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Coupling the spinning string to an antisymmetric tensor field and quarks with spin
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We present a locally supersymmetric action for a spinning string interacting with an antisym-

metric tensor field. This action incorporates in particular the boundary conditions. Then, we

present a first physical application of this action in the context of a string model of mesons; explicit-

ly, we show how it leads at the classical level to effective quarks with spin.

In a recent work, ' which was a new attempt at describ-
ing mesons as strings (see Ref. 2 for a previous work
along this line} we studied a Nambu string coupled to a
U(1) gauge field, the system being described by the action
S (see the Appendix for a detailed explanation of the nota-
tions):

where, as usual,

Fq„——t}uA „—t}Q„ (2a)

l

pv (2b)

In particular, we showed in Ref. 1 that S leads to two
unitarily equivalent descriptions of mesons, first, as a
charged Nambu string as immediately read off from the
Lagrangian and second, as an effective quark-antiquark
pair driven, in a suitable approximation, by a semirela-
tivistic Schrodinger equation.

However, the quarks we obtained from the preliminary
model are spinless; therefore the model itself, in spite of
the fact that it generalizes the successful model of Eichten
et al. and allows one to calculate a satisfactory spectrum
of the S= 1 at J=J mesons, is not realistic enough to
ensure a detailed description of nature. In particular, no
spin interactions appear in the semirelativistic
Schrodinger Hamiltonian we get in Ref. 1 and it is well
known that these cannot be neglected (think, for instance,
of the p-n. splitting).

To overcome this shortcoming we therefore addressed
ourselves to the problem of generalizing the action S to a
new action SN from which we get effective quarks with
spin. It is the purpose of this paper to present a solution
of this problem.

In fact the whole solution may be summed up in a
word: supersymmetrization.

Indeed, as is easily forseeable froin the association of
the method we used in Ref. 1 to obtain the effective
quark-antiquark pair on one hand, and of the work6 of

Berezin and Marinov and of Casalbuoni on the other, we
will show that the new action SN is just the supersym-
metric extension of S; i.e., it is the action which describes
the Neveu-Schwarz-Ramon spinning string interacting in
a supersymmetric way with a U(1) gauge field A„[in Ref.
6, Berezin and Marinov, and Casalbuoni (BMC) showed
how to describe a free particle of spin —,

'
by using a gen-

eralization with both bosonic and fermionic (Grassmann)
coordinates of the usual quantum mechanics]. Now, we
see on (1} that the U(1) field A„enters only through its
field strength F„„which is an antisymmetric tensor field
so that, ignoring the kinetic term (1/16m) JF„,F""d x
which will play no role, we realize that the procedure of
supersymmetrization of S will work equally well if we re-
place F„„by any antisymmetric tensor field 8&„which
does not transform under supersymmetry. Such an action
Sz(8&„}is deserving of a potentially larger field of appli-
cation, especially in those times where string models in
general get a new impetus under the impulse of the work
of Green and Schwarz; we will consider this more general
case in the first part of this paper Then. , in the second
part, we will show that if we specify to F„„asdefined in
(2b} we can introduce effective quarks, in the sense of Ref.
1, with a classical spin in the manner of Berezin and Mar-
inov, and Casalbuoni. This second part inay be thought
of as a first application of the action S~(8&„), the study
of a spinning string in background fields being another
possibi1ity.

I. SUPERSYMMETRIC ACTION FOR A STRING
INTERACTING %'ITH ANTISYMMETRIC

TENSOR FIELD

First, we will restrict ourselves to the orthogonal gauge
where e'=g' and compute the action Sz up to boundary
terms. This means that S~(8&„)will be invariant under a
limited set of local supersymmetry transformations,
which will be specified below, up to a pure divergence
term.

Second, using the superspace formalism of Salam and
Strathdee' and Zumino" we will introduce the correct
boundary contributions so that Sz(8&„) will be exactly in-
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variant under these supersymmetry transformations.
Third, we will generalize the action we obtained above

in the orthogonal gauge, to an action invariant under any
local supersymmetry transformation. This will be the
complete action describing a string interacting with an an-
tisymmetric tensor field B„„in a manner invariant under
any local transformation of supersymmetry we are look-
ing for.

A. Action in the orthogonal gauge up to boundary terms

The notations are fully explained in the Appendix.
p is a Majorana spinor field on the world sheet

spanned in space-time by the string. The supersymmetric
transformations we consider in this section are '"

5y"=iud,
5P=a@"y&a+F"a,

5F&=iay~d g",
where a is the parameter of the transformation. It is a
Majorana spinor defined on the sheet. It depends on r
and r', the two coordinates on the sheet and satisfies the
equation

and the one generalizing

should be separately invariant.
The kinetic term of the antisyminetric tensor field

B„„(x)plays no role, as B„„(x)is supposed to be a scalar
under the transformations of supersymmetry. Therefore
we will not display it. In the following we pose
m =Ma/2'. The term generalizing (4) is well known; it
was introduced as early as 1971 by Neveu, Schwarz, and
Ramond (NSR) in Ref. 7, and was first written by Zumi-
no" in the form

f ( —,
'

d y"d—~„—,'iP—y 8 gq+ ,'F"F„—)dr

We obtained the term generalizing (5) after a lengthy but
straightforward calculation:

—gm ~ ~& "B~„y

+ ,'(Py, y-.Paw "+PyÃ~F")~ „
yi'ysa~=O, V5=O, I;

that is, a (7,7 )=a (1 —7 ) aild a (r,T )=a ( r+7 ), ' gC—Vf"ysPa„a~. d'r, (7)

As Mo is an arbitrary coupling constant which does not
appear in (3) both the term generalizing the kinetic term

—
T/

—i f d y~B(pi d T (4)

+BQ is the component of
the exterior derivative d of the two-form of component

We give in the Appendix some useful formulas to
compute the variation of (7). As indicated above, the
variation of S~ —= (6) + (7) leads to a pure divergence term.
Explicitly it becomes

5S~ ———71 8 — disy„ay y~—P+ F"ay g„—

+mB 2e ~iaPB@"B„, ,'A~„, —e ~(i'y—g"a@+—(i'ysypgay~y~P

In usual field theories such a divergence is harmless as it
is always assumed that all the fields vanish at infinity.
However, in a string theory the boundary of the parame-
ter strip (r E]—oo, +00[, v'P[O, n]) parametrizes the
world lines of the ends of the string on which the fields of
the theory (y", . . .) are nontrivial so that the volume in-
tegral of a divergence is not zero in general and should be
canceled. The next problem we have to face is therefore
to cancel (8). That we wiii do by adding some contribu-
tion from the boundaries of the string to the action Sz as
we will see now.

B. Boundary terms

In order to discover the correct boundary term to be
added to Sz we insist on writing it in the superspace for-
malism. Therefore we introduce the scalar superfield

x"(%,8 ) =y"+i@"+ 88F"'—
2

with

x'"(r' =P+iay 8,8'~=8 a~)=x"(v,8 )—
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and the covariant derivative in superspace Dz ——E qD,
where Ez~ is the flat zweibein" generalizing e, in the
orthogonal gauge (see the Appendix for further notations)
and we look at the simplest action one can think of to be

S~. That is, we consider

+, 7 Dgx f5 Dgx Bp x
2l

It is easy to show that indeed S,' is just

where W(x) is the Lagrangian in S' and where e may be
either +1, then the action S~——S,'+Si'i is exactly invari-
ant under (3},provided we impose on the parameter of the
supersymmetry transformations a the restrictions

y' ='a+Pa =0
with @=1 for ~'=0 and F=e for r'=ir T.hese restric-
tions may also be written

ix +a =0 at r'=0

gl g1+ m9 2+ pl~ ~c vg
2

(10) a+ra=0 at ~=a.

which means that S„' is the same as Sz up to boundary
terms. But in the superfield formalism we know how to
deal with the contributions at the boundaries to obtain an
exactly invariant action. Indeed, it is easy to show, fol-
lowing the method given (for the NSR string) by Ademol-
lo et al. in Ref. 12, that if we add to S,' the boundary
term

It is easy to convince oneself that there is no way of
avoiding the restrictions (11}. In the case of the NSR
string, the choice @=+1 corresponds to the Ramond
boundary conditions for g„and the choice e= —1 corre-
sponds to the Neveu-Schwarz ones.

So, the correct supersymmetric generalization of the ac-
tion S in the orthogonal gauge becomes, if we make expli-
cit the component fields of the superfield,

(12b)

For the purpose of obtaining effective quarks with a clas-
sical spin this action would have been sufficient; in fact,
we will use it in the second part of the paper; however, for
the more general purpose of studying the supersymmetric
interaction of a spinning string and an antisymmetric ten-
sor fleld, and even for the meson model, as a forthcoming
paper' will prove, we had better know its complete form;
that is, we had better avoid the orthogonal gauge restric-
tion. That is why we now turn to the construction of the
complete action.

C. Complete action

5y"=ia@,
5P=F"cr+BN"y +iPX y a,
5F&=iay 8~+5F+,

5e~g = 2i ay'X~, —
(13)

To obtain this action we proceed along the same lines as
before and thus first begin by ignoring the boundary
terms and construct the action S~, which simplifies to S~
in the orthogonal gauge, using the method Deser and Zu-
mino used in Ref. 14.

The supersymmetry transformations now become" '~

where a can be any function of r and ~', X~ is the ana-
log of the gravitino field in supergravity. ' It is a Majora-
na vector spinor on the sheet spanned by the string; r0„(e)
is the spin connection on the sheet. 5F+ is a complicated
expression depending on the X~ ~e give in the Appendix.

We obtain, after some calculations,
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SN ———g ——,'eg ~
yp q

——I'y „—ieX y~y & „——" y~y Xp+ —F„F"

+m f ee pB~"Bptv"Bq„+ (—g~ysy pd~"+ f~yg"F")Apq„——eg "pg"ygpBvAp„„

+—
eg~y5yppg "y ypX A~„„ (14)

The point stands for the whale term under the derivative
sign in (8). Next using the superfield formalism we get

S,=S~+™dp(ePy~yPPB„„)dr .
2

Concerning this step we should say that we did not start
from the most general form of the super-zweibein impos-
ing afterward certain "kinematic" constraints on the su-
pertorsion as done by Howe for the spinning string in Ref.
16; instead we adopted a strategy similar to the one he
adapted in Ref. 17. That is, guided by the result (10) in
the orthoganal gauge, we introduced an ansatz for the
super-zweibein which leads to S~ up to a divergence term
and takes the additional divergence term as the generaliza-
tion of the one in (10}. The expression of our ansatz is
given in the Appendix.

Finally, we have to add the term S~.

+—& "ys "&p

X [5(r') —e5(~' —m)] (17)

with

2= ga=o a=o

to get an action S~ ——S„+S~ which is exactly invariant
under any local supersymmetry transformation provided
its parameter satisfies

ey ='a+rxa=O (18a)

for both r' =0 and r' =m. This spinorial equation reduces
in fact to the single equation

a~
+efa =0,

x2 @=0 u=1
&J =a=o —&a=o

(18b)

The meaning of x which appears in (17) is clear. Indeed

g~ o~ o is just the metric induced by g ~ along the

The quantity in the first set of brackets of this expression
is already known. '" The variation of Sz under the
transformation (13} gives a pure divergence which gen-
eralizes (8). In shorthand we write

(15}

world lines of the edges of the string and thus x2 is just
the analog of e = —det(g p). The meaning of f which
appears in (18b) is the following: it is just the right quan-
tity to build from a spinor, and a zweibein a Lorentz in-
variant (in fact, we can build a pair of Lorentz invariants).
The proof of this property is easy and will appear in Ref.
13.

For memory, let us recall that, exactly as the usual
complete action of Deser and Zumino' [obtained from
(14}by choosing m =0], the action S~ has a much larger
gauge invariance than simply the local supersymmetric in-
variance. It has also a local Lorentz invariance under
Lorentz transformations in the tangent space of the sheet,
a general reparametrization invariance, a local Weyl in-
variance, and at last a local in variance under
X ~X +y P (super-Weyl invariance).

In a forthcoming paper, ' we will study in detail the
consequences of these symmetries, especially in what con-
cerns the other possible contributions at the boundaries.
In particular„we will prove that they enable us to give a
first-order formulation of a spinning string with massive
ends, which will generalize some known results for the bo-
sonic string in the orthogonal gauge. ' Moreover, we will
solve exactly, after a suitable choice of gauge, the classical
equations of motion of this system. These symmetries are
also of crucial importance for the canonical quantization
of the action Sz.

Before leaving this first section let us sum up its main
results: (1) the building of the complete action (Sz) of a
spinning string, interacting in a locally supersymmetric
way with an antisymmetric tensor field; (2) the incorpora-
tion of all the boundary contributions into the action so
that all the boundary conditions for the motion of the
string and, in particular, those for the variable g„, belong
now to the set of its equations of motion.

%'e now turn to the second part of this paper. As stat-
ed in the Introduction it may be thought of as a first ap-
plication of the calculations we have just explained but, in
fact, it was rather their initial motivation.

II. EFFECTIVE QUARKS WITH SPIN

We will explain in this section how the action (12}leads
to effective quarks with spin if we insert for B„„the ten-
sor F&„(2b). We will use the action in the arthogonal
gauge (12) as our starting point. It is simpler than Sz and
enough to get the result we are looking for.

The section is organized as follows. To begin with, we
recall from Ref. 1 the key equations for the existence of
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the effective quarks; then, we compute the corresponding
equations for the action (12), discuss their interpretation
in the light of the work of BMC (Ref. 6) and conclude.

A. Key equations from Ref. 1

It follows from Ref. 1 that the key equations for the ex-
istence of effective quarks are the equations of motion of
the U(1) gauge field A&(x). These equations are

where G""is the same as before:

Di'/ ——f dr5 (x —y)(g "ysy'P+g "ysP)

and

C„=—, f t. p„l" ~5 (x y)d—2r

——,'5„f ~ „rv ~54(x —y)d'~

or

Fpv=t3pAv d+—p i

a„F~"= 4a—„G~",
(19)

with

and
F~„Hq„——+4nMpGq,

with

a„H~"=0,

t3„H""= 4n M—p(df dt")—,

5 (x —y)ds

(20)

I"~=
16 4"PVrsP

Mo

F""= 8m( 8'C—"—8"C"} 2m Mp(—D ~y" D";")—
—4~m, G ~"+a~"

with

and

Gp P 3' 4&( ", ")
sheet t)(&p &i )

d„H""=0,

BqH""=4n Mp(dJ d;")—
2mMpB„(D—~y" D";") . —

(21)

i and f are the two ends of the string.
The effective quarks appear in these equations as the

magnetic monopoles which contribute to d„H"". They
are the sources of the charged currents 4n(dJ d;"—}. —
The quarks are effective in the sense that at the level of
the action (1) (put it in the orthogonal gauge) what we
have is truly a charged string [it is not possible for the
coupling (5) to be replaced by a coupling on the ends of
the string only, contrary to what happens if we use F&„
instead of F„„];nevertheless, at the level of the equations
of motion, it is physically clearer to think of the system as
a quark-antiquark pair (effective quark and antiquark} in-
teracting with each other than to think of it as a string in-
teracting with a U(1) gauge field. The comparison of (19)
and (20) is very suggestive in this respect. (See Ref lfor.
more details. ) In (20} the tensor field G„„characterizes
the singular field along the string. It is the covariant gen-
eralization of the magnetic field along an infinitely thin
solenoid (no edge effects}.

Let us now look at the analog of (19) and (20) for the
action (12).

B. Effective quirks with spin

We vary the gauge field A„(x}in the action (12) which
we complete with the usual kinetic term
(I/16m) f F„„F""dx for A&. We get

f 5F„„(P'C"—t)"C")+ (D j~" Di'")—

We see on these equations that the effective quarks are
now characterized by the source terms

4trMp(df d;") 2'irMpBls—(—D j"" D";") wh—ich is exactly
what we expect for effective quarks with a classical spin
in the manner of Berezin and Marinov, and Casalbuoni.

To prove this statement we just have to correctly identi-
fy the spin variables at the boundaries. This we da by
noting that by virtue of the restrictions (11) on a we can
impose 8 +F8 =0 at s'=0 and s'=sr on the superspace
coordinates 8. Then the scalar superfield x"(&,8 ) for
the spinning string reduces at the boundaries to a scalar
superfield for a spinning particle. ' That is, defining

8=8' FH /W2 a-n—d p=p-+g" /v 2

we have at each end

x"(s. ,8)=y"(r )+i 8T",

F"vs}'V+4 "rsP =&2F"0"

(nate that this last equality is true without an~ conditions
on g„-' and g„, in particular, we do not need g eg" =0), ——
and

Di'/"= f 5 (x —y)2ig "g"dr .

Moreover, the transformation laws (3) imply the follow-
ing transformation laws for y& and g„at the boundaries:

5yi'=i ag",

5$"= —a y",
2,v'

where
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—1 0
Iah 0 1 ~ '4b

0 1

—1 0
It is now straightforward to verify, by redoing the cal-

culation of Refs. 6 and 19 for these transformation laws,
that the source term in (21) is indeed the correct one for
particles with a classical spin described in the BMC
method by f„[inparticular, the effective quarks have no
anoinalous electric moments at the classical level
(remember they are effective magnetic monopoles)].

We may further check that it is physically relevant to
make the superfield of the spinning string reduce to the
superfield of a spinning particle at the boundaries by look-
ing at the boundary equations of motion for the spinor g„.
They write

,
' (g"~ —g"—)(5$„+e5gq )-

—m ( g"~+g" )(5$" +e5$" -)F„=O-(22)

for each end, and as it should for a spinning particle, they
depend only on the variation of g„.

Thus we have shown the action (12) leads to effective
quarks with a classical spin g„but still we do not know

precisely what spin.
In fact, a complete answer to this question is not possi-

ble before the quantization of the model, which is still
under study. Nevertheless, we can already indicate from
our first results on this problem that a spin- —,

' realization

of the quantum Clifford algebra associated with the
Grassmann coordinates g„ is indeed compatible with the
set of Poisson brackets or rather Dirac brackets one gets
in the process of the canonical quantization of Sz~ or Sz.
This makes us think we are on the right track to deduce,
from a well-defined model, a Hamiltonian for mesons
which incorporates the spin interactions, and we may
suspect from Ref. 1 that these interactions will be essen-

tially of the Breit-Fermi type in a suitable approximation,
the Lorentz transformation properties of the confining
potential being fixed by the model. However, we still
have to prove that things indeed work as we suspect they
work.
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APPENDIX

ab
A8

y5

We have

o

() (
—1 )a 0

J

(ysc ')—

A point on the surface spanned by the string as it
moves in space-time is characterized by two parameters
v, aE I0, 1] with r E[0,m]. Its position in Minkowski
space is defined by y"(r, r'). The dimension of Min-
kowski space need not be specified, 0 &p (d —1.

%e pose

5I'"+ =iay — co (e)rsvp—+y~X Bpy"+X+"a

+ +ay y +p.aP —
p

We choose the ansatz
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eP(5p+ 2t 8y Xp) 0

ies (8y )g ——,
'

88(Xpy yp)s 5sga(1+ ,' 88—Xpy ypXs)+i (8yp)aXli

S,= —g —,
' f d 8d rE(Eq&~"ri" Eg&px„)+—.f d 8d ~E(Eq&~"ys Eg&px")F„„(x)

2l

a=(a, a), E=SDetEa, &a=— t)a — too(e), Baa — a 2 a s Q
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