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%'e suggest an alternative method for extracting masses and g factors from lattice calculations. Our

method takes account of more of the infrared and ultraviolet lattice effects. It leads to more reasonable
results in simulations of QED on a lattice.

The study of QED on the lattice has led us to reexamine
methods for extracting physical quantities from lattice calcu-
lations. We will focus on masses and g factors. The mean-
ing of the mass, in particular, in lattice calculations is of
great significance because considerable effort is being devot-
ed to extracting mass estimates from QCD calculations. ' In
all these calculations, the mass is obtained by fitting the ob-
served large-time behavior of the space-averaged Euclidean
propagator to the form e ' expected from the continuum
propagator.

We believe that this method can be improved in two
ways. First, rather than fitting to the continuum behavior,
we suggest that the fit be made to the free lattice propaga-
tor. This has the hope of incorporating at least some of the
infrared and ultraviolet effects due to finite size and finite
lattice spacing. Second, we do not believe that, on the lat-
tice, the coefficient of the exponential falloff is the most na-
tural definition of the mass. We are motivated by trying to
understand theories that we think of mainly perburbatively,
such as QED. The point is that in a perturbative theory the
physical mass should approach the bare mass as the cou-
pling goes to zero. But the bare mass is the mass parameter
in the Lagrangian.

To illustrate the difference between the bare mass and the
rate of falloff of the propagator, consider a spinless particle
with free Lagrangian

+ $ (2m+ Sr) j„y„ (4)

Again, the free propagator is easily computed, and its

space-averaged part falls off like e ', where now m' is re-
lated to m by
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As Wilson's r parameter varies from —1 to 1, the relation
between m and m' varies between

This means that if we define the mass by looking at the fall-
off of the propagator, the mass will be m', which differs
from the bare mass m even in the absence of interactions.
Of course, in the continuum limit, both definitions agree
and the disagreement is due to ultraviolet lattice effects.
But many lattice calculations are done with the mass param-
eter m' of order 1. For bosons the discrepancy between m

and m' in this case is still quite small since 2sinh(1/2)
differs from 1 by only 4%.

For fermions the discrepancy is much more serious. Sup-
pose we start with the free Wilson action, '

L =~t@(o —m')@ .

The simplest lattice version of this is, assuming unit lattice
spacing,

and

m=1 —e (6)

L = ~ g 4 [(4 +,+ 4 —,—24 ) ~
—~m $ 4.4

Z, p,

(2)

It is straightforward to compute the space-averaged free lat-
tice propagator. On an infinite lattice it does fall off ex-
ponentially in time, but the rate of falloff is e ~ ', ~here
rn' is related to m by (m' is really the location of the pole
of the propagator in the energy plane)

m = 2 sinh(m'/2)

Again, both formulas agree in the continuum limit. But the
ultraviolet effects are much more severe. For example, for
m'= 1, m varies between 0.63 and 1.7. In QCD calcula-
tions, such values of m' are not at all unusual.

To see the practical effects of our proposals, we analyzed
some QCD data which we had available. 3 The space-
averaged proton propagator, both upper and lower com-
ponents, are given for time separations 4n, n ranging from 0
to 14 on a lattice of dimension 16 x56. To avoid the ef-
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fects of the progagation of the negative-parity partner, we
restricted ourselves to time separations less than 28. To
avoid short-range effects, we considered only time separa-
tions of at least 8. The remaining five data points were fit,
in a least-squares sense, to a free fermion propagator with m

ranging from 0 to 1.5 and r from —1 to l. We intended to
find a best value for m and r, and secretly hoped that the
resulting m might be lower than m, which in this case was
around 0.6. This might alleviate the problem of the
anomalously high value of proton-to-p mass ratio found in
recent QCD calculations. ' What we found instead was that
the y' was completely flat (and acceptable) for a very wide
range of m values. As r varied, the "best" value of m

ranged from 0.5 to 1.5, and there seemed no way to prefer
any one of these solutions. So adopting the philosophy out-
lined above, we cannot extract an unambiguous prediction
for the proton mass from that QCD data. This problem
does not occur in the QED data which we shall analyze
below.

There are several criticisms of our philosophy. First, one
can say that the discrepancy between m and m' is purely a
lattice effect which will disappear in the continuum limit, so
who cares? We concede, but this view precludes any mean-
ingful lattice calculations. Second, one could define the
coefficient of iiIilI in the Lagrangian to be the inverse of

1 —r
ln

(m +2mr+1) i —m —r12
i

(8)

instead of m, so that m and m' would agree. This is poss1-
ble, but looks contrived. One might also argue that in
QCD, at least, there is no "bare" mass for the proton, so
the idea of fitting a free lattice propagator to the full propa-
gator makes no sense. But by going to large distances, one
is trying to extract the one-particle piece of the full propaga-
tor, so why not match it to a latticized one-particle piece?

Our results are more interesting when we turn to the g
factor, and grow out of our study of QED on a lattice. We
used the quenched approximation, in which the coupling
constant does not run. Here the zero-lattice-spacing limit is
clean, at least in perturbation theory. 4

We used the noncompact formalism of QED for the pho-
ton fields, i.e., F„„F~",rather than the compact formalism
of the lattice gauge theories (the trace of the product of link
variables). The advantage of doing this is that in the non-
compact formalism in the quenched approximation, the dis-
tribution of the virtual photon fields in momentum space is
Gaussian. Therefore, we can use the Gaussian distribution
to set up the equilibrium configuration for the link fields.
Then, for each link configuration, we found the electron
propagator by inverting the huge fermion matrix by the con-
jugate gradient method.

We studied the propagator both in the absence and the
presence of an external magnetic field. From the former,
we extracted the physical mass and renormalized Wilson
parameter r, and from the latter, the g factor. We extracted
these using our philosophy rather than just by looking at the
exponential falloff of the propagator at large Euclidean time
separations. Because the electron can both emit and absorb
virtual photons, the mass m and parameter r will get renor-
malized, and the g factor of the electron will not be exactly
equal to 2. The one-particle piece of the full propagator in
the absence of an external field should correspond to a free
propagator with the physical m and r. The one-particle piece

of the full propagator in the presence of an external field
should correspond to a modified free propagator in the same
external field with the physical m, r, and the appropriate
value of g.

To derive such a modified propagator, we recall that in
the Dirac equation the g factor of the electron is equal to 2
because the Hamiltonian includes a term —(e/2m)a" B
which describes the interaction energy of the electron spin
(S= a/2) with the external field. Therefore, to make the g
factor of the electron not equal to 2, we construct a new ac-
tion which includes the term (g/2)(e/2m)a B rather than
(e/2m)cr B. Because

e e 2a" B= a. B+ g g B
2 2m 2m 2 2m

and the first term on the right side is included in the usual
action, we need only add the extra term [(g —2)/2]
x (e/2m)cr B to the usual action, which only affects the
diagonal elements of the inverse propagator.

To get the renormalized mass, we did a least-squares fit
of the large-time, space-averaged, numerically calculated full
electron propagator, without an external field, to the analyti-
cally derived free lattice propagator of varying mass and
parameter r. To get the g factor, we did a similar fit of the
numerically calculated full electron propagator in an external
field to the modified free lattice propagator with varying g
factor in the same external field, but with the renormalized
mass and parameter r determined from the above zero-field
case.

For the full propagator, the discretized electron action
takes the form

(10)

in which the fermion matrix is

0[~(U'")1g= [(y„—r ) UI'1" + (2ma + 8r )gj
—(y~+ r ) UIr'J'"'J

MASS, bore r = +1

g FACTOR, bare f = + 1

MASS, bore f = —1

I I i I l I I I I I I I I I l I I I I [0
0 50 I OO l 50 200

Configurations

FKJ. 1. Scatter of mass and g-factor values obtained in our
method by averaging over 10 successive configurations, with bare
r +1 and —1.
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TABLE I. m, r, ang g obtained by different methods, averaging over the same 200 configurations generat-
ed with bare mass =0.6. The electron charge has its physical value. Method exp 23 means the exponential
method based on time separations of 2 and 3, etc.

Method Bare r Output m Output r Output g

Our method
exp 23
exp 34
exp 45

Our method
exp 23
exp 34
exp 45

1.0000
1.0000
1.0000
1.0000

-1.0000
-1.0000
-1.0000
-1.0000

0.6355 + 0.0004
0.4923 + 0.0002
0.4911 + 0.0002
0.4872 + 0.0005

0.5757 + 0,0004
0.8595+ 0.0006
0.8540 + 0.0009
0.8507 + 0,0034

1.0029 + 0.0021

—0.9994 + 0.0006

2.08+ 0.14
0.0051+0.0013

—0.5439 + 0.0031
—2.5498 + 0.0098

2.17 + 0.23
1.879 + 0.012

—0.063 + 0.019
—10.43 + 0.09

where the y matrices are in Euclidean space, and (iJ )
stands for the space-time indices of the lattice sites, only the
nearest neighbors of which are allowed. If j= i + 1 in the p,
direction we take the term (y„—r) Ugj'", while if j =i —I
in the p direction we take the term —( „y+r) UP~", and
U~» = U~~; is enforced.

In the absence of an external field, the element U"' in
(ll) is simply given by

ig aA (x )U"'( nn+ ga) = e P (12)

where n and n + p, stand for i and j; A„(x„) is obtained by
Fourier transforming the Gaussian distributed photon fields
in momentum space, and go is the coupling constant. In the
presence of a constant external field 8 in the z direction,
one adds to A„(x„) an extra term which can be chosen to
be A2(x) = aBx~, so the U"' operators along the y direction

igoa Bx&
should include a factor e '. We preserve the periodici-
ty of U"' and choose a small external field so as to keep the
linearity relation between the energy and the external field.

The bosonic fields are periodic along the time direction,
while the fermionic fields are antiperiodic. We can choose
periodic boundary conditions in space for both bosons and
fermions. This will allow us to set the fermion momentum
equal to zero.

We worked on a 6' lattice, fixed the QED coupling gp at
v'4m/137 and the external field at 0.02, and investigated
Wilson's parameter r at both +1 and —1. We picked the
mass m -0.6, which is within the region I/W ( m ( 1. We
took the average of the propagators over 200 independent
link configurations which is more than in the usual QCD
lattice calculations.

We extracted the statistical error as follows: We took the
average propagators for each 10 successive individual propa-
gators. Then we extracted the mass m, Wilson parameter r,
and the g factor from these 20 average propagators, respec-

g = 2[m+ (E+ —m+) —m (E —m ) ]/gp8 (13)

for the g factor of the electron, where E+ (E ) and m+
(m ) are the energy in the external field and renormalized
mass of spin-up (spin-down) electrons, respectively. There
is no mention of Wilson's parameter r. For both values of
bare r, the exponential method shows much smaller fluctua-
tions than the method we are proposing. But it depends
critically on whether we use time separations of 2 and 3, 3
and 4, or 4 and 5 to extract the g factor. The point is that
E+ (E ) is close to m+ (m ) and the g factor becomes
very sensitive to finite lattice distortions (see Table I). This
confirms our view that lattice effects must be considered in
the fit to the parameters.

This work was supported in part by the National Science
Foundation, Grant No. PHY-83-17871.

tively. Finally, from these 20 values for each m, r, and g,
we calculated the uncertainty in the mean of m, r, and g,
correspondingly, by using a „„=a/420, in which a is the
standard deviation of the above 20 values. The results are
shown in Fig. 1 and Table I. It is noteworthy that r is
essentially unrenormalized in all cases.

The results using our method show large fluctuations in g.
The final values (see Table I) are insensitive to whether we

form m, r, and g from the average over 200 propagators, or
whether we take the average of the 20 values we obtained,
each based on 10 propagators. The results are also insensi-
tive to whether, on our lattice with six time slices, we called
a time separation of 3 large, or whether we called time
separations of + 2, and 3 large.

The data were also analyzed in the more conventional
manner in which we exploit the exponential falloff of the
propagators. Even on our small lattice, the exponential
behavior is observed. In this case we applied the formula'
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