
PHYSICAL REVIE%' D VOLUME 33, NKJMBER 8 15 APRIL 1986

Angular momentum and spin within a self-consistent, Poincare-invariant
and unitary three-particle scattering theory
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The self-consistent„Poincari-invariant and unitary three-particle scattering theory developed in a
previous paper is extended to include angular momentum conservation and individual particle spin.
The treatment closely follows that of the scalar case, arit the complete set of angular momentum
states for three free particles developed by Wick used in place of scalar plane-wave states.

I. INTRODUCTION

In the preceding paper' we presented a self-consistent,
Poincare-invariant and unitary scattering theory for three
distinguishable scalar particles of finite mass. The goal of
this paper is to extend the treatment to particles of arbi-
trary spin and to include the effects of angular momen-
tum conservation.

Two concepts crucial to the development of a relativis-
tic three-body scattering theory are introduced in Ref. l.
The first is the use of velocity conservation in place of
momentum conservation in order to separate I-orentz in-
variance from the off-shell continuation in energy. The
second is the introduction of factors independent of
intermediate-state integrations into the relation between
the two- and three-body off-shell variables. Both ideas, as
well as the general operator form of the scattering theory,
are used here without further comment. The only differ-
ences are in the definitions of particle states and operator
matrix elements.

A complete orthonormal set of angular momentum
states for three free particles was developed by Wick. 2

Single-particle helicity states, from which the angular
momentum states are constructed, are defined by the ac-
tion of a Lorentz boost in the 2 direction onto a particle
at rest, followed by a rotation. In the spin-zero case, this
is equivalent to LM (2.5). Throughout our discussion we
adopt Wick s state definitions, normalization, phase con-
ventions, and notation. For details, the reader is referred
to Ref. 2.

Section II extends Wick's treatment to define another
complete three-particle basis, which is used in Sec. III to
develop the two- to three-body connection. The resulting

angular momentum conserving integral equations are
presented in Sec. IV. Section V relates the solutions of
these equations to the physical probability amplitude.
Section VI summarizes the results.

II. THREE-BODY STATES

A procedure similar to that used to obtain W (17) is fol-
lowed in order to obtain the matrix elements between
states in the plane-wave basis and states in the three-body
angular momentum basis. A Lorentz transformation
h (P), satisfying

h(P)P =P,
is applied to W (24) (Ref. 3). Then the operator acting on

I qi&i q2&2 q24) is

I.=H(P)S .

The rotation s is specified by pi, p2, and Ps through

s =h '(P)l

and

pi ——Iqi, p2=lq2, ps=lq3,

where p&, p2, and p3 are restricted to obey

Pl. +P2+P3=~ ~

2 2 2P) =m ), P2 =PB2, P3 =1tl3

(Pi+& 2)'=~'.
An integration-variable change gives

,
', (pq/ivy)sinede—dU, =dpidp2dp&5((p, +@2) —tv )5 (P&+@2+Pi P) . —

%ith

L
I qivi q2v2 q3~3) g &„",'., (pi;l)&,",'.,(p2', l)&„",i,V 2 l) lziwi, p2p273p3)

and
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we find

(pi@i,p2p2 p3p3 ~

p JM w J m I1,1I12 I13} 4(wW/pg} ~j~j e 5 (P —p')5(w —w' )

Xd 2. (8) g d„I2,, (pi)d„',2., (p2)Upsy (I ';P)
vl Y2

X U1I,'~'„, (pi,'I) Uq, '„(p2,'I) U~,23(p3, I),

A =m —A3,

Mj ——[(2j+1)/4fr]'~

and I is specified by the condition that I ' transform P to
rest, p3 to a vector in the direction of the negative z axis,
and pi to a vector in the xz (x &0) half-plane. The an-
gles 8, pi, and p2 are functions of W, w, and (p2+p3), as
indicated in W (Fig. 1).

In the three-body angular momentum basis complete-
ness involves an integration over

d Pd(w )=(W /u )[g(W, u )] 'dWd udu, (2.2)

where

8'U —m
g(W )=

28'to

w=a)(W, u, m3 ) .

In order to streamline the forthcoming equations, we

adopt a matrix notation. Underlined symbols represent
elements of (2s 1 + 1)(2s2+ 1)(2s3+ 1)-dimensional square
matrices. The particular elements under consideration
will be obvious from the context. Thus

(pijji,p2p2, p3p3 ~

P' J'M', wj''m'A, ik 2'A. 3) =(u /W )[u (u —1)] '~ [p(W, u )g(W, u )]'~

X5(W —W')5 (u —u')5(u —u )

Jt
X j' w~1Ir (I ',P):"12(pi,p2,p3,j'm'),

where

(2.3)

:-12(pi,p2 p3 Jm}=~je dpgjL(e) g d Ii, (Pl}d 22, (P2)Uj, 1(pl l}Uj, (p2 }Up, '2. (p3 I} '

1 2

~12(P1,P2,P3',Jm) SatlsfleS

5''53rjir'5jj'5p~yg'5 5 52 2 g I dQ dp[~J U jii1f (I sp} 12(pl sp2 &p3dm }111 22 3

X [MJ Up I (I ',P):"12(pi,p2,pi j™)], (2.4)

where the summation over p represents a summation over
all intermediate helicities, and Q is defined through

d u =
i
v

i
d

i
v

i
dQ=(u —1)'i u duodQ .

The operator scattering equations detailed in Ref. 1 will
be evaluated in terms of matrix elements taken in the
three-body angular momentum state basis. However, the
connection between the two-body input and the three-
body problem, developed for the scalar case in LM (Sec.
IV}, is easier to discuss in terms of another basis. We
therefore define a new three-particle basis through the

I

I

direct product of two-particle angular momentum states

~
P12jmcrio2) and single-particle plane waves

~
p3O'3).

Since the helicities in the two-particle angular momentum
states are internal variables,

~
Q12jm A1A2) and

~
q3A3) in

W (20) can be identified with
~ p 1 I1,1 ) and

~
pzA2) in W

(5). Performing the steps leading from W (5) to W (17) in
an analogous manner on W (20), and noting that

dP12 ——5(Pi2 —w )d P12,

gives

( P12Jmcrit72jp3(73
~
P JM w J m A1A2 A3) ~1(4W/q) 5 ( P )5( 12 w )5jj 5 /2]50'22$

(2.5)

where

I' =P)2+@3,
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and I is specified by the condition that I transform P to rest (P=D) and P]2 to a vector in the direction of the positive
z axis.

The orthonormality and completeness of this new basis follows from the properties of the direct product

'( P]2Imo]o2 P3+3 I P]2I m blok P 3+3 & =5'(Pi2 P—]2 )5(P»P 3 )5J'J' 5 (2.6)

where

5(P3 P3)=2P35'(P3-P3) .

Completeness involves an integration which is convenient to write as

d P]2dp3 ——[u co(w, u )] 'd ud udw=(W /u )[(4W/q)f(WV )] 'dWd u dv dQ .

The projection onto the plane-wave basis is

(p]]M],P2]u2, P3]Lc3 l
P']2j'm']r]cr2 p303) =M (4w/p)' u co(w, v )5 (u —u')5 (v —v')5(w —w')

(2.7)

(2.8}

where

0' =0'& —0'2,

and I is specified by the condition that I transform P]2 to rest and p] to a vector in the direction of the positive z axis.
T11US

(P]P'] P2]u2 P3]M3 l PI2J m Cr]02 P3CT3) =Q [g(w, u )r0(w, u )] 5 (il —ll )5 (v —V )5(w —w )I 12(P] P2j 'm'»

where

L]2(p],P2',jm)—:M~5 U ' (I ',P]2)U' (p], l)U' (p2,'I) .

I"]2(p],p2, jm) satisfies

5 '5 5,5,5,= g f dpI', (p, ,p;jm)I', (p„p;j m ) .

(2.9)

(2.10)

III.

TYCHO-BODY

INPUT

To the requirement of Lorentz invariance and unitarity imposed on the two-body input in LM (4.5) we add here angu-
lar momentum conservation. The two-body transition matrix elements taken between angular momentum states must
conserve both the total angular momentum and its projection along the z axis, and must be independent of the particular
value of the projection. Therefore

(P]2jmI], ]A2 l
r(z)

l P]2I m I],]A,2) =(u]2) (ww ) 5 (u]2 —u]2)5JJ 5~~ Tg g pig (w
l

w ya) .
121 12

As in LM (4.5), N is given by

N =z/Q 12
0

8 is a matrix in which each element is associated with a particular combination of incoming and outgoing helicities. The
A, subscripts will not be shown explicitly in subsequent equations when their values are obvious from the context.

Two-body unitarity in operator form is given by LM (4.4). Taking matrix elements between two-body angular
momentum states leads to the matrix equation

+(w lw ~])—+(w lw'~2) (~2 ~1)f dw +(w lw ~]) „„+(wlw ~2) ~

1 1
(3.2)

The connection to the three-body problem is governed by the same considerations as in the scalar case. Matrix ele-
ments of the noninteracting resolvent conserve linear momenta, angular momenta, and helicities. Clustering requires
velocity conservation in both the two- and three-body systems. Therefore

(P]2jmo]ozp3o3 l T]2(z) l
P']2J'm'cr']oz'P3o3) =(u ) ( WW') ~[(16WW'/qq')g( Wu )g( W', u )]'

X5 (u —u')5(u —u }5 (0—0')5JJ'5 U' ', (p3;p', )
cT3cF3

XO(W —e]]"—m]2V )e(W' —e]3 —m]2u )v~2(w l]u';H),
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where

w =( W —ep') lv, w'=( W' e(3 ') lv, ~ 12——(Z' —ef'")lv

We have defined

Z'=Zt'u'

U(p;p') —=U(1;p') = U(p;I)

for a Lorentz transformation I which satisfies p = lp'. Using (3.3) to evaluate the matrix elements of LM (3.19), the uni-
tarity condition for Tiz(Z}, reproduces the two-body unitarity condition (3.2).

The matrix elements of T12(Z) between three-body angular momentum states follow from (2.2), (2.5), (2.7), and (3.3):

& PJM;wjm A iltz, A3 i Tiz(Z) i
P J M', w'J'm'I11I1z,

A 3)
=(u ) (WW') 3 [g(W, v )g(W', v )] ' 5 (u —u')5(v —v )5JJ'

XMJMJ 8( W'—ef"—m izv )8( W' —ef"—m izv )H&2(w i
w';H )

X g dQ"dQ"'5 (Q" Q"')U—' ' (P" P"')[U' ' (I" 'P)UmJ m(P", z, l")U~'i (P3','I")]'
CT3CT3

t73lT 3'

x[U'j,'M (I"' 'P')U„"' (P",,';I"')U",', , (p',"; "'}l,
CT3A 3

(3.4}

where P'1'z and Pz' are functions of u, v, W, Q', P'1'z and Pz" are functions of u, v, W', Q". I" is defined by the condition
that I" transform P to rest and Piz to a vector in the direction of the positive z axis. Therefore, it is a function of u
and Q". Similarly I"' is a function of u and Q"'. Integration over the final 5 function sets

g Um"m(Piz, 'I")Um-m (P'1'2,'I")=5mm .

Since q3' ——I" 'p3' and q3" —I" 'p3" differ only in magnitude of velocity,

U 323(p3, l")U' ', (p3,p3 )O', I, (p3",I")=52 2,
I

0'3o3

Finally,

Jl Jl 4mdQ"
UAM (I ';P) UA'M (I ';P') = dQ"DAM(Q" ')DAM (Q" ') = 5JJ5MM 5PP .2J+ I

Therefore

& PJM; wjmz, zz;X3 i
T»(Z)

i
P J'M', w J'm X;Itz';X3') =(u')'( WW')-3J2[g( Wvog( W', v')]'"

}5JJ'5MM'5jj '5mm

X8(W et'3" mizv —)8(W—' —e("—mizv )gz(w i
w';H),

where

qz(w i
w';a)=5/ g, 712(w i

w;w) ~

33

Using (2.7), (2.9), and (3.3) to reexpress the matrix elements of Tiz(Z) in terms of the plane-wave basis gives

& pij i,pzI 2 p3I 3 I
T»(»

I pic 1 pzI 2 p3I 3& =(u } ( WW }

X53(u —u')53(v —v')8( W —ep' —m izv )

eP™12 v )Zl2(P 1 iP2 ~PPt3
I P 1»P 2 ~P» ~ } ~ (3.6)
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212(pl p2 p3 I pl p2 p3 +) g g E12(pi p2 jm)U.' '. (pi pi)ri2(w I

w' ~)Li2(pi p2 jm) .
JNl CTO'

0'3cT3

This expression can be simplified by substituting the explicit form for I i2 and noting that

g U~tIt (I ',Pi2)Utt~'tt', (I' ';Pl2)=Dcrtr (r r ),

where r and r' are defined by

Then

ri2(pi, p2,pi lpi, p2,pi, »= X~g U„'.(pi;p'3) 2 2 U„"'. (pi, I)U'p".,(p2, I)+i2(w
I
w, ~)

J ~]~2 0&02

&(D~ (r 'r') U",'", (p', ;I')U', ",(p2;I') .

IV. INTEGRAL EQUATIONS

A particular coupling for the three-body angular momentum states is defined by the spectator a and the pair
(a +,a —), labeled by A. The recoupling coefficient is

(PJM;wgjmA++t(z, t(z
~

P JM;wsj m t(s+As,'Ay ) =(u /W )[g( Wtuz )g( Wus )] 5( W —W')5 (u —u')

vvhere

XKJ 5M~@~a(wjm I

w'j'm' W» (4.1)

hzs(WJ'm
~

w'j'm';W)=[('(W, uz)g(W, us)] '~ 8(1—
~

cos8
~
)((A)a

~
(B)b) .

The angle 8 and the abbreviated coefficient ((A)a
~

(B)b ) are given by W (31) and W (35).
The integral equations generated by LM (3.22) for particles with spin are written in terms of the matrix K zs defined

l3$

(PJM;wqjmA, +t(,, ;A,, .
~

Wzz(Z) ~P'J'M';wsj'm'Ai, +hi, ,As)'
=(u ) (WW') 5 (u —u')5JJ'5~~'[g( W, uz )g(W', us )]' 8( W e,"" mz—vz )8(—W' —eP' —msvs )

Then

X P"„z(Wwjm
~

W'w'j'm', Z') . (4.2)

t)(r ~(sWwjm
~

W'w'j'm';Z )= —5~s Q f dW" 8(W"—e '—m~v~)8(W" —gt —msvs)

X Hq(w
~

w";H)

&&A,„z(w "jm
~

w "j'm', W")Q(w"
~

w', 2")

—+5qD g g f dW"duD 8(W" E,
' m~v—z)8(W—" ed" mDv—D )—

D 'll ll gttgttt 8"—Z'

XH„(w
~

w";H)b„D(w"jm
~

w"j"m";W")

X P Ds(W"w"j"m"
~

W'w'j'm';Z') (4 3)

where

Ot tl

w~ =tv(W", u~, m, ), wg' co(W",vs, mi, ), —W—D co(W",uD, m——~ ) .

The summations over A,
"and A.

"' represent summations over all intermediate helicities.
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V. PROBABILITY AMPLITUDE

In order to connect the solutions of the integral equations (4.3} to the physical probability amplitude, the matrix ele-

ments of W~ii(Z) must be reexpressed in terms of the plane-wave basis. Using (2.3) and (4.2) gives

~p&j & pie»P3v& I
W~ii(Z} lpip& pi@2 pi@3&=(& } (WW } [p(WU&}p(W', U&)] 5 (u —u')

X 6}(W —e~"—mz Uz )8( W' eP—' m—st~)

where

x ~&&(P»p»p 3 I Pl ~ P 2~ P3 ~Z ) ~ (5.1)

~wa(pi~p»P& Ipi~pi Ps'Z )=[v (U —1)U (U 1—)]

X X X g X~JUnbr(I 'p}=z(pi p»ps'jm) ~q~( WwJm
~

W'wj''m';Z')
JM jm j'm' A,A,

'

X U& br(1';P'):-z(p &,pz, p3',j'm') .

This can be simplified by noting that

g U~(I ';P)U'„'bi(/' ',P') =Dye (s 's'),
M

where s and s' are defined by

Uxl(l ',P) =DAbf(s '), Uw~w(l' ',P') =Db'M(s' ') .

An interacting two-particle state is characterized by an invariant mass wq, angular momentum quantum numbers j
and m, and other internal quantum numbers summarized by the single parameter yz. The clustered channel states,
which are asymptotically equivalent to the direct product of two-particle interacting states with plane waves for the third
particle, satisfy

( u, u„,y„(w,Jm, y), o.
~

u', u„',y„(w',J'm', y'), o.') = u'a(w~, 'U)5'(u —u')5'(v~ —v'„)5(u~, w„')5,,'5~~ 5, 5
y~y~ oaoa

(5.2)

The overlap of these states with noninteracting states defines wave functions

( pqjmo, +o, ;p,o,
~

u', u p~q(w',j 'm', y'), o,' )

= u [a)(wq, uq )co(w„', Ug )]' '5'(u —u')5'(v„—vg )5JJ'5 5,Pq(w, o, +o,
~

w', y') . (S.3)

Then

'(pl@i p2p2 p3p3 I
u', uq, gz (w',j 'm', y'), o,' )

[pwA sUg }~(wgiUg )] 5 (u u )5 (vg —vg )5 i g(p~+pz+, pz JM+ ~
wg, J m, yg ), (SA)

&aoa

where
~ f

5„~ Wp. +p. + p. p. I, w~ J m y-~}=-QI ~(pi p2;jm )g~(w, o.+o.
~

wy')5 ~ ~ .
oil

Equations (S.l), (5.2), and (S.4) are the generalizations of LM [(S.l), (2.15), and (2.16)], respectively, for particles with
spin. The techniques of LM (Sec. VI) are directly applicable. We assume, again, that there are no degeneracies in the
two-body bound-state spectrum. LM (6.11) becomes

(P1I l~p2P»P3P3 I
WAB(E +i~}IP1Pl~p2P»P3P3 ~

o EP'

=[/(wg, u„)g(wg, uii )]' [co(p„,U„)~(ps, U~ ))

X~(p~+P~+~pu Pa —
I PA J m yA 4—' (pb+gb+~pb pb ~ pa J m, yii)

X (u, u„,g„(p~,J m~, y~),p, ~

Q„'+'(E&)
~
g, g ', y (p&',J'&'m&', y&'),pb ) (S.S)

The ei'" factors are fixed by LM (6.14)

eP =W~ —co(Wi', ul, m; }UI, et '=W~ —co(W~, Ui, m; )Ui

By taking the matrix element of LM (3.18) between a bra and a ket formed from the same helicity plane-wave state we
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obtain an equation similar to LM (6.16):

v~ ~ p(~, v~)»m ( —«~)r~(pi, p2 p3 I pi p2 p3;u~+«~)
a~ ~0

= —@tv~»~)(~ —~')'IP(P. +I.+P. V'-IA-J'm'r~) I' ~

Define
' —1/2

~(P l tP 2 ~P 3i' I) [vI ~ OI (O'I, vI )] —itin ( —i EI )M7 (P l tP 2 iP 3 I P l ~P 2 ~P 3iP'I + i 'sI )
0

(5.7)

Then, in analogy to LM (6.18), we find the probability amplitude for elastic and rearrangement scattering

M'+'(4z (u, uz, gq (pi'j I'IIti', yI') II,, )
~
4&(u, uz, fs(pI',j I' mI', yI' )p& ); W'3')

= —&(Pl P2P3 A)~(Pi P2 P3 itis) lim lim ( —~~~33)~~a(Pi P2 P3 IP1 P2 P3 ~ +i~)
+0 e' ~0B

(5.8)

The amplitude is not explicitly invariant because the helicities of single-particle plane waves are defined with respect to
the frame of the observer.

The probability amplitude for free-particle scattering is similar to LM (6.20):

(@0(PlII'I~P2II'2~P31I'3) I C'O(P il »P21 2~P3I 3)» ~)
g fio(~ vA)P(~vii)) l5AB(3 (vA vA)rIt (Pl~P2~P3 IP1~P2~P3 ~)+ ~AC(PI~P2~P3 IPl P2 P3 ~)]
A, B

(5.9)

The probability amplitudes for breakup and coalescence
are, just as in the scalar case, obvious extensions of (5.8)
and (5.9).

dual particle spin. The resulting angular momentum
decomposed equations exhibit the same properties as the
scalar equations: exact unitary and physical clustering.
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