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Lattice gauge theory: Hamiltonian, Wilson fermions, and action
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We derive the gauge-theory Hamiltonian in the axial gauge directly from the path integral defined

by the Wilson lattice action. We define the state space for the gauge field coupled to Wilson fer-
mions and derive noncanonical equal-time anticommutation equations for Wilson fermions. We
show that the Hamiltonian is nonlocal for fermions with canonical anticommutation. We derive the
color charge operator and formulate Gauss's law for the system. %'e then evaluate the lattice action
starting from a lattice fermionic Hamiltonian, and derive a boundary term in addition to the finite-
time continuum action. Lastly we discuss our results.

I. INTRODUCTION

The Hamiltonian for the lattice gauge field, in particu-
lar the formulation given by Kogut and Susskind, ' has
been widely studied. The lattice fermions for the Hamil-
tonian, particularly those defined by Susskind and by
Drell, Weinstein, and Yankielowicz3 are the two types of
fermions that are most widely used. The earliest attempt
to relate Wilson's lattice action to the Hamiltonian was
made by Creutz; we will discuss this derivation in some
detail later. Wilson derived the matrix element of the
operator exp( —aH), where H is the Hamiltonian for lat-
tice quantum chromodynamics (QCD) and a the time lat-
tice spacing; he also derived a noncanonical metric for the
Hilbert space of the interacting theory. The Hamiltonian
operator H for the free Dirac field with Wilson fermions
has been derived in Ref. 7.

In this paper we derive the Hamiltonian operator H
from the transfer matrix, defined as the operator
exp( aH). This w—ill consist of using the metric on Hil-
bert space to obtain H as a differential operator with
given noncanonical (anti)commutation relations for the
field operators. We then reexpress the lattice Hamiltonian
using fermions with canonical anticommutation, and this
leads to nonlocal fermion and gauge-field interactions.
%e derive the quark color charge operator, which also be-
comes nonlocal in terms of canonical fermions. And last-

ly, we obtain the lattice action starting from a lattice
Hamiltonian. The paper is organized as follows. In Sec.
II we define the state space for the interacting theory and
briefiy discuss Wilson s derivation of exp( aH) and the-
metric. In Sec. III we derive the inner product and an-
ticommutation equation for the field operators. In Sec.
IV we derive the Hamiltonian from an asymmetric Wil-
son action using an asymmetric space-time lattice with
the time lattice spacing going to zero; we then transform
to canonical fermions and solve for the free fermion sec-
tor. In Sec. V we derive certain properties of the chro-
moelectric field operator and the quark color charge
operator, and use these to obtain Gauss's law for the in-
teracting theory. En Sec. VI we derive the lattice action
starting from a lattice QCD Hamiltonian which could

have SLAC or Susskind fermions. We take the time con-
tinuum limit of the lattice action and obtain a boundary
term in addition to the finite-time continuum action. In
Sec. VII we briefiy discuss our results.

II. THE TRANSFER MATRIX

8„'„=agA„(x),@=0,1, . . . , (d —1),
' 1/2

Q fj(x),

(2.1a)

(2.1b)

1/2

fj (x), (2.1c)

2E=, g =sgOa, x =na .(d —4)/2
d +mpa

(2.1d)

The lattice quantities E and g are dimensionless and the
dimensional continuum quantities sgo and mo are the
bare coupling constant and bare quark mass, respectively;
s is given in Eq. (2.4b). The quarks are in the fundamen-
tal representation and the gauge field in the adjoint repre-
sentation of SU(N). Choose the 2 ~ X2 Euclidean y
matrices (o; are the analogs of the Pauli matrices) for
1=even in block form as

0
'Vs =&

i =1,2, . . . , (d —1) . (2.2)

We define the Dirac upper and lower component spi-

Consider a d-dimensional Euclidean space-time-
symmetric lattice with lattice spacing a and let n denote a
lattice site. Let the (d —1)-dimensional "spatial" lattice
be an infinite lattice and let the time lattice be open and of
finite size M. Let A„(x)be the continuum SU(N) non-
Abelian gauge field and P(x), f(x) the continuum SU(N)
quark field considered as anticommuting Grassmann vari-
ables. The lattice degrees of freedom are dimensionless
and are defined by (a and j are color indices)
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nors, denoted by ii and /, respectively, by
T

= i(1+7'OV. + 2(1 —ro)4.
Fnl

0 l)= 20 (1+F0)+ 2e (1—7'0) .

(2.3a)

(2.3b)

denoted by a caret acting on the state, and on the right-
hand side the eigenvalues; note f,l, p „areanticommut-
ing Grassmannian eigenvalues.

The conjugate eigenstate is

(2.6)

U„„=exp(iB„„Xn)
with

(2.4a)

[Xn,Xp] =iCnp„Xr, Tr(XnXp) =—
i 5np,
I

(2.4b)

where U„„is an element of SU(X). The spatial com-
ponents are given by U„i, i =1,2, . . . , (d —1); we also
have n =(no, n) where n is a (d —1)-dimensional spatial
lattice point, and n0 the time coordinate.

We will first evaluate the transfer matrix, i.e., the ma-
trix elements of exp( —aH), between arbitrary initial and
final field configurations. Field configurations are de-
fined on the (d —1)-dimensional spatial lattice; the coor-
dinate eigenstates for the field are given by

IA 4» U&=
I lit. i P.» U.;I & (2.5a)

such that, as expected,

«.i (t.» U~)
I Wl 4» U&=(P.i 4.» Un ) I 4 P. U& .

(2.5b)

Define the link variable connecting n to n +P, (gc is the
unit lattice vector in the p direction) by

and satisfies equations similar to (2.5b). The coordinate
and conjugate eigenstates are not artifacts of the lattice
and it is shown in Ref. 7 how they arise from the continu-
um Dirac equation; in Ref. 8 we derive the eigenfunction-
als and propagators of free continuum Dirac field starting
from field coordinates given by (2.5) and (2.6). We fur-
ther discuss the fermion calculus in Appendix A.

The Hilbert space for the interacting theory has a non-
trivial metric T(P, g, U); the metric determines the com-
pleteness equation on Hilbert space given by

ni
fdic.dg.dv Ig, ,g„,v}T(g,g, V)&g„,g, , V I,

(2.7)

M —1

fd g„dg„dU„„exp(& ) (2.8)
no=1 n, p,

where dg and dg are fermion integrations and dV„; are
invariant SU( N) integrations.

The lattice Hamiltonian H is related to the lattice ac-
tion by the Feynman path integral given by

& 4„,A, U'
I
exp( —aMH)

I A, A„,U&

On the left-hand side, we have Schrodinger operators withboundary conditions

~0 0 Ao, n)l Pal~ Ao, n)» = Pn»~ U(o, n)i Uni ~

iio™4(M, n)» 4n» ~ 4(Mn)l =(('nl~ U(M, n)i Uni

The Wilson action for finite time with boundary conditions given by (2.9) is

M —1

o=o ni

M —1 M —1+, g QTr(~.;,)- g g q.0. &Q[0.(1-);».;0„,;-+0„,;(1+r;)U.';0.]
g no=1 IJ' no ——1 n i

M —1

+& X X [e.(1 r.) U..C„;,+-~„;,(1+~.U.'.~.],
no ——0 n

(2.9a)

(2.9b)

(2.10a)

where

~nij = Uni U U .-Uijn+1j n+ji (2.10b)

as is required by the boundary condition (2.9).
Consider Eq. (2.8) for M=2. We have

&4. 4»'
I
exp( —2&H)

I ki &. U&

Note only the first and the last terms in the action (2.10a)
have n0 ——0 in the time summation, and the boundary
values given by (2.9) enter the action only through these
terms coupling nearest neighbors in the time direction.
Note also that at no ——0 only pl, g» couple to later time
and similarly at no =M only f» P( couple to earher time

= g fdg, dg, dV

)&exp[32(g, g;U, U', g, g, V)] . (2.11)
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However, using the completeness equation (2.7) we also

have T(i', g, U) =exp

&p. ,p, , v'I exp( —2 a)
I y, ,q„,v&

= g fdg, dg, dv &g„,g, , v'I '
I g, ,g„,v&

+z g (y.v„y +y vt.y, )
n, t

(2.13)

xT(gg, v)&g„,g, , v le '~I q, ,y„,v&.

(2.12)

By comparing (2.11) and (2.12), it can be shown that, if
we require a Hermitian Hamiltonian in the sense of (A4),
we have a unique choice for the metric given by

Note that the Wilson metric (2.13) depends on the La-
grangian through the parameter K. The norm on the Hil-
bert space is given by Eq. (A3). For positive norm, i.e.,
&4I4&&0 for all I4&, we must have 2E &1/(d —1);
for asymptotically free theories 2E & 1/d so that the Wil-
son metric gives a positive-definite norm for QCD (Ref.
6}. The canonical fermion metric is obtained by setting K
in (2.13) to zero. ' '

Using the notation P
—= V,o, we also have

Pi U'
I
exp( a&)

I

—4 ~

= g fdfnexp 2K g (tTinifnfni+ |T'nnfnitinn )

n n

+lL $ (iIinnirivniljk +Qniirivniiti i 0 +i +ivnifni
n, t

g n, l
+' '+' 2g n, ij

The metric T(g, g, U} plays a crucial role in ensuring that
exp( —aH) is Hermitian. Note no gauge was chosen to
arrive at exp( —aH). The P, integrations ensure that
exp( —aH) is invariant under time-independent gauge
transformations separately for the coordinate eigenstates
and the conjugate eigenstate; the metric is also gauge in-

variant.
Consider the operator exp( —aH) acting on the Hilbert

space, i.e.,

& i'„,gi, U
I
exp( —aH)

I
4 &

fdic

d0 dV '&fn itii U le
' Ik 0n V&

0n4i

no~ nu n ~ (2.16)

we perform a change of integration variables and shift the

p, integrations given in (2.14) from exp( —gH) to the
wave functional 4; the p, integrations sum 4 over all
possible gauge transformations and in effect project out
the gauge-invariant subspace of the full Hilbert space
spanned by the coordinate eigenstates (2.5).

Define this gauge-invariant subspace by a collection of
all 4 such that

x T(g, g, V)&g„,g, , v
I
c &, (2.15)

+(4. 0 v)=II fdic/ (4.W'40 U(0» (2.17)

where 4 is an element of the Hilbert space. By perform-
ing the lattice gauge transformation in (2.15), namely,

On this gauge-invariant subspace, the Hamiltonian is that
obtained by setting P,—= I in (2.14) and in effect is the axi
al gauge. Hence, we have in the axial gauge

&fn 4»'I exp( —~If}
I A 0. U&=exp 2& 2(4-&-+4.i&.i)

+, g Tr( V~ V~t+ U;; Un )+,g Tr( W, + W, )
~g n, ij

(2.18)
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acting on gauge-invariant wave functionals such that,
from (2.17),

III. THE METRIC AND NONCANONICAL. FERMION
EQUAL-TIME ANTICOMMUTATION EQUATIONS

(2.19)
The metric T(g, P, U) determines the inner product

Note that the gauge-invariant subspace is a result of the
gauge-invariant definition of exp( —aH) stemming from
the gauge-invariant action.

To extract H from the transfer matrix exp( —aH}, we

essentially have to divide out by the inner product

We now examine this problem.

as well as the fermion anticommutation equation. In the
usual scheme of Hamiltonian quantization, canonical an-
ticommutation equations are simply postulated. In path-
integral quantization, however, the commutation equation
of the degree of freedom with its conjugate is determined
by the action, and this was shown by Feynman for x and

p in his original paper on path integration. The metric
and anticommutation equations of the free Dirac field for
the continuum and for the lattice have been discussed in
Ref. 7.

Using the completeness equation (2.7) we have an in-

tegral equation for the inner product given by

(q„,y, , O'
I y, ,y„,U ) = g fd g,d g,d v ( ty„,ip, , O'

I g, ,g„,v ) T(g, g, v) (g„,g, , v
I y, , l/I„,U ) .

Bsl

(3.1)

We use the following notation for the Wilson metric: tives, we have

T(0 0 V}=exp —g knJM~, JvÃmk
IlNls Jk

(3.2)

where, from (2.13), using j and k for non-Abelian indices

(3.3a)

= —gM-' .„[U] (@„,q, , U
I g, ,g„,V) .

m, k 54mkl

(3.6)

=M~,Jkl 6 (3.3b) Hence,

To solve Eq. (3.1) note that the matrix M does not couple
upper to lower Dirac components. Using this property of
M, it can be shown that

exp g P.JM~.jklmk
nm, jk

(detM)2

x ff&(U —U' ).
lls l

(3.4)

where we have used (2.7) and (2.5) to derive (3.5). Note,
however, from ( .4), using anticommuting fermion deriva-

To derive fermion anticommutation equations, consider
the a Dirac component and j color component of the
operator P~ acting on 4, i.e.,

@.~a@'(st. 4 U) = &4. 4 U
I f.ji I

@)
= + fdic dg dV;g,

IIIs l

f,qiC(g„,rjki, U)= —gM '~gq ~ 4(g„,gi, U) .
m, k ~ it'mkl

(3.7)

Similarly,

&0 k.

(3.8)

Using the anticommuting property of fermion vari-
ables, it follows from (3.7) and (3.8} that the Wilson fer-
mion equal-time anticommutator is

I.it.j PkI =M ',kjlU17'o (3.9)

The noncanonical result obtained in (3.9) shows that the
fermion equal-time anticommutator is nonlocal and de-
pends on the gauge field U~. Gur result is analogous to
anomalies in current commutators, the so-called
Schwinger terms, which are well known from current
algebra. The anticommutator (3.9) has two possible per-
turbative expansions: one is as a series in powers of E;
the other is as a power series in the gauge-field variable

8„;and being appropriate for g~O. We discuss these ex-
pansions for detM in Appendix 8 and show to one loop
that detM is free from ultraviolet mass divergences. Note
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for K=O, we recover the canonical anticommutation

equation from (3.9) and it is a reflection of the canonical
metric. To obtain the Hamiltonian operator from the
transfer matrix exp( —aH) we use Eq. (3.4} to subtract out

the inner product from Eq. (2.18).

IV. HAMILTONIAN

If we use a symmetric space-time lattice, we have to
take the logarithm of the transfer matrix exp( aH—} to
obtain the Hamiltonian; the result cannot be obtained in
closed form and is not very useful. We instead start with
an asymmetric lattice with the time lattice spacing being e

I

and the spatial lattice spacing being a, and take the limit
of e~O (Refs. 5 and 10); in this limit we will obtain a rel-
atively simple Hamiltonian. The relations given in Eqs.
(2.1) are all valid for the asymmetric lattice except that

Bno =eggy(x), x =(Npe, na) . (4 1)

We write an asymmetric lattice Lagrangian such that (i)
we recover the expected classical continuum limit, (ii) we
recover the Wilson Lagrangian for @=a symmetric lattice,
and (iii) we incorporate the metric and the inner product
given by (2.13) and (3.4), respectively, into the Lagrangian
so as to obtain a Hermitian Hamiltonian. Hence, we have
the asymmetric lattice Lagrangian density given by

r

—(2E —1)+1 [0 -(1+yo}U o4 +0 (1—yo)U oP "]
2 a n+0 n+O

+ E ———1 $ [Q -(1+yp)U -.U - f -+1( -U - U -, (1—yp)f
a n+0 n+Oi n+10 n+1 n+1 n+10 n+Oi n+0

l

+0 (1 yo)—USU )p0 ) o+0 1
p(1+yo)U ]oU 0 ]

Kg(—g„—y; U„;f,; g-, y; U—t, y„) y„q„+Su—g(y„U„,y -, +y, U„',q„)
l l

+—
z QTr(W„,J)+2 ~ ——1 lndetM[U] .

a g', j a
(4.2)

We verify in Appendix C that this Lagrangian, because
of some nontrivial cancellations, has the expected classical
continuum limit. This Lagrangian is much more compli-
cated than the asymmetric action used by Creutz and is
due to the more complicated Wilson metric. Note for
a=a we recover the symmetric Wilson action. There are
two new types of term for the asymmetric lattice: name-

ly, the second term and the last term in (4.2). The second
term arises from the inner product given by (3.4) taken be-

tween states which are nearest neighbors in time. The last
term also arises from the inner product, essentially the
determinant of the matrix, and it is discussed in Appendix
8; this term is local in time but nonlocal in space, and is
purely a quantum effect which vanishes in the classical
limit as A'.

From the Lagrangian given by (4.2), we construct the
action and obtain, repeating Eqs. (2.11) to (2.14) in the ax-
ial gauge as in (2.18},

&P. ,P&, U'
~
exp( —~H)

I A, O. , U&=exp —(2& —1)+1 g(W»0nn+gnlll'nl)a

S,E

+— g Tr( Um. U'; + U' . Um ) +— Q Tr( Wm J + W~j )

g ni 2g nij

2d/2
+ ——1 (lndetM[U]+lndetM [U'])

2 a
(4.3)
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Note the terms independent of e in the Lagrangian yield the metric and the inner product. For e~o, we have
r

exp g pnJM~ Jk[Ujf~k
axn, jk

[detMj
'

exp —
i g Tr( U~ U~ + U~ U~ )

5 g

where V is the Laplace-Beltrami operator for SU(N).
We also have from Eq. (A4a), to leading order in e, the Hamiltonian differential operator H given by

(q„,q, , U'
~
exp( —eH)

~ y, ,y„,U)

(4.4)

(4.5)
h

=exp eH(—P,P, U)+ g g, kM k[Ug ~
—2 lndetM[Uj ff 5(U —U,';), (46)

nm, jk ni

where we have used Eq. (3.4) to obtain (4.6), and that, due to (4.4), U+ -=U„';to 0 (e) in Eq. (4.3). Hence, froin (4.3),
(4.4), and (4.6) we have, taking e to zero,

2

H = — g V ( U,i) — i Q Tr( W'~j ) ——(2E —1)g P,fn2Q; g," Q

E & dn——$[gl y;)U—.;Q;+f;(1+y;)U g, j —2 ~ ln—detM[Uj.
n,i

(4.7)

This is a Hamiltonian for the lattice gauge theory with
Wilson fermions. Recall from (3.9) the fermion equal-
time anticommutation equation is

aHF ——Q X+——,+2K gX,M

t0:J HmkI =M '~,kj[Ujxo~ (4.8)

,JkX k
—1/'2

m, k
(4.9a)

Q k=+XJM ' Jk. (4.9b)

Note only f«and g~ are independent variables and the
transformation of p~ and p „arefixed by (3.7} and (3.8),
respectively; Eq. (4.9) is to be understood in this sense.
This yields, from (4.8) and (4.9), the canonical anticom-
mutator

IX.J.» k j =&~&)a7'o~. (4.10)

Equations (4.7) and (4.8) provide a complete description
for the operator formulation of the lattice theory.

The pure gauge field part of H is the well-known Ham-
iltonian derived by Kogut and Susskind. ' The fermion
part of (4.7} is similar to Creutz's' result, except that he
has canonical anticommutation equations for the fermions
instead of (4.8). Also, Creutz uses coherent fermion states
for the initial and final field configurations and these have
a generalization, as will be sho~n, which can yield the
Wilson metric. The last term in the Hamiltonian given by
(4.7) has not been previously derived and is a direct reflec-
tion of the Wilson metric.

The noncanonical anticommutation equation (4.8) as
well as the metric (2.13) can be reduced to the canonical
form by the following transformation:

(4.11)

And finally, from (2.13) and (4.9), we obtain the canonical
metric:

T'(X,X)=exp —g XQ, (4.12)

The canonical form for H involving X and X is more suit-
able for perturbation theory since we can use the Fock
basis for the X,X fields. Note that the canonical form for
HF in (4.11) makes HF nonlocal; noncanonical anticom-
mutation leads to new interactions in H involving the ma-
trix M

%'e can expand M ' ~ as a power series in K, and
obtain strings of gauge-fidd links of length 1. of the type
II" (g U~} running from n to m (Fig. 1). HF has
three-site nonlocal interactions between a quark at point

n, a gauge-field link between m and m+1, and an anti-
quark at l (Fig. 2). These nonlocal interactions also are
present in the quark-color charge operator given in (5.12).

We briefly discuss the relation of the coordinate eigen-
states

~ Pi, g„,U) with the fermion coherent state formal-
ism used by Creutz. Using the canonical fermion opera-
tors X„,X„given by (4.10), we define the "bare vacuum"
state

~
0) by

For the fermion sector of the Hamiltonian, from (4.7) x„„io)=x„,io) =o, (4.13a)
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-1/ 2M--:&= =
A CA lf.j Hkj=5jkM ' .yo

M =5 —Kg(5 - +5 -) .

(4.15b)

(4.15c)

FIG. 1. Expansion of M '
„

in terms of gauge-field string

operators.

For the infinite spatial lattice, define Fourier transforms
for the canonical field

(OiO)=1.

X,= f e'~'Xp, X,= f e

with

(4.16a)

dd —ip

p ~ 2 d —1

We then have from (4.9) and (4.11)

0= f Xp (a+iy p)X.p
1

P A,p

and from (4.10)
(4.14a)

The coordinate eigenstates satisfying the completeness
equation (2.7) with the Wilson metric (2.13) can be de-

fined (suppressing summation on all lattice and internal
indices, and denoting the gauge-field coordinate eigenstate

by
~

U) ) as (c is a function of detM [U] )

~ gi, &„,U) =c exp(&&M' g&+g„M' P„)~ ())
~
U)

(4.16b)

(4.17)

and, using the rules of conjugation given in (A2), we have

(P„,gi, U [ =c(U
~
(0~exp(jiM' f&+g„M' Jl),

(4.14b)

IXp,Xp] =y05p p,
where

a= —(1—2K) —2K g cosp;
1

0

(4.18)

(4.19a)

where we have used the property that M is Hermitian to
obtain the above equation.

Using the canonical anticommutation of I and g and
(4.13) we obtain (fixing c appropriately}

(y„,y, , U'~ q, ,y„,U) = „,g 5(U„,—U„,)
(detM) n, i

(4.14c)

P; =—2K sinp;,
1

Q

A,~
= 1 —2K g cosp; .

(4.19b)

(4.19c)

We obtain the energy eigenspectrum of equally spaced en-

ergy levels in (4.17), where the energy of a single particle
or antiparticle excitation is given by '"

which is simply Eq. (3.4). We see that Eq. (4.14) is a non-
trivial generalization of fermion coherent states as the
gauge field is directly involved in its construction.

We examine the limiting case of free Wilson fermions,
as this is the first step in any weak-coupling calculation.
We set the gauge field to zero, obtaining from (4.7), (4.8),
and (3.3), up to a constant,

(ai+P2)1/2
kp

1 —2K —2K +cosp; +4K +sin p;

1 —2K g cosp;

(4.20a)

H = ——(2K —1)g y.y.
n

Kg [g,(1——y—;)f;+g;(1+y;)g,] (4.15a)
n~l

FIG. 2. Nonlocal interactions in the Hamiltonian for the fer-
mion sector.

(4.20b)

We make the following observations. First, energy E~
is a monotonic function of p; this is due to the cosine
term in the numerator of (4.20b} coming from the Wilson
projectors 1+y;. If this cosine term were absent, then the
energy of a zero-momentum quark and that of a quark of
momentum m for some p; would be equal, since sinp; =0
for both of these cases. In the continuum limit, taking all
possibilities into account, this would result in 2 ' quark
species" and would be the reflection of the overcounting
of quark states in the lattice Hamiltonian formulation.
Second, the metric yields the factor of 1/Ap in the expres-
sion for energy. In the ease of coupling to the gauge field,
the noncanonical anticommutation equation (4.8) yields
more complicated contributions to the energy given in
(4.11). Third, taking the continuum limit of a~O for
(4.20) using (2.1) and setting p =ka (kG[ —ao, + Do] is
the continuum momentum} we have Ek ——(k +mo )' as
expected. Fourth, energy Ep can be directly obtained
from the Lagrangian (4.2) by locating the pole of the
propagator, setting po ———i eEp, and taking e~O limit.
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V. COLOR CHARGE OPERATOR AND GAUSS'S LA%

In the Lagrangian approach, the charge operator and
Gauss's law are obtained by exploiting symmetries of the
Lagrangian. In the Hamiltonian formulation, these result
from transformation properties and symmetries of wave
functionals.

Consider first the gauge field for SU(N): right and left
group multiplication for group elements are given by Her-
mitian generators E, and E,", respectively, where'

where we have used (5.lc) to obtain (5.3b).
It can be shown that for SU(N)

—V'(U) = QE.'(U)E.'(U) = +E.'(U)E.'(U) . (5.3c)

Form Eq. (5.3c), we see that either E, or E, can be iden-
tified as the chromoelectric field operator for the lattice
gauge field. The analogue of Eq. (5.3b} for the fermions is
more complicated. %e discuss this in Appendix A and
have, from Eq. (A12),

[E, ,E ]='C, E, ,

[E,",Eb ]= i'—iN. E,",
(5.1a)

(5.1b)

(5.lc)
=exp i p'X—j"p„+io'Xj"t@

Note the minus sign in (5.lb). E," and E, are first-order
Hermitian differential operators on L2(SU(N)). For the

group element U we have the operator equation

E, ( U) =Rb ( U)Eb ( U), (5.2)

iP'x. i0 X. iy'E."(Ui radii Ui
(5.3a)

where R,b(U) is the adjoint representation of U. We
hence have for an arbitrary function of U, the SU(N)
Taylor theorem'

xh(f„,gi) . (5.4}

-, 4.=e'

n~ n n~ n~ n n

(5.5a)

(5.5b)

We define the charge operator as the generator of gauge
transformations in the following manner. Consider the
(time-independent) gauge transformation

' f(U), (5.3b)
Hence, from (5.3} and (5.4), we have, for the wave func-
tional,

@(0.4 U) ~'(4.0 4A U(0»

y ER(U ]
—'p E (U ~ )

k= IIe ~ IIexp ikey'
n, i n ~ &In)i

@'(W. 4»
(5.6a)

(5.6b)

=exp i g p; g [E,"(U„) E, (U;,—)]—p (iij, l(i) @(p„,fi, U), (5.6c)

where p~ is the quark color charge operator, and we have
ignored topologically significant surface terms in combin-
ing the chromoelectric field operators.

For the wave functionals to be gauge invariant as re-
quired by Eq. (2.19), they have to be independent of P;.
Since P, is arbitrary in (5.6c) we must have for gauge in-
variance

T

Pna a Y'nju —,~ ii'nkl ~,N
V' n«N Vnjl

It follows from (5.9a) that

(5.9a)

To completely define the operator p„,note from its
definition

g [E,"(U„) E, ( U; )]—.p—=0 . (5.7) [P P bi=i~.b.P 6 (5.9b)

Using Eq. (5.2), we have from (5.7)

$[E (U ) —R b(Ut ", . )Eb(U ", .)]=p . (5.8)

If we choose to identify E, as the chromoelectric field
operator, then (5.8) is Gauss's law using only E,".

Equation (5.7) is Gauss's law for the lattice gauge
theory; it is understood that this is not an operator equa-
tion and that the operator on the left-hand side of (5.7) is
acting on wave functionals. From our derivation, it is
clear that Gauss's law is a differential statement of the
wave functionals being gauge invariant and expresses local
conservation of color charge at the lattice site n.

&0:k.
„,[U]@,„ (5.10a)

5
,kj[ U]P «i .

&4.ji,k
(5.10b)

Combining (5.9a} and (5.10) we have, using Eq. (3.3a) and
the fact that X~'s are traceless,

and hence p are generators of SU(X) local gauge
transformations. Inverting Eqs. (3.7) and (3.8) we have
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p =f,yoX, Q, K—g(P„„X,U„P
Econt(X) +C g b( )scoot(

Xg

+&g(f;,U -, X.P. .,+y, Ut, x.y., ) .

(5.11)

Note that the regulated quark charge operator p in-
volves the gauge field due to the Wilson metric; for If=0
we obtain the expected canonical result.

Equation (5.11) together with (5.7) and (4.8) gives a
complete definition of Gauss's law.

In terms of canonical fermions X and X given by (4.9)
and (4.10},we have the charge-density operator

p„=g (j'I„M '~ I+,M'~,Pp„
mp

(5.12)

= tr'j(x}yoX, P(x) . (5.17)

Equation (5.17) is valid only classically since we have as-
sumed the fields A&(x), g(x), and 1(t(x) are continuous
and differentiable. For the quantum case, the new terms
in (5.8) which arise due to the (lattice) cutoff all contribute
to the renormalized quantum continuum limit.

VI. LATTICE ACTION FROM LATTICE
HAMILTONIAN

Suppose the starting point for the theory is taken to be
the Hamiltonian. We now derive the action from the
Hamiltonian. Suppose we have in the axial gauge

0 h~
H(P P)=mog4n4. + g4. I, t () 0 +HGF

The definition of quark charge operator involves the ma-
trices M '~ and M'~ . Note for the Abelian field the
charge operator is in effect local, i.e., for total charge with canonical anticommutation equation

(6.1a)

Q
Abelian g Abelian (5.13) If.l CkI=}'o 5 5l . (6.1b)

Hence, only for the non-Abelian case does M couple to
the charge operator and render it truly nonlocal.

We illustrate the lattice result (5.8) by taking the a~0
classical continuum limit; in this limit, the continuum
chromoelectric field operator is simply the differential
operator,

The off-diagonal coupling It can be nonlocal, and in-
volves the gauge field for the interacting theory. The
Hamiltonian in (6.1) for the case of mo ——0 includes the
chirally invariant SLAC lattice Hamiltoniani and the
Susskind fermions. i

For the metric we have from (6.1b)

i5A (x)
(5.14)

T(q, y) =exp —g t}'A. (6.2)

and for which, unlike (5.1), the different color com-
ponents commute. Using

Ett ( Uni ) [5ttb 2 CabeBn, +O(8 )] . b, (5.15a)iaa'

and from (3.1) we have

fl U'
I 0i,P. U & =e"p g 4A'

n n, i

Hence, for the evolution kernel we have

(6.3)

R,b(U„)=5,b —C,b,.B'„;+O(8), (5.15b)

(5.16)

M —1

= g g

fdic„dy„dU„„e",

"0=1

(6.4)

(6.5)

we have from (2.1), (5.8), (5.11), and (5.15) the expected
continuum Gauss's law

where the boundary conditions for (6.5} are given in Eq.
(2.9). Using the completeness equation (2.7) in (6.4)
M —1 times and using (6.2) for the metric, we have

I—1

It:= [f g fdtTt„dttl„dU„;e " "(p -,g -, , U -,
~

e '
~ p„l,g„l,U„).

no ——1 ni

And hence, from (6.3) and (A4a), for the fermion part we have to leading order in e

+F= g fde.dy. dU.; exp —y O.O. + y (q„;y..+y.ly„„-,) ey F(0 0 l—

(6.6)

(6.7)

From (6.1) we have
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Hr(4„;„4'0-0„;,)=+niobe(it„~4-+44„;,)+ $(4„;„b.0 oi+41i. 4' .) . (6.8)

From (6.7) and (6.8) we obtain the action

0 V'18 N0, Ptf 0
oft

0 hN

~r= —g4.4m+(1 rn—oe)g(4„;„0-+4.i4„+;,) eg— W. bt
N NNl

(6.9)

Transforming from the axial gauge back to a manifestly gauge-invariant expression we have the lattice action

0 h„
~ = —g4.f.+ i(1 moe—)+[4„+;(I+to)U.oit. +iT.(1 )'o—)U.oP„,"j e—g0. ~t 0 1( &.., .+&ap.

N N NNI N75

(6.10)

The action has Wilson projectors 1+yo for the time cou-
pling and is due to the fermionic coordinates of the Hil-
bert space. Note action A in (6.10) explicity breaks chiral
symmetry, even if rno=O and the Hamiltonian is chiral
invariant. The breaking of chiral symmetry is due to the
structure of the fermionic Hilbert space, which has non-
chiral invariant field coordinates, namely,

~ P&,f„)and

&4. Al
The lattice action obtained in (6.10) contains more in-

formation than finite time continuum action. To see this,
take the limit of M~oo and e~O with T =Me fixed,
and for notational simplicity consider the continuum
QCD Hamiltonian. We then have from (6.10)

A = t x yM+Ab, (6.11)

Ab,„„d~—— x „x„xT+ I x I x0 (6.12)

where WvM is given in (Cl1). The first term in (6.11) is
the finite-time action; the second term is the boundary
term and is given by (6.12); g„(x)and Pi(x) are part of
the boundary conditions given in (2.9), whereas P„(x,T)
and ft(x, O) are integration variables; note boundary
values g„(x)and gi(x) are also coupled to the action. The
importance of the boundary term can be seen in the case
of the free Dirac field, where '

Cl lexp( TEIDE ) IA 0 ) (6.13)

(6.14)

with g(x, t) satisfying the classical field equations with
boundary conditions given by Eq. (2.9), and C(T) is a
normalization function.

VII. CONCLUSIONS

We derived the lattice Hamiltonian using Wilson fer-
mions. %e found that the Hamiltonian was nonlocal due
to the nontrivial Wilson metric; and, in fact, using canoni-
cal fermions made the Hamiltonian pick up new types of
nonlocal interactions. %e derived the gauge-field color
charge operator as well as the quark color charge operator
directly from properties of the wave functionals. The lat-
tice quark charge operator for the non-Abelian case has
anomalous pieces which depend upon the gauge field.

The Hamiltonian derived here is not the unique Hamil-

I thank C. H. Oh, C. H. Lai, M. Weinstein, H. Quinn,
and M. Ali Namazie for useful discussions. I am also
indebtei to Professor S. D. Drell for his hospitality at the
SLAC Theory Group, and to Professor Y. K. Lim for his
support and encouragement.

APPENDIX A:
FERMION CALCULUS

Let
~
4) be a wave functional of the interacting

quark —gauge-field system. Its coordinate representation
form (2.6) is

c'(4. 4 U)=&4. A U l~') . (Al)

tonian which corresponds to the Wilson action, both for
the gauge field as well as for the fermions. The reason for
this is that to derive the Hamiltonian the time lattice
spacing has to be taken much smaller than the spatial lat-
tice spacing, and this extension to infinitesimal time is
highly nonunique. Hence, Creutz's expressions reduce to
the Wilson action for a symmetric space-time lattice, but
give a very different result for the Hamiltoman compared
to the one derived here. In particular, Creutz's Hamil-
tonian has a hopping parameter different from the value
of E, and a different Hilbert space. Creutz's result is con-
sistent, and we ascribe the different results to the different
schemes for extending the Wilson action to infinitesimal
time. Of course, some regularization schemes yield the
physics more clearly than others. The results of this pa-
per incorporate interactions in Hilbert space via the Wil-
son metric in a transparent way and may allow the study
of anomalies using the nontrivial properties of the Hilbert
space of the interacting theory.

We derived the lattice action from a given Hamiltonian,
and showed that chiral symmetry is explicitly broken in
the action by the coordinates of the ferrnionic Hilbert
space. It should be possible to choose fermionic field
coordinates such that a chiral-invariant lattice Hamiltoni-
an leads to a chiral™invariant lattice action.

Using the results obtained, we can now perturbatively
study the fermion Hainiltonian both in the strong- and
the weak-coupling sectors. To study the QCD Hainiltoni-
an in weak coupling, we also have to gauge fix the lattice
gauge field degrees of freedom We di.scuss this in a
separate publication. '
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Conjugation is defined by ' (1) reverse the order of the

fermion variables and complex conjugate the coefficients,

(2) /~it(yo, P~yyb, (3) U„;—+U„;. Hence we have for
4, the conjugate of 4&,

@ (4. 0( v)=@'(it. A—U'} (A2a)

(A21)

The scalar product on the Hilbert space, using (Al),
(A2), and the completeness equation (2.7), is given by

&f i»= fd~d~dv&f i~(,~., »
x T(q, y, V)(y„,q(, v i» .

The matrix elements of an operator G are given by

—ittt X
4(P'„,Q(, U) = fdf(dg„exp( —P„e ' 'MP„

i/ax—%Me '6}
x@'(y(,y„,v) .

Let h„=M/„andh( ——P(M. We have to prove

exp( —g„e 'h„)=exp i—P X, g(„
—lf Xg

5A.
—P„h„

e

(A9)

For infinitesimal P' we have for the right-hand side of
(A9):
T

(y„,y, , v i
G

i y, ,y„v)
=G(0e v v')&e. 01 U'l(tl e. v&

and Hermitian conjugation is defined as usual by

(h iG if)'=(f iGtih) .

(A4a)

(A4b)

1 iP—'X("P~„+O(P) e
54k.

= ( 1+i/'Q„X,h„)e

=exp[ —Pge 'h„+O(P }]. (A10)

Note in (A41), the metric via Eq. (2.7) has to be used to
define the matrix element (f i

G
i
h ) and plays a central

role in defining the Hermiticity of an operator. In partic-
ular, the transfer matrix exp( —aH) given in Eq. (2.14} is

Hermitian only with the Wilson matrix given in (2.13}.
The fermionic "Fourier transform" of 4(g„,g(, v) is

defined using the metric T(it(, g, U); for the Wilson metric
(2.13}we have

4(tP„,t/r(, U) =fdg(dg„T(g,f, U)4'(it((, g„,U),

where 4' denotes the Fourier transform of 4.
Inverting Eq. (A5a) we have, using (3.4),

(4I xg . g jg 5
exp( —h(e 'g() =exp iP'X( fk( e

54((
(Al 1)

Hence, from (AS), (A9), and (Al 1) we have

k 5
=exp O'X' —0(. — +A(5

54k'

Iterating Eq. (A10), we obtain Eq. (A9) for finite P'.
Similarly, we have

C'(g(, g„,v)= fdic„dy(dV(y„,y(, V i1((,y„,v)
x 4(g„,g(, v), (A12)

x@(i)(„,g(, v) . (A5b)
where we have obtained (A12} by using the commutativity
of the exponents in (A12}.

5(g —e')= fdgexp[(r( F)g], — (A6b}

where 7(,q, g, g are fermionic variables and the left-hand
side of (A6) are fermionic 5 functions having the usual
definition of

The additional bosonic integration d V in (A51) is needed
to compensate the 5 function in the inner product in (3A).
To prove Eqs. (A5a) and (A51) we need the identity

5(q —e) =fdg exp[/(r( —e)) (A6a)

and

APPENDIX B: THE MATRIX M

~(4 4»)= +0.(M,(kP—k
nm, jk

and the matrix M is given by

(Bl)

%e discuss the matrix M which appears in the Hamil-
tonian and the noncanonical commutation equations for
the Wilson fermions. From (3.2) and (3.3), using P,P
which carry only color charge since M carries no Dirac
indices, let

f dg 5(g —e)f (g) =f(e), etc . (A6c) M~(k 5~5( Eg(5 ——- U~~+—5 -Um(;) . (B2)

Perform the gauge transformation

i/ X
4i =e

—i paXP'„=P„e

(A7a)

(A71)

There are two expansions for M, namely, as a power
series in E and in 8', where U =exp(iB~,X, ); the ex-
pansion in 8 is in effcx:t an expansion as a power series
in the coupling constant g.

(a) Weak-coupling expansion. We have

Then, from (2.13) and (A5a) we have in abbreviated nota-
tion

~ 2

U =1+iB'„X,+ (8' X.)'+O(8') .—m a 2 I a (B3)
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Defining

AP
——1 —2I{.g cosy; (84a) def

RI1d

Xa =C21

we have from (Bl) and (83) (see Fig. 3)

(84b)
FIG. 3. Feynman diagrams for expansion of detM in powers

of the gauge field.

detM = g fdP,d P, exp[A (Q, Q, B)1

=exp ,'c,Zg—y(B )2 ,'c,Z—'—gB:,B', f e'&"- 'l„(q)+0(B')
nia nm, ija

(85)

where [defining p, q integrations as in (4.16b)t

e '+e

'~p+e~ p)(
—~p+9~ p—

s ~+a

(86a)

(86b)

The first term in (85) comes from Fig. 3(a) and the second term from Fig. 3(b).
Note for d=4, J is linearly divergent, and so is I';~(q), and would give a divergent mass term for the gauge field.

However, these two divergences cancel exactly (due to lattice gauge invariance) since we can prove the numerical identity
in d dimensions

5'J=It;I ij(q=0) .

Hence we obtain

(87)

detM =exp — cz g B;~B'J f e'i' '[I',&(q) —I;J(0)]+0(B )
K

nmi ja

The ultraviolet divergences of M have to be studied using the weak-coupling expansion. '

(b) Strong-coupling expansion. For the case of g ~~1, the theory is expanded as a power series in E and 1/g . To
leading order in E we have, from (81) and (85),

SC4
detM=exp QTr(U U - U -. U, +U, U Ut Ut. )+0(g6)n+ 1j n+ ji n+ ji n+ 1j

n, lj
(89)

APPENDIX C: CLASSICAL CONTINUUM LIMIT
' 1/2

a~
(Cld)

By the classical continuum limit is meant the limit of
i)I~O and a ~0 for the lattice theory with the field values
and their derivatives being continuous and differentiable.
The classical continuum limit for the symmetric lattice
has been derived by %ilson. " '%e essentiaHy redo this
calculation for the asymmetric lattice theory given by
(4.2).

Recall from (2.1} and (4.1) we have for spatial lattice
spacing a and time lattice spacing e the following:

J

I /2
Q

(C le)

2E = g =gosa (d —4) /2

d +72loQ

We will take the liinit of a~0, e~O for the action de-
fined on an infinite space-time lattice, i.e.,

x =(noe, na),

B„o=egAO(x),
B~ =agA; (x),

(C la)

(Clb)

(C 1c}

(C2)

where W is given by (4.2). The ln detM term in (4.2) goes
as R in the action (C2) and vanishes in the classical limit;
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hence it will be dropped.
In the classical limit, we can expand A&(na +Pa) in a

Taylor's series about A
&

(na ) and similarly for

g(na+pa), etc.; in particular, for the pure gauge-field

part of action, it can be readily shown, using (Cla) and

(Clb) that"

' 1/2
a

n+0 [g(x)+et)yb(x) +0(ei)],

we obtain the continuum Yang-Mills action from (C3).
The space-time asymmetry is more nontrivial for the

fermion sector. We Taylor expand the fields using (Cl):

n, i

+ 2 g Ti( Wntj )
1

n, ij

=—4@a 'g g[Fo;(x)] + g[Fj(x)]'
n ia ija

where

F'„„(x}=t)~A'„&Qq—+ gsocaacA pA ~

Using

ga ~ X

(C3)

(C4)

(C5)

' 1/2

[g(x)+at);g(x)+0(a )], (C6b)
n+1 2g

U -.-=1+iga[A; (x)+et)oAt (x)+ ],
U; =I+ige[Ao(x)+at)tAo(x)+ '

(C6c}

etc.
On carrying out the Taylor's expansion of the action,

we keep terms only of 0(ea ') and discard all higher-
order terms. All terms of lower order must cancel (as, in
fact, they do) to have a finite classical limit. For the fer-
mion part of the action, after considerable simplifications,
using A&-=A„X we have

d y(x)q(x)+ 1+ — 1 d q(x)yo[t)o+isgoAo(x))f(x)
a 2E a 2I(

+tTt(x)y;[t3;+isg A;(x)]p(x) (+0(& a ' «} (C7)

From (Clfl we have

1 —1=moa .
2K

(C8)

Hence, the coefficient of the time-derivative term in (C7)

becomes, from (C8),

A =Ap+AGF

XmO X X

+y(x)y„[t3p+isgoA (x)]y(x) I

(C10)

in the classical continuum limit. We finally have, from
(C7), (C8), and (C3), (C5),

1 —moa ——1 =1+0(a)
a

—
4 d X I'IyX (Cl 1)

and consequently the time and space asymmetry vanishes
which is the color gauge theory with bare coupling con-

stant sgo and bare quark mass mo.
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