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We investigate the mass difference between the n and ti mesons by using lattice QCD with the

%ilson fermion formulation. The calculation of the effective potential is done by the 1/X expan-

sion in the strong-coupling limit. From a tree-level analysis of the effective potential ~e obtain the

result that there is no mass difference in the parity-conserving phase to all orders in the 1/S expan-

sion and that there exists a mass difference in the parity-violating phase.

I. INTRODUCTION II. EFFECTIVE POTENTIAL FOR MESONS

The U(1) problem is that the ri meson (flavor singlet) is
much heavier than the sr meson (flavor nonsinglet) al-

though both mesons are Nambu-Goldstone bosons associ-
ated with the spontaneous breakdown of chiral symmetry.
According to our current understanding, the chiral U(1)
anomaly would provide the mass difference but it is very
difficult to calculate such a mass difference practically
since both mesons are bound states of quarks.

Lattice regularization is suitable for calculating such a
nonperturbative effect. Wilson claimed' that the mass
difference between the singlet and the nonsinglet are ob-
tained in the strong-coupling limit by using lattice QCD
with the Wilson fermion which gives the correct chiral
anomaly in the continuum limit.

In this paper we calculate the mass difference by using
lattice QCD with the Wilson fermion of r =1 in the
strong-coupling limit. The results are summarized as fol-
lows.

(1) From a tree-level analysis of the mesonic effective
potential no mass difference can be obtained to all orders
in the 1/N expansion if the parity is conserved

(2) The parity-violating phase as well as the parity-
conserving phase exist. In the parity-violating phase it is
shown that the singlet meson is heavier than the nonsing-
let meson.

This paper is organized as follows. In Sec. II we for-
mulate the effective potential for mesons from QCD in
the strong-coupling limit. A detailed calculation of the
effective potential is given in Appendix A. In Sec. III we

analyze the vacuum structure for the effective potential by
the 1/N expansion and show that two phases exist. In
Sec. IV we calculate the meson mass from the effective
potential by the 1/N expansion and show that the above
results (1) and (2) are true. In Sec. V we discuss the physi-
cal implications of our result. In Appendix B detailed
calculations for the meson mass are given. In Appendix
C the case that the Wilson parameter r+1 is analyzed
and it is shown that the result (1) is almost unchanged. In
Appendix D we analyze QCD with the U(3) gauge and
show that the results are the same.
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Here we take U„„as the element of U(N) rather than
SU(N) since we want to treat only mesons without
baryons. The f ( = 1,2, . . . , nf ) is a flavor index and Mf
is a bare-quark mass of the flavor f. The second term in
SF is called the Wilson term which is necessary to remove
a spectral doubling in the continuuxn limit. This term
breaks the chiral symmetry explicitly; therefore, this ac-
tion has no explicit chiral symmetry even if Mf ——0.

The partition function Z with source Ja ~(n) is given by

Z(J)= I DQDQD(U„p)

Xexp St;+SG+N g trJ(n) M(n). (2.3)

where

(2.4)

is the meson field, a,P represent spinor-flavor indices
[a=(a,f)], and c represents color index. Therefore M(n)
is a CXC matrix with C=2( lnf. In four dimensions

In this section using the 1/N expansion we define an
effective potential for mesons in the strong-coupling limit
(1/g ~0). Detailed calculations are given in Appendix
A.

The action of QCD on a d-dimensional lattice with the
lattice spacing a is

(2.1)

where
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C =4nf. In the strong-coupling limit (1/g ~0) we can
neglect the term SG in (2.3). Correctly speaking, this lim-
it means 1/g %~0.

After integration of the link variables U„„we obtain

Z(J)= f DM(n)exp S,rr(M)+XgtrJ(n) M(n)

(2.5}

where

S ff(M )=N g [trMM ( n )—tr lnM ( n )+ IV(M (n ))] (2.6)

is the effective potential for mesons. Here

M-
p (Mfa——+4r)5~p5ff,

k
CO

W(M(n))=g g — W„(A„„},, k=O &

A„~ M(n)——(Pq+ )rM(n +y, )(p„}r,

P+g~
P~ ——

2

The form of 8'q(A„„}is given in Appendix A.

III. VACUUM STRUCTURE WITH r =1

In this section we investigate the vacuum structure in
the 1/N expansion with the Wilson parameter r =1 and
show that two phases exist.

From the result in Sec. II and Appendix A we obtain

Using this notation the saddle-point equation is written as

(
ss~(M)

l5M(n)NP
(3.5}

If all the bare masses of quarks (Mf ) are equal5 Eq. (3.5)
has solutions.

In the large-N limit the solution is given as

3

(giy5$& =cr sin8
4N

0 for MD'&4,

2[3(4—Mo )]'i
16—Mo

for Mo &4,
(3.6)

&|Ty)
' =~~s8

1/M, for Mo'&4,
3Mp

, for M, '&4,
6—~o2

(3.7)

where Mo ——trM/nf (=Mfa+4r if all Mf are equal).
Technical detail is given in Appendix B.

These results suggest that at the value that Mo ——4 the
phase transition occurs and its order parameter is

(Piy5$) rather than (PP). In other words two phases
exist: one is the parity-conserving phase ((Piysf) =0)
and the other is the parity-violating phase. It is easy to
understand this phase transition from a statistical
mechanical point of view. Now we consider the correla-
tion function of a composite operator Piyy/i, which
behaves as

S ff(M)=N g trMM(n} —trlnM(n)

'k

Wk(A„„)
p k=0

(3.1)

If N becomes large we obtain

Z(J'=0) =f D M(n)exp[S, tr(M)] — exp[S,n(MO}],

(3.2)

where Mo(n) is the saddle point of S,tr(M) (Ref. 4) and is
interpreted as the physical vacuum.

To obtain the saddle point Mo(n) we assume that the
vacuum is translationally invariant and a flavor singlet;
then the form of Mo(n) is given by

A

Mo(n) p=cr(e ') plff, (3.3)

where a=(a,f) and P=(P,f'). Here we take into ac-
count the possibility that P„ysP„may develop a nonzero
vacuum expectation value. Hereafter we set the Wilson
parameter r =1. The case for 0 & r & 1 will be considered
in Appendix C.

We denote the vacuum expectation value of f(M)
which is an arbitrary function of M(n) as

(y„iy5TP„qoiy5tyo)-exp( ma
~

n
~
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~
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where m is identified with the lowest mass of the pseu-
doscalar meson (n meson). We assume the pseudoscalar
meson becomes massless at some value of the parameters,
for example, at Mo ——4. Since this means that the corre-
lation length diverges as g-1/m a the phase transition
occurs and there is another phase where (Pi y5$) +0 if we
vary the parameter. In this phase the mass of the pseu-
doscalar meson is defined by

The phase transition which occurs at Mo =4 can be un-
derstood by this scenario and in the next section we show
that the ~ meson becomes massless at Mo ——4.

Next we consider the 1/N corrections to the above re-
sult. If we assume 8=0 the solution is

a = 1/Mo (3.8)

to all orders in the 1/N expansion and this solution is the
same as the result in the large-N limit [see (3.6) and (3.7)].
If we consider the solution with 8&0 the gap equation be-

&0 iyA' eoiy~A& &e.~'y e. &&iToi—yacc&

-exp( —m a [n [), ~n
~

m.

(f(M)) =f(MO) . (3.4)
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Moo =cos8,
(3.9)

8 2—1+,+0(sin 8) =0.
1+(1—4otsin 8)'~

sin8

o = —, and Mo ——4. (3.10)

We take the hmit as 8~0+ in Eq. (3.9) and obtain

From (3.8) and (3.10) we can conclude that "the parame-
ter value of Mo where the phase transition of the parity
violation (8+0) occurs is the same as the value in the
large-N limit (Mo ——4) to all orders in the 1/N expan-
sion. " This result is different from the naive expectation.

Finally we give the explicit form of the solution to the
next leading order in the 1/X expansion:

0 for Mo~&4,

(Piy f)a /4N=crsin8= [12(4—Mo )]'~ 7MO —6
o& for Mo &4,

16—M N 2(4—M )' (16—M )'

(3.11)

1/Mo f«Mo'&4

(fp)a /4N=(7cos8= 3MO 1 2V 3MO

16—Mo N (16—Mo )'i o't for Mo (4,
(3.12)

where

8+Ma (16—Mo )'

11MO +16 v 3

48

q q, (16—M )

q2 1 ql —1

n=0

ql+q2
( — ') '

(2n —1)!![2(qi+q2 —&)—3]"
(2n)!! [2(q~+q2 —n)]!!

We plotted Eqs. (3.11) and (3.12) in the case that N~ ao

and N =3 with two flavors in Fig. 1. It is worthwhile
noting that the summation in gs, s is restricted in the

case of N =3, so that

q)+q2 &XnfC=3y2y4=24,
because

N =M'
04

0.2

NCOS e
-~

osjne

by the property of the Grassmann numbers g and 1(.

IV. THE MASS SPECTRUM FOR MESONS

In this section we calculate the meson masses by using
the effective potential S,rr. Since it is very difficult to
calculate the meson mass exactly, we calculate it approxi-
mately. First we expand Sdr around the vacuum Mo(n):

S,rr(M(n)) =S,fr(Mp(n))

-0.

-04

. 'N=3

S,'g(, . . . , )
k=2 NI, . . . , Ilk

)&II(n)). . . II(nk), (4.1)

where II(n) =M(n) —Mo(n) and

Sert (n (,tl 2, . . . , 1lk )
(k)

1 gks

k' ()M(II )BM(II ). . BM(n ))

FIG. 1. Dependence of o sin8 and O. cos6I on M solid line
( ) represents o sin& and dotted line ( . ) represents
o cos8 in the case that X =3. Dashed line ( ———) represents
a sin8 and dash-dotted line ( —- ——) represents o cos8 in the
large-S limit.
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S,'ri} (n) vanishes because of the saddle-point equation
(3.5). We use only S',n}(n,m) in order to calculate the

meson mass. In other words, we consider the tree dia-

grams for mesons and neglect the contribution of the
meson loops. Rigorously speaking, the meson loops must

be considered at the same time for a consistent large-N

expansion and the contribution of the loops may be essen-
tial for the mass difference. Therefore we will discuss this
point in Sec. V.

After some calculations (given in Appendix 8) we ob-
tain

g S',ii}(n,m)II(n)II(m}

/I Tril'( p—)e 'll'(p)e ' —8+Tr[II'( —p)y5II'(p}y5+ 11'{—p)y5yriI (p)y5yr]—s/a (2~) i

—CQTrII'( —p)(1+y„)ll'(p)(1 —y„)e "

d4
+ 8f 4 D TrH —p iyqTrII p i y5+TrH —p i 5y&TrII p iysy„—s/a (2~)4

where

+TrlI ( p)ly—5(1—y„)TrII (p)iy, (1+y~r)e' &'], (4.2)

n~2 —1

II'(p)~ti ——ge '~"" g II'(n)~p+Tff. ,

r'=1 ~(a =1' 'nf'-1) is the generator of SU(nf)»d tr~p=S~nf. Tr m~s the tra~ over the splnor index. A,
8, C, and Dare given by

IA=
20'

8= cr sin 8 —8i(cr sin 8),2 ' 2

[1+( 1 4o 2sin28) i/2]2 ( 1 4o"isjn28)1/2

z . z i/2
—Ci(cr2sin 8),

4(1—4o sini8)'/2

D =Di(cr sin 8),
wh~~~ 8i, Ci, and Di are O(1/N) and satisfy 8i(0)=C, (0)=Di(0) =0. Their detailed forms are given in Appendix II.
Here o' and 8 satisfy the saddle-point equation (3.5).

The mass difference between the flavor-singlet meson and the nonsinglet mesons arises from the last term in (4.2).
Now we obtain the important result of this paper.

"If8=0, which is the case for Mo )4, D(8=0)=0. Then at the tree level of the mesons there is no mass difference
between the singlet and the nonsinglet for 8=0, which means that the parity is conserved, to all orders in the 1/N expan-
sion. " Furthermore, since 8i (0)=Ci (0)=0 there is no I/N correction to meson masses for Mo )4 (8=0).

From now on we look at the case for Mo &4 (8+0). We expand II'(p) as

11'(p)=+11„(p)r", (4.3)

where I I "I is a basis of 4 &(4 matrices that is given by

I =—r I =—y r'&= —yy I '&'= —y
s & ~ I ~ ) & T v & r2' 2 ~ ' 2 ~ '

alld

T(p ) 1
. [yl, y 1

2V 2E

then we obtain

nI~ —1

Q S,'n}(n, m)II(n)II(m) =nf g f & g II~( p)Dqa(p}ila(p), —
N, Nt .=0 (2~)' ~,a

(4.4)
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S
I'

D~a(~) ="
V
T

Dv-r(p)=

Ds —p —w (p)

Dv T(P)

(4.5)

&(p)

5~ A +6B —2C g cosp„a
p,+a

T(pv)
v 2C(5~sinp„a —5 pinp„a)

0

T(Py ) —~2C(5+pinpra —5~sinppa) —,
'
(5~,5r„—5+~)[A cos28 —4B—2C(cosptia +cosp„a)] ——e™"sin28

(a =0, 1, . . . , nf 1) f—or the vector-tensor (VT) sector,

S I'

A cos28 —iA sin28

Ds ~ w(p)=— id —sin28 3 cos28 SB'—2C'—X„cosp&a

A(p) 0 —2C'simp&a

B'=B and C'=C for a =1, . . . , ny 1(non—singlet),

B =B+2D and C =C+2D (singlet)

A (v)

0
2C'simp~

5~(A +2B'—2C'cosp„a )

(4.6)

(4.7)

for the scalar —pseudoscalar —axial-vector (SPA) sector.
The mass difference arises from only the SPA sector. The mixing between scalar and pseudoscalar in (4.7} is the

consequence of the parity violation (8&0). Since there is no complete Lorentz symmetry on a lattice the mixing makes it
difficult to decide the quantum number of the mesons. Following the ordinary method we identify the SPA sector as the
n meson (nonsinglet) or rI meson (singlet) and the VT sector as the p meson. Then we put po im (im„)——, pk ——0 for the
nonsinglet (singlet) SPA sector and po=imz, pk =0 for the VT sector into the equation that detD&z(p) =0.

In the large-N limit we obtain

coshm a =coshm„a =

2(4—Mo')(16 —Mo')(8+Mo')
1+ for Mo &4,

15Mp —64Mp +256
{Mo'—4){Mo'—1}

1+ for Mo &4,
2Mp —3

(4.8)

coshm&a =

(13MO +112Mo —512) +192Mo (4—Mo )(8+Mo )

6[(25MO +208Mo —512)(13Mo +112MO —512)+384Mo (4—Mo )(8+Mo ) ]
(Mo2 —3)(Mo —2)

1+ for Mo~ & 4 .
2Mp —3

(4.9)

{4.10)

(4.11)

Equation (4.8) shows that the n meson (and rl meson) becomes massless at the value of Mo2 =4 where the phase transi-
tion occurs. The m meson is the massless mode associated with the phase transition of the spontaneous parity violation.
As Witten mentioned' there is no mass difference in the large-N limit.

Up to the next leading order in the 1/X expansion we obtain

(A +2B)A +23 cos28[2C —(A +2B)(4B+3C))coshm a=
4AC [A cos 8—3 cos28{B+C)]

(A +2B')A +23 cos28[2C'{A +2B')(4B'+3C')]
4AC'f A cos28 —3 cos28(B'+C')]

coshmpa = (A cos28 —4B —4C)[(A +6B—4C)(A cos28 —4B —2C)+4C ]+A sin 28(A +6B—4C)
(4.12}

2C [(A cos28+A +2B —6C)(A cos28 —4B —4C)+ A sin228]
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A =1/2tr,
2 . 2 ncT sin 8 f ~ g(1) (

z 28)&i+&2 t ( 1) ( 1)q
[1+(1—4a sin 8)' ] (1—4o sin 8)'

) if'

4(1—4a sin 8)'

and

8'=8+2D, O'=C+2D,

(1]
Cq, q,

= —( —4)g) +$2 —1 Q) —1 g2 —1

(e i+f2) =o =o

(2n —1)!![2(ei+e2 —n}—3]!!
(2n)!! [2(qi+q2 —n)]!!

Here cr and 8 are given in (3.11) and (3.12).
~e plotted m, in&, and mz both in the large-N limit [(4.S) and (4.9)] and in the case of N =3 with two flavors

[(4.10)—(4.12)] in Fig. 2. In our calculation for 4.10—(4.12) we dropped terms of the order (1/N) or more. The oscilla-
tory behavior of the N =3 curves in Fig. 2, in particular that m~ dips below zero, show that the higher order of 1/N is
important for N =3 in this region of Mo. From Fig. 2 the domain of validity of the N =3 case is roughly estimated as

M02&2 4

Our main interest is the difference between in and niv, then we calculate it analytically up to the next leading order.
The result is

1 d if (Mo'}
hm(rl n)=in„—a —m a =—

N sinhm N =00 a '

where

(4.13)

12(M —4)
d = —n & C'",

(16—M )0
&0,

16(S+Mo )f(Mo ) = 2 ~ q
(15Mo —112Mo +34SSMo —163S4Mo +24576}&0,

(16—Mo'}(1SMo'—64Mo'+256)

[2(4—Mo )(16—Mo )(S+Mo )]'
sinhm (N =00)a =

4 i (Mo +3Mo —160Mo +76S)'
15Mp —64Mp +256

It is easy to check

b, m(g —m. ) &0 for Mo &4

and

lim kin(rl —m )=0 .
M02 —+4

In Fig. 3 we plotted Am (rl n) in the case of—N =3 with
two flavors.

Before ending this section we mention the case for
0&r &1. The result in Appendix C shows that for
0 & r & 1 a mass difference exists between the singlet and
the nonsinglet for only the scalar meson if 8=0.

V. CONCLUSIONS AND DISCUSSIONS

In this section we summarize results obtained in this
paper and discuss their physical implications.

There are three main results in the strong-coupling lim-

(1) A pseudoscalar meson {m meson) is identified as the
massless mode associated with the parity-violating phase
transition rather than as the Nambu-Goldstone boson of
the chiral-symmetry breaking.

{2}At the tree level of the mesons there is no mass
difference between the flavor-nonsinglet mesons (m meson)
and the flavor-singlet meson (q meson) to all orders in the
1/N expansion if the parity is conserved.

(3} In the parity-violating phase, contrary to the result
(2), such a mass difference exists and

hm =mza —m a ~0 .

In other words, results (2) and (3) mean that the U(l)
problem is solved only in the parity-violating phase in the
strong-coupling limit.

Now let us discuss these results, unexpected by the au-
thor prior to calculations, and consider their physical im-
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7

6

3

M
2'

FIG. 3. Dependence of hm =m„a —m~ on M in the case
that N =3.

FIG. 2. Dependence of m~, m„a, and m~a on M. Solid line
( ) represents m~, dashed-dotted line (———)

represents m„u, and dashed line (———) represents m~a in the
case that N =3. Two dotted lines { ) represent m a
( =m~a) and m~a in the large-N limit,

plications.
(a) The reason why the mass difference cannot be ob-

tained in the parity-conserving phase will be considered.
(i) The 1/N expansion is not correct and for the physi-

cal value of N(=3) the 1/N expansion may be divergent.
In Appendix D we will treat the case of X=3 directly
without the 1/N expansion and get the same results as
those of the 1/N expansion. Therefore the 1/X expan-
sion is not responsible for the result (2).

(ii) The approximation in order to calculate meson
masses from the effective potential S,rr(M) is wrong. We
calculate meson masses from the quadratic part of S,ff,'
Sg(n, m)II(n)II(m) (see Sec. IV). Correctly speaking,
meson masses are defined by the behavior of the two-
point function:

M sM n.M Oexp, gM

-exp( man )+—(M), n~ (N, (5.1)

where m is the lowest mass corresponding to the field
M(n) and

(M(e)) fbi dM(e)M=(e)exp[S. (M)] .

Our approximation is

MsM n MOexpS, gM —M = MsHn HOexp S' n, mIInIIm+0 II
S S n, m

x

In other words we neglect the interaction among mesons
which represents O(II ) in (5.2). If we include this in-
teraction and calculate the loop diagrams of the mesons, "
for example, the self-energy diagram of the meson propa-
gator, it may be possible that the mass difference can be
obtained. But unfortunately it is very difficult to calcu-
late the loop diagrams since the meson propagator [the in-
verse of D'zz(p)] is very complicated on a lattice. Loop
corrections will indeed give the different behavior of the
two-point function as Wilson pointed out, ' but we cannot

(5.2)

I

show that this difference assures the correct mass relation
( m„~ m~). In further investigations we must include the
loop diagrams by using another method (for example, the
Monte Carlo simulations).

(iii) The introduction of the meson field M(n) and
description of the theory by S~(M) are wrong. Serf(M)
has no stable vacuum since —trln(M) is unbounded
above. Indeed in the large-N limit the vacuum stays at
the saddle point where {M) =o &0. This shortcoming of
S,tr(M) may be overcome by introducing baryon fields
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The effective action for baryon and meson has no
—trlnM term. ' We must change gauge group from
U(N) to SU(N) and investigate such a theory in the fu-
ture.

(iv) The calculation in the strong-coupling limit is not
sufficient to detect the mass difference and we must make
the strong-coupling expansion. ' Now we have finished
the calculations and will publish results in the next paper.

(b} Although parity violation is very weak in nature, we
discuss the property of the parity violation in the lattice
QCD hereafter. This property may become useful for fur-
ther development of the investigation, for example, the
model building or the Monte Carlo simulation.

(i} Probably result (1}may hold in the continuum limit.
Indeed the Gross-Neveu model on a lattice is such an ex-

ample. 7' If the bare coupling g of QCD becomes small
enough, the phase structure on a Mo —1/g N becomes
complicated so that spectral doublings of the lattice fer-
mion are separated from each other. 7 Furthermore, we

may construct the parity-violating QCD if we take the
continuum limit from the parity-violating phase. Indeed
we can do so for the Gross-Neveu model and obtain the
continuum limit: '

(ii) The existence of parity-violating QCD seems to be
inconsistent with the result of Vafa and Witten. '5 They
assume that the fermion part of the action is
Xg(++M)1(, but the Wilson fermion does not satisfy this
assumption. Therefore the parity violation is possible in
our case.

(iii) We mention the connection between the parity
violation and the vacuum of QCD. In our case if we
change

-i 8@5/2y', =e
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APPENDIX A: CALCULATION
FOR THE EFFECTIVE POTENTIAL

IN THE 1/N EXPANSION

In this appendix we present the detailed calculations for
the effective potential in the 1/N expansion. We use the
method of Ref. 17. The partition function (2.3) in the
strong-coupling limit is written as

Z(J)= f DQDgexp N g tr(M+ J)M(n) g Z„&,

(Al)

where M,J and M(n) are defined in the text Th.e one-
link integral Z„& is defined as

Z„„=I d U„qexp[a Tr(U„„D~t„+D„qUt„)] (A2)

where

(D„q),b —— X/(tP„+-)b—Pq (P), ,

(Dt„),b —— Xf(gf )bP—„(P+„-),,

and

Tr Un, pDn, p =( Us, p)ub(Ds. p 4w

For simplicity we drop the suffixes (n, p, ) hereafter.
Using UtU =1 we derive the Schwinger-Dyson equation:

then we can set
a'Z

t
——5

aD.,aD„
(A3)

(g'y')=a and (y'iy5y')=0.

Under the above transformation the fermion action be-
coIDes

S~——g(f„y„V&lP„+arP„e 'C3$„+MitI„e 'g„}.

(5.3)

This action is equal to the action in Ref. 16 if we change
M ~Me '. it is noted that 8 depends on M in our case.
In Ref. 16 the 8 angle of the Wilson term is proven to be
equal to the 8 angle of the vacuum. If this is the case in
the action (5.3) the 8 angle of the parity violation due to
the QCD interaction is interpreted as the 8 angle of QCD
vacuum. If so, by experiments and the effective I.agrang-
ian method, we get the upper bound

8&3)&10 '.

Since Z is gauge invariant, Z depends on only gauge-
invariant traces A,e that are defined by (Ref. 18)

A,e
——TrAe, q =1,2, . . . ,

A,b —— (DtD),b .
N

Setting Z =exp(NW) we write (A3) in terms of le:

Now we solve Eq. (A4) with the boundary condition
W(A=O) =0. In the large-N limit the solution was ob-
tained in Ref. 17:
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W (A)=T (1 4A)' —1 —ln
2

Now we expand 8'so that

(A5)

00

W(A)= g — Wk(A)
k=o &

and put this form into (A4). Then we obtain the recursion
equation for k &1:

8 Wk
qAq , ,aW, , - a'W, , k-isW„, aW,

q=l p=l q, t= 1 q & I=1 & q

(A6)

Since we know Wc(A) we can calculate Wk for k&1, in

principle, from (A6).
From Eq. (A5) it is easy to prove two statements by us-

ing the mathematical induction in the order of k.
(1) For k =2l (even) W2i has the form

I

W2i ——g Cq, .+.'q', Aq, A,q„
s=0

and for k =21 + 1 (odd) W2i+ i has the form

I

W„„=g C,"'.+.",
s=0

(A7)

Wi ——g g Cq", q', A,q, i.q, ,

ql =0 q2-—0

(2) For k & 1 C'i"' vanishes, i.e., CP'=0, where Cq
' is

defined in (A7).
The above two statements are important in analyzing

the vacuum structure and calculating the meson masses.
Now we calculate the explicit form of Wi. From (A6)

and (A7) for k =1 we obtain

Unfortunately Eqs. (A8) and (A9) cannot be written in a
closed form.

Now we return to the Z(J). From (A2} we obtain

Z(J)= J DQDPexpX gtr(M+J)M(n)

+g W(A„„) (A 10)

tr[M(n—}(P&+) M(n+p, )(P„) ]q, (Al 1)

where tr means the trace over the spinor-flavor indices.
We must be careful about the sign factor.

After changing integration variables in (A10) from P„and
P„ to M(n) (Ref. 3) we obtain the final result (2.5) and
(2.6) in the text. In order to write (A4), (A7), and (A8) in
terms of M(n} we use the formula

A q
NqTr(D——„qD„~)q

where

( —4)q&+q2 —l q&
—1 q2- 1

&l+&2 n =0 n =0

(2n I)!! [2(qi+q2 —n) —3]!!
X

(2n)!! [2(qi +q2 —n)]!!
(A9}

APPENDIX 8: DETAILED CALCULATIONS
FOR THE VACUUM STRUCTURE

AND THE MESON MASS

In this appendix we give the details of the calculations
used in Sec. III and Sec. IV. The useful formulas for cal-
culations are listed below:

=[f"(—o sin 8)A„+f'(0)8„]-gsif',(
2 r r

aA„P„

~

~

f"(—o sin 8)A 8 +" (A 88 +8 gA )+f"(0)8 8~ f(A,„} „. f'( —o sin 8)
~A~p~Ars P 8

( 2si 28) 8 8 P P
N, gl Pt,P

(Bl)

(' ')I f,'s
Py, 5a

where f is an arbitrary function of A„„,f'(x)=df(x)ldx, f"(x)=d f(x)ldx, a=(a f), P=(P f'), y=(y, g), »d
5=(5,g'). Here

—o. sin 81 0
(AgP):TP 0 0 TP 1

2

(&„)p= g(T„) „(T„')„p, (8„) p
——g(T„) r(T„')„p.

It is easy to see that A„and 8„satisfy
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gq+8~ —1, (P~ ) A~ ——(Pq ), and (P~ ) &q=0.

Using Eq. (81) the gap equation (3.5) becomes

1M o—e ' aj)1++o sin8 JYO( —o2sin 8)—g N 2» g(4nf) 'C(s} g 4ql
P k=1 1=0 j=l

ot) k (Zk 1) 21—g N-2»+'g(4n )"-'C g 4q Iy'el
k=1 1=1 j=l

where

CI")=CI".. . X( —o2sin28)~

aP,f'f
=0, (83)

If the matrix M is equal to Mo 1, which means that all bare mass of quarks are equal, Eq. (83}is equivalent to

Mo o=cos8,

o sin8 —o +-2 8

1+(1—4o sin 8)'

eo k (2k)21 +1 -2k+1 k
21 —1

~(2k —1) 21"g (4rlf) 'C(s) g 4ql g—N "+' g(4nf) ' 'C(
) g 4q =0.

k=1

(84)

(85)

From (84) and (85) we can derive Eqs. (3.6) and (3.7) or Eqs. (3.11) and (3.12}. Furthermore, from fact (2) in Appendix
A we obtain Eq. (3.9).

Using Eq. (82) it is easy to obtain Eqs. (4.2) and (4.3). 81, C1, and D1 are given by

r (2k} 21+1 ~(2k —1)
81(o2sin28)= g N k g(4nf) IQC(s} g qI(qj 1)/4—+N +' g(4nf) ' 'QC(s) g ql(ql —4)/4

k =1 1=0 Iq) j= 1 1=1 IqI j=1

C, (o sin28) = g
k=1

D, (&sin28) = g
k=1

k (2k) 21+1 k (2k —1) 2l

N —2k g(4a )21+ C g q 2/4+N —2k+1 g(4a )2I —I g C g q 2/4
1=0 fqJ j=1 (e)

k ~(2k} 21+1 k 21
N-2k g (4rI )2Ig C p q 'q /16+ N —2k+1 g (4II )2I —)p C p» 1)p q 'q /16

1=0 fq) i~j 1 1 Iq) i~j

From fact (2) in Appendix A it is easy to check that 81(0)=C1(0)=D1(0)=0.

APPENDIX C: 1/N CORRECTIONS WITH r+1 AND 8=0

In Sec. IV it was shown that the mass difference does not exist in the parity-conserving phase to all orders of the 1/N
expansion. However, we might suspect that this conclusion is special for the case of r = 1. Indeed for r = 1, P& (r) satis-

Pq+(r)Pq (r)=0

and due to the above property of P„+(r) there are no 1/-N corrections to the meson mass and no mass difference for
r =0. Therefore, in this appendix we analyze the case that r+1 and 8=0. We use Pz (r)=(r+y„)/2 instead of
PI-+, =(1+y„)/2. The physical positivity demands that 0& r2 & 1.

For 8=0 the gap equation becomes

—1 4o(1 r)—
4nf M0 —Cr + 1+[1—(1—r )o ]2 2 1/2

oo k 2(„2
+2o(r —1) g N g(4n ) 'QCI »'

k =1 1=0 IqI

gq =0.
k o r 1—

N —2k+1 ~ (4 )21 —1~ C(2» —I)

1=1 fqI
' (Cl)

If we expand o as
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(C2)

we obtain

3—Mo+4[Mo'+ 7(1 r—'}]'"
Mo +16(l r)—

—2nf X Cq, q, (ei +ei)[&o'«' —1)/4] '

&i&2
0'1 =

s

8(1—r2)oo (1 r—)pro

1 + [1—(1—r }~o ]'" [I+[1—(1—")~o']'"j'[1—(1—r')~o']'"

etc.
After little calculations we obtain

nf~ —1

g S,'fj(n, m)II(n)II(m) =nf g f A trII'( —p)II'(p)++ 8 trII'( p)(P~+—) II'(p)(P„) e
N, m a=0

(C4)

+nf D trII —p trII p 1+e " (C5)

nf D f gtrIls( —p)IIs(p)(1+e " ) (C6)

it is easy to see that in the case of r&1 there exists a mass
difference between the singlet and the nonsinglet only sca-
lar mesons rather than pseudoscalar mesons if the parity
is conserved.

APPENDIX 0: ANALYSIS FOR U(3) GAUGE

In order to show that our results obtained in Secs. III
and IV in the text are not a special case for the 1/N ex-
pansion, we analyze the theory with the U(3) gauge in this
appendix. The main result in Sec. III is that there is no
mass difference between the singlet and the nonsinglet
mesons to all orders in the 1/N expansion if the parity is
conserved. Here we will show that this property holds for
the case of the U(3} gauge.

First we calculate one link integral Zn& given in (A2)
for the U(3) group. Here we drop suffix ( n,p):

Z =f d Uexp[Tr(UD +D U )] . (Dl)

Schwinger-Dyson equations are given by

8 Z
b BD~bBDb,

where

A =(2o~) '+ Wo[o (r 1)/4)cr (—r 1) /2+2—i(az),

8= fVo'[s2(r2 —1)/4]o (r 1)/4—

+ Wo[cr (r —1)/4]+Bi(0' ),
D =Di(o')

Here Ai(a ), Bi(o ), and Di(o ) are 0(1/N). From the
last term in (C5) the mass difference arises. If we write it

I

In the case of SU(3), Z has been calculated by Hock. ' We
use his method here. We define W so that

z=~ IF (D3)

1

S,rf(M) =3 g trMM (n) —tr lnM (n)
5

+g g C „(—1) +'+'
p, m, l,s

X9m+2&+3s m gl s
+n Ss n, n, is T

(D5)

and expand it so that

W= g C i, si A, 'p', (D4)
m, l,spO

where a.=Tr(D D), A, =Tr(D D), and p=Tr(D D) since
W depends only on gauge-invariant traces Tr(DtD)"
(k=1,2, . . . ) and Tr(DtD)" (k y3) are expressed in
terms of si, A, , and p by the Caley-Hamilton theorem. For
example,

Tr(D D) =A, /2+4@~/3 4c +n /6—,

Tr(D D) = 6(as 5' +5—a. p+—5Ap) .

We insert (D3) and (D4) into (D2) and then we obtain
the recursion equation for C i, . By using this recursion
equation we can calculate C i, from the smaller value of
m +21 +3s. For example, Cooo

—0 and Cioo ———,
' . But we

will not use the definite value of C & in this appendix and
will use only the fact that W has the form (D4). Especial-
ly if D and D are the Grassmann variables the
summation of (D4) is restricted such that
m+21+3s &3Xnf XC. Therefore the summation is fi-
nite and this expansion is well defined.

The effective potential in the strong-coupling limit be-



SINYA AOKI 33

g„„=trM (n)(P~+ ) M (n +p )(P„)

„„,=tr[M(n)(P~+) M(n+Is)(P„) ]
p„„=tr[M(n)(P~+ ) M(n +y, )(P„)T]3 .

We assume the vacuum expectation of M(n) has the

form (M(n) )=a"e '; then we obtain gap equations:

4o. =1~MO ——4

(note that Cioo ———,
' ). This value also coincides with the

value where the parity-violating phase transition occurs in
the I /X expansion.

%e calculate meson masses with 0=0

g S,'tt}(n, m)II(m)II(n)
m, n

Moo =cos8,

sin8 cos8[ —1+f(o,8)]=0,
where

f(o,8)=12o g C I, ( —I)'(nfC/2) +'+'
m, l,s

x (9&2stn28)m +21+3s —i

(D6) nf —1

n/ f trII'( —p) II'(p}
o & 20

—gtrll'( —p)(1+y„)II'(p)

X(1—y„)e " /4 (D10)

tr= 1/Mo (D8)

This solution coincides with the solution in Eq. (3.12} in
the text. The value where f(cos8/Mc, 8)=1 has the 8=0
solution is given by

If the equation f(cos8/M0, 8)=1 has the nonzero solu-
tion 80, the parity is broken in this vacuum. We, however,
analyze only the case that 8=0 hereafter. In this case

Equation (D10) coincides with the result in the I/X ex-
pansion. From (D10) we conclude that there is no mass
difference for the U(3} gauge in the strong-coupling limit
with r =1 if the parity is conserved. Furthermore, at the
value Mo ——4 the n meson becomes massless, and for
Me~&4 the parity may be broken, and these properties
are also the same as the I /N expansion.
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