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Matrix methods in discrete-time quantum mechanics
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The operator difference equations that arise in the finite-element treatment of a quantum theory
are implicit and therefore difficult to solve. By introducing a matrix formulation it is possible to cir-
cumvent the implicit character of these equations and obtain explicit closed-form solutions for arbi-
trary matrix elements of any operator.

the operator difference equations. For nontrivial (nonhar-
monic) potentials, the function g

' may be complicated,
unwieldy, and difficult to obtain in closed form. It is re
markable that, in the matrix formulation discussed in this
paper, one can obtain exact closed-form expressions for
arbitrary matrix elements of any operator in terms of the
function g. The function g

' never appears. The main
purpose of this paper is to demonstrate the matrix formal-
ism necessary to solve this implicit set of operator equa-
tions.

We introduce a one-parameter set of Fock states,
~

n ),
which can be constructed because qo and po satisfy
canonical commutation relations. We take

I. INTRODUCTION

In a previous paper' we showed how to approximate the
Heisenberg equations of motion for a quantum-
mechanical system having one degree of freedom by a sys-
tem of operator difference equations. For the Hamiltoni-
an

8= —,'p + V(q)

the Heisenberg equations in the continuum are

(1.2)q=p p= —V'(q).

This system of evolution equations exactly preserves the
values of the equal-time commutator a —a' ypo= . - qo= - (a+a»

)yv 2 v2
where [a,at]=1. The Fock states satisfy

(1.6)

[q(t),p(t)]=i . (1.3)

In Ref. 1 we discretize the differential equations (1.2) by
introducing a time lattice with lattice spacing h. On this
lattice the equations of motion become

a ~n)=vn ~n —1),
at(n)=&n+1 ~n+1) .

Qn+ i
—9n Pn+], +En

h 2 The parameter y is a measure of the width of these states:1.4a

Pe+1 —Pn, 9'n+ & +9'n

h 2
(1.4b)

[q„+„p„+i]=[q„,p„]=i . (1.5)

On the other hand, the system of operator equations (1.4)
is difficult to solve because it is implicit.

The implicit character of these equations is illustrated
by the algebraic equation y =g(x). In all quantum sys-
tems studied in the finite-element method it is necessary
to obtain the solution x =g '(y) in order to solve exactly

where q„ is the approximation to q (nh). The error in this
approximation' is of order hi for small h

There are, of course, many discretizations of (1.2). The
virtue of the operator difference equations (1.4) is that
they exactly preserve the equal-time commutation rela-
tions at each lattice point:

( n
~ qo ~

n ) =y'(n + —,
'

} . (1.8}

In terms of these Fock states we construct our matrix
mechanics and obtain explicit closed-form expressions for
(n ~qi ~m), (n ~pi ~m), (n ~qi ~m), (n ~pi ~m).
These results, which are derived in Sec. II, are valid for a
broad class of potentials V(q). Our matrix formulas are
solutions to the one-time-step problem. That is, given the
initial operators qo and po and the set of Fock states

~

n )
defined in terms of qo and po we can calculate the matrix
elements of the operators q& and p~ at the next point on
the time lattices. By iterating the solution to the one-
time-step problem one can find the matrix elements of the
operators p„and q„at later points t =nb. %'e also exam-
ine in Sec. II the asymptotic limits and other behavior of
these matrix elements, relate the results to the tunneling
problem, and calculate some specific examples.
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—1 —1en+&= Uen U S n+1=~a. U (1.9)

In Sec. III we calculate the matrix elements of the opera-
tor U and show how to use these matrix elements to cal-
culate explicitly the matrix element of any operator at the
time step n.

In a continuum theory the most important operator is
the Hamiltonian, which is the generator of infinitesimal
time translations. On a lattice no such operator exists be-
cause there are no infinitesimal translations. There is,
however, a unitary operator U that advances the field
operators q„,p„by one time step:

Then (2.3) has the form

g(x) =y, (2.5)

po qo
91 = —go+ 2g — +

h
(2.6a)

which is the crucial implicit equation that must be solved,
as discussed in Sec. I. Under the assumption that the po-
tential V(x) is such that g(x) has a unique inverse, the
solution of (2.5) is x =g '(y). It is sufficient that V'(x)
be rnonotonically increasing or that V(x) be a single-well
potential. Then

II. DETERMINATION OF MATRIX ELEMENTS
4 4 i 2po 4qoP1= —Po — Qo+ g +
h h I

(2.6b)

A. Calculation of & m
I q i I

n )

We begin with the difference equations (1.4) with n =0:

91 90 I 1+@0
2

P1 —Po, 91+90
2

We solve (2.1a) for pi,
2

pi = po+ (—qi —qo) ~

(2.1a)

(2.1b)

(2.2)

and substitute this result into (2.1b) to obtain
r

2PO 4 V, 91+90 4 91+90
h h' 2 h' 2

We let

1x = T(qi+qo»

(2.3)

(2.4a)

In this section we calculate the general matrix elements
of monomials of the operators qi and p &.

We now take the m, n matrix element of (2.6a) in the
complete set of Fock states introduced in Sec. I:

&m lqiIn)= —&m Iqoln)+2&m Ig '(y)In) . (27)

From (1.6) and (1.7) we get

(m Iqo In)= (v n 5 „,+v'n+15 „+). (28)
2

To compute the second term in (2.7) we make one more
assumption about the potential V(x), namely, that g '(y)
has a Taylor expansion:

(2.9)
n=o

Thus, the problem is to calculate

M „=(m Ig '(y) In)= g ak(m Iy"
I
n) . (2.10)

k=0

We obtain (m Iy I
n ) by introducing the generating

function G(t) = (m
I

e+
I

n ) and using the identity
e"+~=e "ese !"' )~, which holds if [A,B] is a c num-
ber. We substitute the result in (2.10) and use the identity

(2p +21 +m n)! 2—~+'
2Po 43'= ) + ) 9'0

and

(2.4b) '
m —n+21

d
dx

~ 2p+21+m —n

g (x)= V'(x)+ x .4
(2.4c)

A straightforward calculation produces
(2.11)

1/2 . m —n

m in i e-te 00 2
—1 oo

dxe
o I!(n —I)!(m n+ I)!—

m —n +21

g '(2xR), (2.12)

where we have introduced

gei8 Y +
~ 2

ihy

With this definition

4y 1

p4 p2 2
y

2ie 2iy +h
e

2iy —h

(2.13a)

(2.13b)

(2.13c)

cos8= 2

Ah
(2.13d)

We integrate (2.12) by parts repeatedly and use the def-
inition of the Hermite polynomial

H„(x)=( —1)"e" en x2 d -x'
dx

[With this definition the first few Hermite polynomials
are Ho(x)=1, Hi(x)=2x, Hi(x)=4x —2.] Then
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m!n!
J/2 ' . 'm —n

8
—I'8 and obtain

00 2
—I

0 I!(n —I)!(m n—+I)!

Xg '2XR e "H „+2I X

e i8(s —m)

~ma =
(min ( 2a+m)l j2

X f dx e g '(2xR)H„(x}H (x) . (2.16)

We perform the sum using the identity

min(m, n)

2"k!(k )(k)H +„zk(x)=H (x)H„(x),
k=o

(2.14)

(2.15)

The integral in (2.16) contains a clumsy and difficult to
calculate function g '(2xR). Fortunately the simple
change of variables z =g '(2xR) allows us to express the
matrix element M „entirely in terms of the function g.
Using (2.7) and (2.8), our final result is

&i 8(n —m)

&m Iqi I
n&= y (v n 5 „ i+ m 5„ i)+, f dzze e '"~"g'(z)H„H

A similar result can be obtained for & m
I p, I

n & by taking the m, n matrix element of (2.2) and using (2.17).

B. Calculation of &m Iqi In &

(2.17)

(2.19)

From the expression (2.17) for &m
I qi I

n & and the completeness of the Fock states we can express &m
I qi I

n & as a
sum:

& m
I
qi'I n & = 2 &m

I qi I
k &&k

I qi I
"& (2.18)

k=0
To perform the summation we use the identity

(-, )k

Hk(x)Hk(y)=e' ~m 5(x —y) .
k=o k'

The result is
2

& m
I
qiz

I
n &= {[n(n —I)]'~25 „z+(2m+1}5 „+[m(m —I)]'~25„zj

i8(n —rn)

+
R(mn!m~2" + )'"

X f dzze e '" ' " 'g'(z) 2zH„(z)H (z)

yg(z) cos8H„(z)H (z) i y sin6}[H„(—z)H' (z) —H„'(z)H (z) ] . (2.20)

Matrix elements of higher powers of qi and pi can be
determined in the same way by the insertion of a complete
set of Fock states.

C. Asymptotic behavior of matrix elements

The large-h asymptotic behavior of these matrix ele-
ments is particularly simple. This limit may seem inap-
propriate because the usual rationale for a lattice theory is
as an approximation to an underlying continuum theory;
thus the usual concern is saith the limit h ~0. The lattice
theory me are investigating here, in addition to being a
useful approximation to the continuum theory as h ~0, is
also a completely consistent quantum theory in its own
right. In the limit h~ 00 we can see the connection be-
tween an initial quantum state and a final quantum state V'(zo) =0 . (2.21)

in the far future.
One might expect that the matrix elements of powers of

the position and momentum operators would become in-
finite as h ~00. This is what would happen in a typical
finite difference or "shooting method" discretization of a
classical differential equation. It is surprising that as
h~ao the matrix elements calculated in this section ap-
proach finite limiting values that can be obtained easily
using Laplace's method for the asymptotic expansion of
integrals.

In the limit h ~ oo we know from (2.13b) that
R —1/yh and from (2.4c) that g(z)-V'(z). In the in-
tegral in (2.17) the saddle point zo occurs where the
derivative of the exponent [ V'(z)] vanishes. Because
V"(z) & 0 for all z, the saddle point satisfies
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Expanding the entire integral in Taylor series about z =zo
and evaluating the resulting Gaussian integral gives an ex-

tremely simple expression for the asymptotic form of the
matrix element of qi ..

hm (m ~qi ~n)= ~ (v n 5~„ i+vm 5„~ i)
h~oo v2

+2z05„ (2.22)

Similarly, we can use I.aplace's method on the integral
in (2.20} to find the asymptotic behavior of the matrix ele-
lliellt of qi

lim (m
~ qi

'
~
n ) = 5„[y2(m + —,

' )+4zo ]
h-+ co

(2.28b)

Notice that as h ranges from zero to infinity (0
~ q, ~

0)
increases monotonically from zero to 2a following a curve
that has an infiection point at h =2/(mv 3). Moreover
this matrix element reaches half of its maximum value
when h =2/m T.he matrix element (0~pi ~0) increases
monotonically from zero to its maximum value ma as h

ranges from zero to 2/m and then decreases to zero as
h~oo.

These lattice results are very different from the oscillat-
ing behavior of (0

~ q (t) ( 0) and (0
~ p (t)

~
0) in the con-

tinuurn theory. In particular,
2—.7v2(5 „,~n+5„. ,~m)

2

+ I 5 „z[n (n —I)]'i2

(0
~
q(t)

~

0) =a [1—cos(mt)],

(0
~ p (t)

~
0) =am sin(mt),

(2.29a)

(2.29b)

H= —,'p +zm (q —a) (2.24)

The continuum Heisenberg equations of motion are q =p
and p = —m (q —a). On the lattice these give the differ-
ence equations

01 —
QO P1+PO

2

I 1 JO 2 'Vl +90= —Pl —0
h 2

J

The solutions to these equations are

qo(4 —m h2)+4hpo+2am h

4+mzhi

po(4 —m h~}—4m hqo+4m ha

2$ 2

Observe that
11m g1 = —$0+20

h~co

hm p1= —po .
h —+no

(2.25a)

(2.25b)

(2.26a)

(2.26b)

(2.27a)

(2.27b)

The m, n matrix element of (2.27a) is consistent with the
asymptotic behavior of (m

~ q i ~
n ) calculated in (2.22).

As a special case consider the behavior of (0
~ q, ~

0)
and (O~p, ~0) as functions of h. As h~ao this first
matrix element approaches 2a and, in general,

2am h
(2.28a)

+5„z[m(m —I)]'~ ] .
(2.23)

Of course, (2.23) also follows directly from (2.22) and
the completeness of the Fock states. This procedure can
be extended to obtain the asymptotic behavior of the ma-
trix element of any power of qi or p, .

D. A simple example: The chsplaced harmonic oscillator

We illustrate the general results obtained so far with a
simple example. Consider the continuum Hamiltonian for
the displaced harmonic oscillator,

In Ref. 1 we derived the unitary operator U that pro-
duces time translations on the lattice [see (1.9)]. For the
Hamiltonian (1.1) the explicit form of U is

ip„h/4 iA(q„)h —ip„~h/4U=e" e "e (3.1)

2

A(a)= —

2 q ——
2g (q) + p'

2g (q) (32)

» (3.1) U is given at the nth lattice site, that is, it is ex-
pressed in terms of the operators q„and p„. It is easy to
see, ' however, that U is independent of the choice of lat-
tice site, n.

To calculate (m
~

U
~
n) one inserts complete sets of

position and momentum eigenstates between the factors in
(3.1) and computes the integrals that arise. The result is

in the continuum theory. These continuum theory results
show that the wave packet begins at (q ) =0 with
E=m/2+m a /2 and oscillates between the classical
turning points at a+(a + I/m)'~. In contrast, the lat-
tice results in (2.28) show that the wave packet moves to
the right and reaches a maximum momentum ma at
(0

~ qi ~
0) =a, when h =2/m. Past this point the wave

packet gradually decelerates and comes to rest on the
right side of the well at (0 ~qi ~

0) =2a, without ever
reaching the classical turning point. Thus, the discrete-
time quantum theory results are very different from the
continuum theory and violate continuum theory intuition.

A numerical comparison of (2.28) and (2.29) shows that
the one-time-step finite-element approximation is useful
for times up to about one-fourth the classical period of os-
cillation T =2m/m To be .specific, at h =t = T/16 the
relative error between (2.29a) and (2.28a) is —2.5% and
the relative error between (2.29b) and (2.28b) is —1.2%.
At T/8 and T/4 the corresponding results are ( —9%,
—4%) and ( —25%,—3%).

On the basis of these results we feel that it is reason-
able, in general, to use the one-time-step finite-element ap-
proximation for times of order h & ,' T, where T is the-
classical period of oscillation for the potential at hand. 6

III. MATRIX ELEMENTS OF THE
TIME-EVOLUTION OPERATOR
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e
—is{m+n+1) ~, g(z) g(z) Q3 e

—l8

(m
~

U
~

n }= f dzg'(z)H H„exp ihV(z)+t' [V'(z}]z— gz(z)
ir'~ (m!n!2 +')' h R —~ 2R 2R 8 yh'R

(3.3}

This is equivalent to the operator expression

ih g;gU=e ' 'exp ibad(h Rq/y) ——q
2

(3.4)

Also notice that (3.3) has the same general form as (2.17}.
In the expression (2.17) for (m ~qi ~n}, a factor of
z exp[ —g (z}R /4] appears in the integral. In the ex-

pression (3.3) for (m
~

U
~

n },this factor is replaced by an
exponential.

The matrix element in (3.3) can be used to calculate the

m, n matrix element of any operator (consisting of any
combination of p and q operators) at any time step &.
%e need only premultiply and postmultiply by N powers
of the matrix elements of U and U ' summing over the
intermediate states. This operation can be performed on a
computer by truncating the matrix (3.3) to a dimension

appropriate to the numerical accuracy required. The re-

sults of such numerical calculations will be discussed else-

where.
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least as strongly as e' as z —+ Oc, Such behavior implies that
Z2
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Hi, {x)Hk{y)
" (z/2)"

k~0

2xyz —z (x +y )

1 —z 2

6Roughly the same accuracy is obtained for potentials more
complicated than single-well potentials. In a recent study of
tunneling in the finite-element approximation using a quartic
double-well potential [C. M. Bender, F. Cooper, V. P.
Gutschick, and M. M. Nieto, Phys. Rev. D 32, 1486 (1985)] it
was found that the one-time-step approximation to
(0

~ q (t)
~
0} is almost exact at t =T/16, has a relative error

of 19%%uo at t =T/8, and a relative error of 45% at t = T/4.
Here T is the period of oscillation of the metastable (false
vacuum) state.


