriptions about the current and osmotic velocities relat-

I

is just the framework of stochastic mechanics which I pro-
pose to analyze.

Since the above formulation of "stochastic mechanics"
does not involve any fundamental constant in physics other
than the arbitrary positive constant of diffusion j, the
resulting framework must be entirely independent of quan-
tum mechanics, i.e., of the Schrodinger equation which we
know is derivable from a similar formulation, when Eq. (4)
is replaced by (5) and the white-noise strength 2v by t/m,
the Planck constant divided by 2~m. Hence, our interest
may be focused on the pair of Schrodinger-type equations of
evolution prescribed by Eqs. (4), (6a), (6b), (7a), and (7b)
together with a judicious choice of a "wave function„" as
compared with

i

itt - —V —A(x, t) —.V —A(x, t) + V(x, t) f1 it il

9t 2m i
T T

—itt ~ - V —A(x, t) .V —A(x, t) + V(x, t) i[i
9 I A' A

Bt 2m —i I

(8a)

(gb)

P +div(vp)-0
Qt

[the current velocity v in (7a)], and

QS +v(VS —A) + V+vp ' hp'
Qt

(9a)

(9b)

where the last term in (9b) should be replaced by the
quantum-mechanical potential ( —ir2/2m) p 't2hp't2 (be-
sides v-1/2m in the kinetic part), if the above equation
were for quantum mechanics discussed by Bohm. '

The sign change of the additional potential mentioned
above caused by the ansatz (3) for the modified acceleration

and also on the possible physical significance to be assigned
to such equations.

It is not difficult to obtain the desired pair of evolution
equations if one examines and precisely follows Nelson's
procedure to deduce Eqs. (Sa) and (Sb) from his original
scheme of stochastic mechanics. The first step is to ~rite
the evolution equations for the osmotic and current veloci-
ties which must be integrable and replaceable by a set of
two equations for the two scalar fields: The probability den-
sity p and the action S, which have been introduced in the
latter part of Eqs. (7a) and (7b). Hence, one proceeds to
the second step of examining this set. It is equivalent to
Bohm's representation of quantum mechanics, ' i.e., the
equation of continuity snd the Hamilton-Jscobi equation
with the scalar potential being supplemented by an addition-
al term called the "quantum-mechanical potential. " In the
latter step, it is crucial to recognize that only the necessary
modification caused by the replacement of the stochastic ac-
celeration a in (2) by a in (3) is a sign change of this extra
potential (equivalent to the sign change of the osmotic part
in the stochastic Lagrangian, 6 or to considering this part as a
part of the potential energy rather than the kinetic ones).
This can be seen explicitly from

I

should necessitate an alteration in defining the "wave func-
tion" to get a set of linear evolution equations: p=Q"Q,
S= —~lni[t/alt'. This amounts to deleting the imaginary

unit i everywhere in the transformation between the
Schrodinger and Bohm representations [the action S thereby
is a dimensionless quantity consistent with (4)], discarding,
at the same time, the assignment of the asterisk to denote
complex conjugation. For the purpose of uniqueness, there-
fore, let us assume a restriction that all "wave functions"
so introduced are real. The resulting evolution equations
for P Jpe s and for Q'= Jpes are found to be

8~ -v(V+A) (V+A)Q+ VQjt (10a)

=v( —V+A) ( —V+A)Q'+ VQ'
Bt

(lob)

By inserting this into Eqs. (10a) and (10b), in fact, it is easy
to see thai these equations become

8 =V (2 Ayv)+vb, ydt

= —2vA VQ'+ vd Q'
Bt

(12)

We note that the two linear operators acting on Q and Q' on
the right-hand sides of the above equations are not general-
ly self-adjoint but can be sdjoint to each other in the usual
1.2- (real) Hilbert space, provided the real vector and scalar
potentials A and & satisfy certain conditions (such as with a
compact support). Thus, the asterisk on ill to give Q' may
still retain the meaning of the Hilbert-space adjoint.

Consequently, the derived Schrodinger-type equations are
nothing but the Fokker-Planck equation for (10a) and the
backward equation of Kolmogorov for (10b), iff

V= —va2+ v divA
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+ div(vottt ) 0, vo= —v V Inirt —2vA (131)

These two equations of continuity are identical, if and only

i.e., the Fokker-Planck equation with the drift vector —2vA
and its dual equation. It may be further remarked that the
condition (11) of fixing the scalar potential in terms of the
vector potential is equivalent to requiring either that ttt have
the meaning of a probability density so that it obeys an
equation of continuity (in the first equation in (12),
t)ttt/Bt+div[( —2vA —vVlnitt)irt]=0), or that ttt' satisfy
Eq. (10b) so it is an identity by the special choice itt" =1 [in
the second equation in (12), there is no term other than
derivatives of ttt']. This means that, for relation (11) to
hold, the derived framework of the present stochastic
mechanics contains two objects to which a probability densi-
ty can be assigned: They are p and iIt, both being subject to
an equation of continuity, i.e.,

BpP +div(vp) =0, v= —v'Fin, —2vA, (13a)

if ttt'= l&&const. It is noteworthy that according to this
specialization the Hamilton-Jacobi equation (9b) also be-
comes identical to this equation of continuity (or, Fokker-
Planck) for itt.

The above remarks about the "coincidence" of two in-
dependent evolution equations (13a) and (13b), or (9a) and
(9b) by specializing to ttt'=1, characteristic of any dissipa-
tive dynamics described by Fokker-Ptanck equations (more
generally, of Markovian dynamics), should be important if
one wishes to get general principles of such dynamics.
Essentially, one wishes to formulate an intention expressed
in the Onsager-Machlup theory, i.e., to achieve a stochastic
understanding of the principle of least dissipation. ' Space
prohibits going into details. Readers are referred to my pre-
vious publications. " Here, I must restrict the discussion to
the essential contrast between the two frameworks of sto-
chastic mechanics: quantum and dissipative dynamica/. Most
of the formal points in the preceding discussion are listed in
Table I, where a change of notations is made so that itt is re-
placed by p (a single-gate probability density) and ttt" by f

TABLE I. A comparison between the two prototype frameworks of stochastic mechanics.

Quantum-mechanical
framework

Dissipative-dynamical
framework

Deterministic
Lagrangian

L (x, x, t) - 2
mx2+ A(x, t) x V(x,t)—

Stochastic
Lagrangian

~ (Dx)'+ (D,x)'
L„(DxD,x, x,t)-

&

+ A
2 (Dx+ D,x) —V

L„(DxD,x, x, t) - 2 mD, x Dx+ A —'(Dx+ D,x) —V

m = (2v)

Stochastic
Newtonian

-(DeD+ DD, )x- —F1
2 Nf ,' (DD+D,D, )x-2v—F

%hite-noise
strength Ew(t) w(0) Ew it).w, (0) —s(t)

m
Ew(t) w(0)-Ew, (t) w (0)=2va(t)

Equation of
continuity

1+ div(vp) 0, v —(Q$ —A)8t Nl

Hamilton-Jacobi
equation

h2(~g A)2+ y ~ ~-1/2g~l/2
8t 2m 2m

gS +v(VS —A) + V+vp hpit2=0
Bt

Scalar
potential V

Independent of A V= —vA2+ v divA

Schrodinger ~ Bohm
transformation

+pe(tttt)s

y"-Ape "t"s, S- —.ln ~;-
2l

P= Jppoe ~ P=fP

f- (p/p ) '/ e 5 = ——ln
fvo

Expectation of
the Hamiltonian EH- f [—' tn(v'+u')+ Vlpdx —(v' —g )+ V pdx1 2

4v

(System energy)

See Ref. 5. This assumes time reversal. A general expression is in Ref. 13.

4 (flux) —+(force)'
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(an arbitrary dynamical quantity of the system). Note that
with relation (11) the starting "classical" Lagrangian

L(x, x, t) = ~mx'+A x —Vbecomes what has been called

the Onsager-Machlup Lagrangian 4 L = (1/4u)(x —a)2
+ Y diva, if m ' = 2~ and the drift vector —2v A is denoted

by a.
Perhaps one significant point of the present discussion in

reply to Nelson's question may be an adequate interpreta-
tion of the "action 5": Can an entropy concept for such
nonequilibrium dynamics be assigned to this quantity, and,
if so, how7 At present, I can only say that the familiar 0
theorem can be formulated satisfactorily in the variational
context by considering the mean forward derivative of 25,
where the specialization Q'= 1 is necessary to realize the sit-
uation of steady approach of the system to an equilibrium
state [see the argument after Eq. (14)1. For the formula-
tion, one can exploit an analogy to a gauge transformation
in the counterpart quantum mechanics. The quantum ac-
tion 5 is indefinite to the addition of the gauge function for
any gauge transformation, whereas the quantum probability
density p is invariant under this transformation. For dissi-
pative dynamics, the situation is the same: If the dynamics
has an invariant measure, the log of its (probability) density
may provide a satisfactory "gauge function, " in terms of
which the 8 theorem may be formulated for both time
directions, realizing the concept of "mirror image" intro-
duced by Onsager and Machlup. '

A crucial difference in understanding the role of probabil-
ity density p between the two frameworks, in spite of the
same equation of continuity, should be recognized. It is the
well-known quantum probability density in the quantum-
mechanical framework. %hat is it in the dissipative-
dynamical framework? The answer is again well known in

the theory of Markov processes; a joint probability density
(two-gate density according to Onsager and Machlup'), if
space-time indices are explicitly given to tlI and $' so that

p(x, t)=const xp(x2r2, xi) p(xr, xtr)), rt & l2 . (14)

Here, the equivalence of the equation of continuity for this

p and the well-known Chapman-Kolmogorov composition
formula should be observed, from which the normalization
constant for f p dx = 1 is seen to be given by
const-p(x2r2, x~rt) '. If thig constant is absorbed into
Q'(x, r) = p(xtt2, xt), saying "specializing to p'-1" should
be fully understood. It is the expression of a steady ap-
proach of the system to equilibrium to be achieved, as a
mathematical technique, by t2- ~.

The two assignments of physical meaning to the probabili-
ty density p are very different for the two prototype stochas-
tic mechanics, as we have just seen. This was my starting
consideration when I attempted. , some time ago, " to explore
the counter framework to Nelson's stochastic mechanics for
quantum systems, and must be the crucial point of clarifica-
tion if one anticipates a unified framework of both, such as
by making the pertinent variables complex; the action S and
the density p. Several open problems listed by Nelson6 (for
example, a formulation of dissipative quantum mechanics)
are expected in the scope of this unification.

A number of useful communications have been provided
by B. H. Lavenda, T. Nakagomi, E. Santamato, and
F. Guerra to stimulate this writing. I wish to express my
hearty thanks to them, and especially to Professor Guerra
and Professor Lavenda for their hospita1ities offered to me
during my travel to the 1985 Corno Conference.
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