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Momentum projection and relativistic boost of solitons:
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%e present a method for calculating center-of-mass corrections to hadron properties in soliton

models and we apply the method to the soliton bag model. A coherent state is used to provide a

quantum wave function corresponding to the mean-field approximation. This state is projected onto

a zero-momentum eigenstate. States of nonzero momentum can be constructed from this with a
Lorentz boost operator. Hence center-of-mass corrections can be made in a properly relativistic

way. The energy of the projected zero-momentum state is the hadron mass with spurious center-of-

mass energy removed. %'e apply a variational principle to our projected state and use three "virial
theorems" to test our approximate solution. We also study projection of general one-mode states.
Projection reduces the nucleon energy by up to 25%. Variation after projection gives a further

reduction of less than 20%. Somewhat larger reductions in the energy are found for meson states.

I. INTRODUCTION

Since their conception ten years ago, bag models' of
hadron structure have suffered from problems due to the
lack of translational invariance of their solutions. Various
techniques have been proposed for the calculation of
center-of-mass and recoil corrections to bag properties.
All of these are to some extent ad hoc. The basic prob-
lem is the bag boundary condition, which makes the treat-
ment of translational motion (and other dynamical pro-
cesses) virtually impossible.

In contrast, soliton models are based on field
theories which provide a complete dynamical description.
Hence, at least in principle, all dynamical processes can be
calculated. The major obstacle to this is that these are
strongly interacting field theories and so the standard per-
turbative methods are not applicable. However a variety
of nonperturbative aproaches have beens' ' and are
being developed. ' These are, in many ways, analo-
gous to techniques used in many-body physics. Soliton
models can be used to study NN scattering, meson emis-
sion and absorption, and surface oscillations, as well as
the construction of momentum eigenstates which is the
subject of this paper. 2s

The starting point for most of these treatments~ is the
semiclassical or mean-field approximation (MFA). In
this, boson fields are replaced by their expectation values
in the state of interest. Fluctuations of the fields about
their mean values are neglected. In models with fermions,
the mean boson fields play a role analogous to that of the
Hartree-Fock potential in many-body systems. Like
Hartree-pock, the MFA can give solutions which are lo-
calized and hence not momentum eigenstates, even though
the full theory is translationally invariant.

For such a localized solution, say
~

4 ), we have

(e[P~q)=0, bu«e~P'~q)~O.
Thus these localized states contain spurious center-of-

mass energy and center-of-mass fluctuational motion.
The underlying translational invariance shows up as
spurious states in the excitation spectrum built on the
Hartriu:-Fock or mean-field solution. In a field theory,
these spurious states are known as "zero modes" and vari-
ous approaches have been used to avoid the infrared diver-
gences they produce. " ' In order to construct states of
good momentum we need an explicitly quantum wave
function, and not just expectation values of the fields
(which are all we can get from a semiclassical treatment).

The techniques we will discuss here provide a wave
function which embodies many of the features of the
MFA. This wave function can be projected onto states of
definite momentum and hence can be used to calculate
center-of-mass corrections to soliton properties. The sim-
plest such wave function is a coherent state, is io con-
structed using a single mode of a quantum field. We have
also studied more general single-mode states. This type of
approach has been around since the early days of quan-
tum field theory. ' Recent applications can be found in
the works of Bolsterli' and Parmentola.

Momentum eigenstates are constructed from these
states by a projection procedure (often referred to as
Peierls- Yoccoz projection). The mass of a hadron,
corrected for spurious c.m. energy, is given by the expec-
tation value of the Hamiltonian in the zero-momentum
projected state. Variation of the expectation value of the
Hamiltonian is applied after projection. We construct
states of nonzero momentum by acting on the zero-
momentum state with a Lorentz boost operator, ' thus
avoiding the problem that states projected onto different
momenta need not have the same internal structure. At
least to the level of approximation we use, this ensures
that the center-of-mass motion is handled in a properly
relativistic manner. This will permit calculation of mag-
netic moments, form factors, and other hadron properties
In the present paper we deal only with the construction of
coherent states and their generalization and with the
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momentum projection. The boost and hadron properties
will be described in a subsequent work.

Other works which use this approach (construction of a
coherent state and projection) are those of Huang and
Stump' and Fiebig and Hadjimichael. Ho~ever, some
of the assumptions made in Ref. 22 are inconsistent with
the structure of a qu mtum field theory. A path-integral
version of the projection technique can be found in Ref.
15. It has also been apphed to the construction of
angular-momentum eigenstates in chiral models of
baryons. 6

As a specific example of these methods we apply them
to the soli ton bag model, ' ' often known as the
Freidberg-Lee madel. The salient features of this model
are briefiy reviewed in Sec. II. The coherent state is intro-
duced in Sec. III and momentum projection is applied to
it in Sec. IV. The Lorentz boost is also described briefiy.
Then, in Sec. V, we introduce the general single-mode
state. Various tests or virial theorems which we apply to
our solutions are described in Sec. VI. Details of our nu-
merical results are presented in Sec. VIII. Finally, a brief
summary of our results is given in Sec. IX.

II. THE SOLITON BAG MODEL

d U
Pl~

@f0 cr =cr &
2

(2.3)

This quantity also provides a measure of the sharpness of
the bag surface.

%e work in the Schrodinger picture and so operators
are time independent. The scalar field o and its conjugate
momentum satisfy the usual canonical commutation rela-
tions:

[n (r),cr(r') ]= i 5i—(r r')—,

[cr(r),cr(r')] =0,
[ir(r), m(r')] =0 .

(2.4}

The total momentum operator, expressed in terms of
these fields, is

P= Jd r(g (r)( iV—)tP(r)

——,
' (m(r)Vo(r)+ [Vcr(r)]m(r) ) ) . (2.5)

Note that in a static approximation m(r) vanishes and
only quarks contribute to the total momentum of the sys-
tern.

The soliton bag model (often known as the Friedberg-
Lee model) is intended as a description of the low-
momentum regime of quantum chromodynamics (QCD).
It consists of quarks and gluons interacting with a
phenomenological scalar field. Hadrons appear as soli-
tons in this field with quarks trapped inside them. The
model Hamiltonian is

III. THE COHERENT STATE

To obtain the approximation which we use here, it is
convenient to work in the usual Fock-space representation
of the field theory. The scalar field operators are expand-
ed in terms of annihilation and creation operators:

H= r r —ia +g Cr r

+ —,'ir(r)'+-, '
~

Vo(r) ~'+U(o)] . (2.1)

o(r) =o v+(2ir) ~ d k (e'"'ai, +e '"'ai, ),
2k

(3.1)
' 1/2

Here P is the quark-field operator with 4 (spinor} times 3
(color) times Nf (flavor) components. In the present work
we include only up and down quarks and we neglect the
current masses of these quarks. The scalar, isoscalar field
is denoted by o(r) and its conjugate momentum by m(r).
The self-interaction of the o field is described by the po-
tential

U(o)= —o +—o +—o +8 .0 2 6 3 C

2 3! 4!
(2.2)

This terminates in fourth order to ensure renormalizabili-

ty, even though we are dealing with an effective theory.
The parameters of the potential are chosen to give a stable
minimum at o =o v (corresponding to the physical vacu-
um) and a local minimum (or in some cases an infiection
point} at o=0. The qtuintity 8=U(0) is identified with
the bag constant, or volume energy density of a cavity.
The full Hamiltonian of the model also contains gluonic
termss which have not bid displayed here. They are dis-
cussed in detail elsewhere.

The vacuum expectation value of the scalar field, oi,
represents the nonperturbative features of the QCD vacu-
um. It may be interpreted as a gluon condensate, and it
leads to quark and gluon confinement. The excitation
quanta of this field may be regarded at 0++ glueballs.
These quanta have a mass, m, given by

ir(r) — i(2n} Jd k
2

(eikxa +e it xat)—

cok=(m~ +k )'~ (3.4)

where m~ is given by (2.3), since this choice diagonalizes
the Hamiltonian for small-amplitude oscillations about
the physical vacuum.

We note that the expansion basis (3.1)—(3 4) is not a
unique choice; if one could solve the theory exactly, the re-
sults should be independent of the expansion basis. In
practice, since we are going to make (fairly drastic) ap-
proximations, and work with coherent states built on the
"vacuum" state defined by

(3.2)

The creation and annihilation operators satisfy the usual
commutation rules,

[ai„ai, ]=5'(k —k'), (3.3)

which follow from (2.4). The satisfaction of the commu-
tation relations (2.4) is, of course, independent of choice of
Nk.

In a weakly coupled field theory, it is convenient to
choose
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ai, I0) =0 for all k. (3.5) From this we see that any state of the apparently two-
mode form

1+—
2

' 1/2
k

' 1/2

(3.6)

Such a transformation is well defined as long as no Qk
vanishes.

We now turn to the construction of the coherent
state. 2 This is done using a single mode of the o field.
We define the creation operator A by

' 1/2

f„ai', , (3.7)A, At= fdik
2

A,'= fd'k Ifi, I
(3.8)

The quantum fluctuations in the state IO), and the
coherent states built upon it, do depend on the choice of
cok. In the present we stick closely to the MFA, and in-

troduce quantum effects in order to treat translational in-

variance; hence our results will be cok dependent. The use
of a plane-wave basis is convenient since it means that the
state

I
0) is translationally invariant.

It is, of course, possible to improve on our approxima-
tions. For example, one can allow for distortion of the
fluctuation modes by their interactions with the average
field of the soliton. The plane waves in (3.1), (3.2) are
then replaced by distorted waves [with a spectrum still
given by (3 4)] and bound orbitals. This can be used as
the starting point for a calculation to one-loop order. s

One can also treat the expansion functions and their
corresponding frequencies as unrestricted variational pa-
rameters. Varying these to minimize the energy leads to
the Hartree and related approximations.

In the present paper, we do not attempt anything as
ambitious as a one-loop or Hartree calculation. However,
in view of the fact that the model contains large coupling
constants, the basis defined by (3.4) need not be a good
choice. In Sec. VII we describe calculations in which the
frequencies are treated as variational parameters, although
we stick to the plane-wave expansion. The choice of
another set of frequencies, Qk, can be regarded as a Bogo-
liubov transformation on the creation and annihilation
operators:

1
Ag ———

2

iii I
0'o) = Nk

2
fi I

op& . (3.11)

Using (3.1) and (3.10), we find that the expectation
value of 0 is

(op
I
o(r)

I
op)

+(2~)—il2 fdik f eik r

&~o I ~o&

—=o'o(r) . (3.12)

Expectation values in this state of normal-ordered prod-
ucts of field operators are given by

&pro I:o(r)":
I
0'o)

( )
——op(r)",

(ap I:n(r)":
I

imp) =0 .

(3.13a)

(3.13b)

These expectation values have exactly the properties of
the static MFA. By normal ordering the products of field
operators, we have eliminated the (divergent) contribu-
tions to the expectation values from the fluctuations con-
tained in the coherent state. In calculating the energy, we
will take the expectation value of the normal-ordered
Hamiltonian. This corresponds to subtracting off the
(unobservable) energy of the vacuum state

I
0), as well as

renormalization of certain of the model parameters.
The normalization of this state can be written as

(oo I ap) =exp([AA, AA t])=exp(A2) (3.14)

since the commutator is a c number, and is equal to the
average number of cr quanta in the coherent state

iaaf=(Jdaka„a„ (3.15)

We also give the extensions of these results to overlaps
and matrix elements between different coherent states.
These will be needed when we come to the momentum
projection. Consider two coherent states,

I cTi ) and
I o2),

defined by
' 1/2

1 I 2 2
I
0)

is equivalent to a one-mode coherent state. %e also note
that the coherent state is an eigenstate of all annihilation
operators:

1/2

and hence [A,A t] = 1.
The coherent state is given by

I
~o&=e'"

I
o& . (3.9)

I
o i) =exp d(, , fd'k

2

Ia, )=exp X,fd'k
2

' 1/2

(3.16)

(3.17)

We have labeled it by the expectation value of the o. field,
00. %e will calculate this shortly.

First, we note that the state can also be written in the
form

1/2

The scalar product of these states is

&~, I ~, &=exp ~,~2fd'k ffg~
2

(3.18)

I cTp) = g exp (3.10) Matrix elements of products of field operators can be
found from
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&cr] i:o(r)":
i
cr2) =rr(r)" &a] i

0'2),

i:~(r)":
i ~2& = {r)"&~] I ~2 &

where we have defined

a](r)+a2(r)o(r}=
2

{3.19a)

(3.19b)

(3.20a)

N
]r(r) i(2]r) —3/2 fd3k (gkeik r f+&e

ik—r)
2

(3.20b)

IV. MOMENTUM PROJECTION AND BOOST

i
P =0)= fd'x

i x), (4.1)

where
i
X ) is a nucleon state localized at the point X and

has the form

The soliton coherent state described in the previous sec-
tion is localized and so has no definite momentum. To
construct a momentum eigenstate, we use Peierls-Yoccoz
projection. The zero-momentum projected state is

The quark-field operator is expanded in the form

P(r) = g b„q„(r)+g d„qs(r), {3.21)

where the q's denote a complete set of spinor functions
and the indices n and n refer to quark and antiquark
states, respectively.

In our approximation, the model nucleon state is the
direct product of a coherent cr state and a three-quark
state:

i
N)=e "b]bib'

i
0) . (3.22)

For the lowest-energy baryons (N and b, ) all quarks are
put in the same spatial state. Gluonic interactions have
been ignored in the present calculation; hence we do not
need to make explicit the color-spin-isospin structure of
the wave function. In this paper we will give expressions
only for the nucleon —the extensions to other baryons and
mesons are straightforward.

With the help of (3.12) we can evaluate the expectation
value of the normal-ordered Hamiltonian (2.1) in the state
(3.22). This gives

&N i:H: iN) = fd rI 3]io(r)[ ia V+gP—pro(r))qo(r)

+ —,
'

i
V]ro(r) i'+U(o]])i, (3.23)

where qo(r) is the quark wave function corresponding to
the b; (all the quarks are put in the same spatial state}
and oo(r) is the function used to define /I .

If we require &:8:) to be stationary with respo:t to
variations of qo(r) and ]ro(r), then we obtain equations
which are identical to those of the mean-field approxima-
tion:

i X)=e " ' 'b](X)bp(X)bi(X)
i
0) . (4.2)

The creation operators are for a o mode and quark states
centered on X. The operator A (X) can be written

' 1/2

fk(X)ak, (4.3)ALA (X)=fd k
2

where A, is still given by (3.8) and fk(X} is the Fourier
transform of the a field distribution centered at X:

f (X) e lk'xf (0—) (4.4)

The expectation value of o in this shifted state is
oo(r —X) and the quark wave functions are qo(r —X).

Since the u field is expanded in terms of plane waves,
the cr vacuum state defined by (3.5) is translationally in-
variant. The quark basis we have used, (3.21), is not
translationally invariant, but we neglect differences from
unity of the overlaps of quark vacua centered on different
points This pr.ocedure cannot be exact, but no obvious
problems have arisen as yet. If it does cause trouble, one
can always go to a plane-wave basis and work with a
Dirac Hamiltonian projected onto positive-energy plane
waves. The methods of Huang and Stump' avoided this
problem by assuming that m was very large. Then the
overlap of two coherent states centered on different points
was essentially a 5 function and there was no need to cal-
culate overlaps between different vacua.

From (4.1} the expectation value of an operator 0 in
the projected state is

& P () i 0 i P () & fd'X d'r& X
i
0

i
Y &

fd'Xd'r&X
i Y)

(4.5)

Provided 0 is translationally invariant, the integrals over
—,(X+Y}give trivial volume factors which cancel in (4.5).
Hence we can write

ir ~+gP~o(r—) jeo(r) =eo]io(r),
—V'oo(r)+ U'(c o)+ 3gqo(r)qo(r) =0 .

(3.24a)

(3.24b) fd'Z& ——,'Zi 0
i

—,'Z)
&0)= fd'Z& ——,'Zi —,'Z)

(4.6)

These equations have been solved numerically by Gold-
flam and Wilets' and other groups. With a suitable
choice of parameters, the solution can have a MIT-bag-
like form. In fact, there is a fairly wide variety of choices
of the parameters (a, b, c, and g) which lead to reasonable
values for nucleon properties. ' The present calculations
place some restrictions on the acceptable values for these
parameters. Other constraints on them can be found in
Ref. 37.

&
——,

' z
i

—,
' z) =N. (z}N,(z}',

where

(4.7)

N~(z)=exp fd k fk( ——,'Z)fk( —,'Z)
2

(4.8)

The integrand in the normalization is a product of a and
quark factors:
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[obtained from (3.17) and (3.18}]and

Nq(Z)= fd r qo(r+ —,Z)qo(r ——,'Z) .

The integrands for the expectation values of normal-
ordered products of field operators are, from (3.19},

m(r;Z) = —i(2')'"fd'k '
[f„(—'Z)e'"'

fi*,—( ——,Z)e '"'] .

(4.11b)

( ——,
' Z i:o(r)":

i
—,Z) =o(r;Z)"N (Z)Nq(Z)

&
——,

' Z i:1r(r)":
i

—,
' Z) =n(r;Z)"X (Z)N, (Z)',

~here

o(r;Z) = —,
'

[op(r ——,
' Z)+oo(r+ —,

' Z)],

(4.10a)

(4.10b)
( H )

(P=Oi:H:
i
P=o)

&p=o ip=o) (4.12)

where H is the Hamiltonian (2.1). For the pieces of H in-

volving the quarks we have

%ith these results we can now evaluate the nucleon
mass in this approximation:

d rqo r+ —, —la +g 0 I",Z
(:H +Hq . ) =3fd Z N (Z)Nq(Z) d'Z N, (Z)Nq(Z)'

(4.13)

while the pieces involving only rr give a contribution,

Z ~ZN~Z q Z

fd Z N (Z)N (Z)'
(4.14)

If we define

Pii(y)=&yI& P Iy&

then from (4.19) we have

(4.20)

8f' (Z)= fd'r[ ,'Tr(r;Z) —+,'
i
Vo(r;Z) i'+ U(o)] .

(4.15)
=Pii(y),

(4.21)

i y) =e'"'K
I
P=o),

where

(4.16}

To calculate other nucleon properties (e.g., magnetic
moments} we need states with nonzero momentum. These
could be constructed using finite-momentum projection.
However, such a procedure has well-known difficulties:
namely, the various states of good momentum are not re
lated to each other by the appropriate Lorentz transfor-
mations. Instead we operate on the zero-momentum state
with a Lorentz boost operator to produce an approximate
four-momentum eigenstate. The boosted state is defined
by34, 35

dy
=E(y) .

These differential equations have solutions [for the boun-
dary condition E (0)=M, Pii(0) =0]:

E(y) M=cosh(y),

Pii(y) =M sinh(y},
(4.22)

where M is the expectation value of H in the P=o state.
The b&osted state is more conveniently labeled by the ex-
pectation value of the momentum, P=VMsinh(y). The
use of this boost to calculate magnetic moments and form
factors will be described elsewhere.

K= fd re (r), (4.17)

and 4 (r) is the Hamiltonian density. The quantity y is
the rapidity in the direction of the velocity:

T

y =0—,ln
1+v
1 —v

(4.18)

[K,H]=iP,

[Ki,PJ]=i5;iH .
(4.19)

Unless the state
i
P=0) is an exact energy eigenstate, the

state
i y) is not an exact momentum eigenstate. Even so,

it leads to expectation values of energy and momentum
with the correct Lorentz transformation properties. This
can be seen as from the following.

The operator K obeys the commutation rules:

V. THE GENERAL SINGLE-MODE STATE

The coherent state introduced by Eq. (3.9) is a special
case of the general single-mode state ' which can be writ-
ten in the form

i~,g) =F(~') io),

where F(A ) is an arbitrary function of the chosen mode
creation operator (3.7) and oo characterizes the mode
through the Fourier coefficients fk.

The coherent state can be regarded as a Gaussian wave
functional in the infinite-dimensional space corresponding
to a field theory. ' ' The state (5.1) allows for a more
general functional form and so includes some of the
dynamical effects from fluctuations in the chosen mode.
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It is convenient to expand F(A ) as a power series in

A and to write the model nucleon state in the form

(5.2)

TABLE I. Ratios of successive coefficients in the Pock-space
expansion of the general single-mode states with and without
projection. The model parameters used are those of set I (see
Table II).

I', +)/I'„
where

~
3q & denotes the bare three-quark state [compare

(3.22)]. It follows from the commutation relation

[A,A ]=1 that

&3q i
A (A )"

i
3q&=5 „n!, (5.3)

which shows that this expansion corresponds to an

orthogonal basis —in fact it is just the usual Pock-space
representation. Similar use of the commutation rules

yields

Unproj ected

0.577
1.035
1.217
1.092
1.009
0.857
0.345

Projected

1.093
1.352
1.469
1.312
1.142
0.904
0.220

&3q
~

A ai, (At)"
~

3q&=

' 1/2

fi,5 „ in ! . (5.4)

With this we can evaluate the expectation value «o(r) in

(5.2),

g (1/n! )F„F„
&N ~o(r) ~N& n 3/2

&N ~» g(1/n!)F„'
n

X ~e' '—=Oor . 55

Frtmn similar straightforward, but tedious, use of the
commutation rules, we can get expressions for the expec-
tation values of normal-ordered products of field opera-
tors and the Hamiltonian. Variation of the energy with
respect to the coefficients F„ leads to a set of linear equa-
tions of the form

(5.6)

QH„F.=EH „F„, (5.9)

X &3q; ——,Z
~
&( —2

Z)'~:& ( —,'Z)
~
3q; —,'Z&,

(5.10)

well-defined solutions. The function G(a) is found to os-
cillate wildly, and it does not converge as the number of
points used in discretizing the integral is increased. This
is characteristic of generator coordinate solutions. How-
ever, the results for the energy do converge and are in

good agreement with the (stable) power-series expansion.
We can project (5.2) onto a zero-momentum eigenstate

in the same way as we do for the coherent state. Varia-
tion of the projected energy leads to a set of equations
similar to (5.6):

where

&3q
~
2 "W:(3 ) ( 3q &

Hn~ =
mt

(5.7) (5.1 1)

~
cro;F& =fda6(a)e "

~0& . (5.g)

This considerably simplifies the algebra involved in taking
expectation values, but it means working in a basis of
states which are not orthogonal and, more seriously, not
linearly independent. The integral equation obtained by
varying the energy with respect to G(a) does not have

The solution to this set of equations with the lowest eigen-
value is the nucleon ground state in this approximation.
The other eigenvectors are artifacts of the approximation.

We find that 12 terms in the expansion (5.2) are more
than adequate for convergence of the numerical results.
For the unprojected state (and also the projected one) the
results are fairly similar to those of the coherent state; the
leading coefficients in (5.2) have a behavior close to that
of a coherent state: the ratio F„+i/F„ is approximately
constant (see Table I). The energy is also close to that of
the coherent state (about 10% lower).

We have also investigated a representation of the gen-
eral single-mode state in terms of a superposition of
coherent states:

The matrix H„~ can be evaluated with a lot of commuta-
tion algebra. We will not present its explicit form here.

VI. VIRIAL THEOREMS

The approximations we use in this work, along with the
variational method, do not give us an exact solution of
even the model Hamiltonian (2.1). Hence we need some
way to test how well we are approximating a true eigen-
state. %'e obtain these tests by noting that the time
derivative of the expectation value of any operator should
vanish in an exact eigenstate:

—&o&=i&[H,O) &=0.d
dt

(6.1)

By taking expectation values of the commutators of vari-
ous operators with the (normal-ordered) Hamiltonian, we
obtain a set of virial theorems. These are analogous to the
virial theorem used in nonrelativistic quantum mechanics.
Of course, they are only necessary, not sufficient, condi-
tions for a good solution to the field theory.

We have considered the following operators:
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V~=— dr r —ieV —g r or r:H:
(6.2a)

V2=— r: —Vo r +U'o +3g r r (6.2b)

V, —= fd'rt: —xx(x)'+tx(x(:) (:H:) .
cr(r)

(6.2c)

The first is a Dirac version of the familiar virial theorem
of nonrelativistic quantum me:hanics. In that case, it is
equivalent to energy minimization with respect to the
length scale of the wave function. The second is the
volume integral of the field equation for o. It corre-
sponds to the second time derivative of the cr field; the
first derivative vanishes for both unprojected and project-
ed coherent states. The third is a field-theoretic analogue
of the first. We have included factors of (:H:) ' in
(6.2a) and (6.2c) so that all of these quantities are dimen-
sionless,

In the first two cases, commutation does not destroy
normal ordering, while in the last case it does. The com-
mutator (6.2c) should then be written as a normal-ordered
pie:e plus divergent terms. With cuk given by (3.4), the
divergent terms cancel, leaving only the finite part.

Each of these quantities vanishes in the MFA, if one
has obtained self-consistent solutions. Similarly, they
vanish for the unprojected coherent state constructed
from the MFA solutions. However, none of these quanti-
ties vanishes automatically in the projected state. Hence
they can be used as tests of our solutions and approxima-
tions.

VII. VARIATION AFTER PROJECTION

It is well known in nuclear physics that energy varia-
tion before projection can be a dangerous procedure. In
the present case, the expectation value of the energy in the
projected coherent state depends upon the functions u (r),
u(r), and cro(r) where u and u are the upper and lower
components of qu(r). A full variation with respect to all
of these functions would lead to a set of coupled integral
equations. Solving these exactly appears to be prohibitive-
ly coinplicated at present. Instead, we utilize the func-
tional forms of the MFA solutions, now denoted with a
tilde, and rescale them as follows:

oo(r) —oy ——g[oo(r/A, ) —cr vj, (7.1a)

u (r) =u(r/5), u(r) =yu(r/5) . (7.1b)

The normalization of qo must, of course, be readjusted.
We have also tried an alternative parametrization of oo,
using a Fermi-function form,

o~
(7.2)oo(r) —ov= —g

P' —To]+exp

r —gr r, f'K r

f d r:cr(r)n(r. ): .

Computation of these operators with:H: leads to the cor-
responding virial theorems. These require the vanishing
0

This allows independent variations of the surface thick-
ness and radius of era

In the general single-mode state, we have the F„, de-
fined by (5.2), as variational parameters, as well as those
just described.

As noted above, the commutation relations (2.4) are
satisfied for any set of cuk, and the choice (3.4) is not
necessarily the best for the nucleon state. Another choice,
say, Qk, defines operators Az which are linear combina-
tions of ai, and at, as in Eq. (3.6). The corresponding
vacuum state

~
Q), defined by

Ai
~
Q) =0 for all k, (7.3)

is a Gaussian wave packet in functional space. Its princi-
pal axes are given by the plane-wave expansion functions,
and its widths are Qq

' . In general, it will be nothing
like the physical vacuum. This is in contrast with the
vacuum state defined using (3.4). That expansion basis di-
agonalizes the Hamiltonian for small oscillations about
the mean o field in the vacuum, and it minimizes the en-

ergy of the vacuum. Hence, at least for weak coupling, it
can be regarded as an approximation to the physical vacu-
um.

The coherent state used to describe the nucleon is a dis-
placed Gaussian wave packet of the same form as

~
Q),

but centered on the classical field configuration ou(r).
The general single-mode state defined in Sec. V allows for
multiplication of this Gaussian by a more general func-
tion of the chosen single mode.

A better starting point for the nucleon state would be to
expand the o field in distorted waves. However, we have
committed ourselves to a plane-wave basis in order to fa-
cilitate projection. In choosing a coherent state with
Qk&cuk to describe the nucleon, we have changed the vac-
uum far from the nucleon, and produced an infinite shift
in the vacuum contribution to the energy. Our procedure
is to calculate only the (finite) differences in energies, and
other properties, between the nucleon and the (unobserv-
able) vacuum state,

~

Q).
Varying the energies of the nucleon and vacuum states

independently would lead, in our approximations, to the
choice (3.4) for both states. This is because the nucleon
state is an empty vacuum except for a localized distortion
in the vicinity of the nucleon. To try to improve the
description of quantum fluctuations in the vicinity of the
nucleon, we invoke the variational principle for the differ-
ence in energy between the nucleon and the vacuum.
Since the energy of each eigenstate is stationary with
respect to arbitrary variations, so also is the energy differ-
ence, at least for independent variations of the parameters
used to describe both states. Here we constrain certain
parameters (the Qk) to be the same in both states —a
somewhat dangerous procedure. It is quite possible that
the energy difference is only weakly dependent on some
parameters, and hence that it extremizes for values of
these parameters which are far from those that would be
obtained by varying either of the energies separately. %'e
expect that the parameters for which this happens are
those associated with the unobservable vacuum, and so
should have little effect on the localized part of the nu-
cleon state. To test whether this procedure is meaningful
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we use the virial theorems of the previous section. As
shown below, optimization with respect to the Qk leads to
significant improvement in the satisfaction of the virial

theorems.
In normal ordering the Hamiltonian (2.1), we not only

subtract off the energy of the vacuum state
~
Q), we also

renormalize the coefficients of the linear and quadratic
terms in U(o). (The renormalized coefficient of the
linear term is set to zero. ) To ensure that this procedure is
well defined and independent of the state we are studying,
we define our renormalized coupling constants a, b, and c
by normal ordering with respect to the physical vacuum

basis, defined by (3.4). When we normal order with

respect to the basis defined by Qk, the resulting Hamil-

tonian density can be written

A =Pt( ia V—+gPo)f+ ,'n +——,
~

Vo
~

+ der+ a:cr:—+ b:o:+—c:c—r:+K,l 3 1
(7.4)

d= ,'bb, —

with

(7.5b)

(7.6)

The constant c number part of the field, o v, satisfies the
equation

d+ acr v+ , bo v2+ ,—ccTv 0, ——— (7.7)

and so is not the same as the physical vacuum. The Qk-
dependent constant K drops out of the energy difference
between the nucleon and vacuum states.

We choose the Qk to be such that Qk amok as k~ 00

sufficiently rapidly so that 5 is finite. For example, the

choice Qk =m +k (m+m~) leads to a logarithmic
divergence for b„so that a cutoff is needed. A possible
parametrization would be Qk =m for k & k, and Qk ——cok

for k ~ k, . A more convenient two-parameter form is

Qk ——cok +5m exp( —k Ik, ) . (7.8)

%e emphasize that in variation we seek only a station-
ary point, not necessarily a minimum, in the energy.
%ithin our approximations, the Hamiltonian is not
bounded from below. As already noted we are calculating
the difference of two energies. Furthermore, the quark
Dirac energies are unbounded from below, since we are in-
cluding only the valence quarks. We do find that varia-
tion of most parameter results in minima, but there are
cases where we find maxima.

where the barred quantities are related to the unbarred

(vacuum) quantities by

(7.5a)

TABLE II. Parameter sets for the soliton bag model. Also
shorn are the corresponding glueball masses, m, and vacuum
expectation valves of the o field. A11 dimensioned quantities are
in appropriate powers of fm (I fm ' = l9'7 MeV).

Set I

30.0
—610.0
4000.0

10.0
5.99
0.314

Set II

0.0
—105.14
1000.0

9.04
4.07
0.315

Set III

0.0
—58.52
500.0

9.16
3.21
0.321

quiring that the MFA energy (with the spurious c.m. en-

ergy of the quarks subtracted off, see below) fit the aver-
age of the observed N and 6 masses, and that the proton
charge radius match the experimental value of 0.83 fm.
These conditions fix two of the parameters. The remain-
ing two parameters are not well determined, and a fairly
wide range of choices can give reasonable agreement with
other nucleon properties. Eventually we intend to refit all
the parameters, including both center-of-mass corrections
and gluonic interactions. 3 For the present, we give only
an indication of the parameter dependence of the c.m.
corrections to the energy, as well as more detailed results
for the sets of Table II. In the detailed results we include
calculations for mesons (two quark states) as well as for
baryons (three quarks).

In addition to the results of projection and variation, we

present an estimate of the mass based on the inequa1ity~

(8.2)

This should be a reasonable estimate provided that the
c.m. effects are small and so the localized state can be re-
garded as an approximate energy eigenstate. The quark
contribution to (P ) for a localized bag state is

(Pv ) = —3fd r qo(r)V q(r) . (8.3)

The o contribution to (P ) cannot be calculated in the
usual MFA since P contains n(r) [see Eq. (2.5)]. Howev-
er, we noted in Sec. III that the unprojected coherent state
is equivalent to the MFA. Hence the u piece can be cal-
culated in the coherent state approximation from

(8.1)

where the expectation values are taken in the localized
MFA state. If we assume that the state is approximately
an eigenstate of H, then we can replace (H ) by (H ) to
obtain

The Hamiltonian for the Friedberg-Lee model without
gluons, (2.1), contains four adjustable parameters. Here
we give detailed results for three representative parame-
ters sets, shown in Table II. The sets were chosen ' by re-

(P ~) —= fd'k k' f '
2

(8.4)

where fz is given in terms of the mean cr field by (3.12),
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TABLE III. Baryon energies {in units of fm ) obtained by projection and variation, for parameter

set I. Also listed are the percentage reduction from the MFA energy, and the three virial tests of (6.2).
The results shown are for the unprojected MFA, the estimate (8.2) of the recoil-corrected mass, projec-
tion without variation, projection with variation of the parameters in (7.1}, projection with variation

only of 5m in (7.8), and projection with full variation of both (7.1) and (7.8). The coherent state results

are labeled CSA; the general single-mode state, GSM.

Approximation

MFA
((H )2 (p2) )1/2

Projection

Variation

5m only

Full variation

CSA
GSM
CSA
GSM
CSA
GSM
CSA
GSM

6.621
5.060

4.758
3.653
4.115
3.690
4.076
3.207
3.025
2.983

23.6

28.0
44.8
37.8
44.3
38.4
51.6
54.3
54.9

Vl

0.0

—0.152
—0.302
—0.350
—0.404

0.005
—0.174
—0.048
—0.163

V2

0.0

4.133
—5.554

—12.154
—4.274

9.564
0.749

—13.640
2.925

V3

0.0

—0.237
—0.651
—1.408
—0.859

0.167
—0.289
—1.264
—0.781

and the frequencies of (3.4) are used. The parameter sets
of Ref. 40 were chosen so that the mass (8.2), including
only the quark piece of (p ), fit the average of the N and
b, masses. However„ the quark and o terms are of similar
size, and so both should be included.

For comparison, we show also the mass obtained, in the
nonrelativistic limit, by projecting the soliton (described as
a coherent state) onto a state of nonzero momentum. The
projected state is

~
p) =fd'x e' '"

~
x) . (8.5)

Expanded in powers of p, the energy of this state is

(p ~:a:(p)™2M'

where M is the mass from Eq. (4.12), and M' is given by

ZZ ——'Z H —M —'Z

fd'z( ——,'zi —,'z)

(8.6)

(8.7)

For the parameter sets I—III, the baryon M"s are,
respectively, 4.824, 6.886, and 7.926. The M' of the
meson for set III is 6.883. These numbers should be com-
pared with the energies in the third lines of Tables
III—VI. The differences between these two masses illus-
trates the "Peierls- Yoccoz problem" referred to in Sec. IV.

Projection onto states of different momenta does not give
states with the same internal structure, and so their ener-

gies are not related by the appropriate Lorentz boosts.
Hence me have adopted the procedure described in Sec.
IV, of boosting the zero-momentum state to produce ap-
proximate four-momentum eigenstates. These do have
the correct energy-momentum relationship, at least for ex-
pectation values.

Figures 1 and 2 show the effects of projection after
variation for a range of parameter sets. For comparison,
they show also the mass obtained from the MFA results
with Eq. (8.2). For parameter sets with c&10 the c.m.
corrections are sufficiently large as to make the approxi-
mations we use questionable. In fact, for parameters with
c-10 variation after projection can lead to negative
values for the baryon mass. Hence we restrict our atten-
tion to sets with smaller values of c, corresponding to
"softer" bags. A similar preference for soft parameters
was found in calculations which include gluon-exchange
interactions. 3 These sets lead to values of rn which are
comparable to estimates of the 0++ glueball mass from
lattice gauge calculations.

We have carried out projection followed by variation
for both coherent states and general single-mode (GSM)
states. The results of calculations of the energy and three
virial theorems are shown in Tables III—VI, for the pa-

TABLE IV. As Table III, but for parameter set II.

Approximation

MFA
((0 )2 (p2) )1j2

Projection

Variation

5m' only

Full variation

Energy

6.431
5.042
5.232
4.303
4.914
4.731
4.118
3.324
3.785
3.683

21.6
18.6
33.1

23.6
26.4
36.0
48.3
41.1

42.7

Vl

0.0

—0.145
—0.395

0.215
0.208
0.173

—0.171
0.189
0.169

V2

0.0

3.589
—2.271
—9.138
—6.784

7.105
1.314

—9.111
—7.545

V3

0.0

—0.074
—0.494
—0.682
—0.602

0.042
—0.078
—0.406
—0.525
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TABLE V. As Table III, but for parameter set III.

Approximation

MFA
((I)'- &

p'&)'"
Projection

Variation

5m2 only

Full variation

CSA
GSM
CSA
GSM
CSA
GSM
CSA
GSM

Energy

6.460
5.044
5.406
4.639
5.187
5.093
4.184
3.417
3.886
3.847

21.9
16.3
28.2
19.7
21.2
35.2
47.1

39.8
404

Vl

0.0

—0.156
—0.400

0.239
0.221
0.182

—0.113
0.195
0.199

Vp

0.0

4.092
—1.078
—6.S06
—5.430

7.6S8
0.615

—6.744
—5.935

0.0

0.018
—0.408
—0.508
—0.503

0.099
0.062

—0.260
—0.308

rameter sets of Table II. Also, we give the results of an
unprojected GSM calculation for parameter set I. The en-

ergy is reduced from the MFA result by -5%, indicating
that the GSM state is very similar to a coherent state.
This is confirmed by the expansion coefficients shown in
Table I. In the calculations we used terms with up to 12
e quanta; this is more than adequate for convergence.

Simple projection without variation reduced the energy

by about 15—30% in the coherent state approximation.
This is comparable to the estimates of c.m. corrections us-

ing (8.2). Much of this reduction comes from the term in
the energy which depends on the conjugate momentum:

( Jd'r:~(r)2:) &0 . (8.8)

This term vanishes in the unprojected coherent state but
after projection it gives a negative contribution. [Al-
though n(r) is a positive-definite operator, it contains a
divergence. After removal of this by normal ordering, the
net contribution from this term is negative. ] Variation of
the projected energy with respect to the four parameters
defined in (7.1) leads to a further 10—15 % reduction.

For the GSM state, solution of the projected equations
(5.9) implicitly includes variation with respect to a param-
eter analogous to g in (7.1a}. Hence the reduction in the
energy due to the projection is greater than for the
coherent state: —30—45 %. Further variation with

respect to the other three parameters of (7.1) leads to rela-
tively small changes in the energy.

The results just discussed were calculated keeping the
frequencies in the expansions (3.1}and (3.2) fixed to their
vacuum values, (3.4). Tables III—VI also give results of
calculations in which the frequencies Qk were treated as
variational parameters, as discussed in Sec. VII. A Gauss-
ian form was used, as in Eq. (7.8). The results shown are
for k, =16 fm ', but the results are essentially iud@in-
dent of k, for k, ) 8 fm '. This variation leads to a fur-
ther reduction in the energy of 10—20%, giving a total
reduction from the MFA energy of 40—55 %.

Results for the meson state (Table VI) are qualitatively
similar, but the overall reduction in the energy is some-
what larger than for the baryon with the same parameter
set.

The stationary points of the energy are found by using
a multidimensional Newton-Raphson method. As noted
above, these stationary points are not necessarily minima,
and in some cases we find maxima or inflection points. In
most cases the method converges quickly to the stationary
point. However, inflection points can present problems
for the Newton method. The changes in the variational
parameters from their mean-field values can be signifi-
cant, up to -40%. Some representative results are shown
in Table VII.

TABLE VI. Meson energies obtained by projection and variation, for parameter set III. For ex-
planation see Table III.

Approximation

MFA
((H )2 (p2) )1/2

Projection

Variation

5m2 only

Full variation

CSA
GSM
CSA
GSM
CSA
GSM
CSA
QSM

4.920
3.467
3.895
2.810
3.523
3.387
2.689
1.718
2.787
2.719

29.4
20.8
42.9
28.4
31.3
45.3
65.1

43.4
44.7

Vl

0.0

—0.296
—0.782

0.393
0.428
0.157

—0.467
0.248
0.381

V2

0.0

3.510
—1.183
—6.136
—4.293

5.815
1.339

—8.153
—7.143

V3

0.0

—0.073
0.621

—0.741
—0.624

0.069
0.014

—0.050
0.077
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TABLE VII. Effects of variation after projection on the nu-

cleon wave function. The results shown are for a restricted vari-
ation in which 5 was held at the same value as A, . For explana-
tion of the variational parameters, see Eqs. (7.1) and (7.8). The
parameter set III was used. No value of ( is quoted for the
GSM results, since the GSM equations implicitly include an
analogous variation.

Approximation 5m' (fm ')
O

U 2
CD

projected l
Q

IQ3 IQ

! ! ! ! ! ! ! !

C

FIG. 1, Dependence of the projected nucleon energy on the
model parameter c (long-dashed curve). For comparison, the
unprojected MFA energy is shown by the sobd line. Also shown
is the nucleon mass calculated from Eq. (8.2) (short-dashed
curve). The parameter sets used all have b'/ac =3.0,

~e are free to readjust the model parameters a, b, c,
and g in order to obtain physically meaningful results. It
is easy to rescale all lengths in the model in order to ob-
tain agreement with (say) the baryon mass (the mean of
nucleon and b, masses). The model parameters have the
following dimensions: a-L z, b-L ', c and g are di-
mensionless, and the energy is, of course, L '. In a sub-
sequent paper, the parameters will be adjusted to yield the
experimental baryon mass and nucleon size, as well as best
fits to other properties. Therefore we are not concerned
with absolute energies here, but seek rather "good" solu-
tions to the field equations. The virial theorems provide a
control (necessary but not sufficient) on the quality of the
solutions.

As noted, the three virial theorems are satisfied identi-
cally in the MFA. Projection destroys this satisfaction.
Variation of the energy with respect to the various param-
eters lowers the energy but does not solve the virial prob-

MFA
Variation

5m only

Full variation

1.0
CSA 1.174
GSM
CSA 1 0
GSM
CSA 0.962
GSM

1.0 1.0
1.077 1.354
1.048 1.339
1.0 1.0
1.0 1.0
1.461 1.158
1.464 1.111

0.0
0.0
0.0

—2.297
—1.491
—1.549
—1.494

In the context of the soliton bag model, the wave func-
tion for a localized state of quarks and the quantum cr

field is constructed. The o part of the wave function is ei-
ther a coherent state or a general single-mode state. The
former is closely analogous to the mean-field approxima-

I ! I I
I

I I I I T I I I

lem. Variation of cok through 5m, as in Eq. (7.8), leads
to a distinct improvement in the virial tests. Further-
more, as can be seen in Fig. 3, all three virial tests pass
through zero in the vicinity of the (very flat) energy
minimum. Unfortunately, the three do not pass through
zero simultaneously. One can hope that they mould have
a coincidence in a higher-dimensional parameter space.
Note that 5m =0 is neither an energy minimum nor a
particularly good point for the virial tests.

After variation with respect to the several parameters,
there is little difference between the coherent state and
general single-mode approximations.

IX. SUMMARY

! ! ! ! !6 ! f ! ! ! ! l !

5—

+&Ho —&P &

pro)ected X

Q
lQ

! ! I ! ! ! ! I

IQ

FIG. 2. As Fig. 1, but for the meson state.

)Q5

—2
8 mz (frn ~)

FIG. 3. Dependence of the projected energy and virial
theorems on the parameter 5m' [see Eq. {7.8)]. The results
shown are for parameter set III. The cutoff k, in Eq. (7.8) was
taken to be 16 fm
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tion, but it does contain quantum fluctuations.
An eigenstate of zero momentum is constructed by pro-

jection, which is effected by integration over the generator
coordinate describing the center of the bag. The energy is
evaluated by taking the expectation value of the Hamil-
tonian in the projected state. Since this expectation value
is infinite, we inust subtract off the energy of a uniform
vacuum state to obtain the physical energy of the baryon.
This energy difference is varied with respect to various
parameters of the wave function. Stationary points in the
energy variation are usually minima, but maxima and in-
flection points occur for some parameters, since the model
Hamiltonian is not positive definite. (This is clear in the
quark sector, where only valence quarks are considered. }

The variations which we find to be important include
the radius and depth of the "well" in the cr field, and the
radius and ratio of upper to lower components of the
quark wave function. For the general single-mode state
the Fock-space expansion coefficients are also variational
parameters. In addition, we have studied variation of the
frequencies of the plane-wave modes used to expand the
quantum n field. Although such a variation affects both
the vacuum and hadron energies by a term proportional to
the volume of all space, only the energy difference is
evaluated and so the results are finite. The Qk variation
is found to be important to the satisfaction of three virial
theorem s.

The objective has been to construct the best wave func-
tion of zero momentum. A measure of the quality of this
wave function is the satisfaction of virial theorems. Three
virial theorems are satisfied reasonably well, considering
the limited space of variations. The final energy obtained
shows a reduction of 40—50% (depending on the model
parameters) from the mean-field value. Since we have
varied after projection, this reduction includes more than

just recoil corrections.
Variation after projection, followed by boosting to a

state of finite momentum, avoids the Peierls- Yoccoz prob-
lem: the relativistic energy-momentum relationship is
guaranteed, at least for the expectation values.

The method described here improves on those in Refs. 5
and 35, since it involves construction of momentum eigen-
states. The present paper outlines only the projection onto
zero-momentum states and the variational method applied
to these states. A subsequent paper will explore hadron
properties calculated using projected and boosted soliton
states, in which case, recoil corrections are automatically
included. The properties to be considered include elec-
tromagnetic form factors, in particular, charge radii and
magnetic moments. Although we find large reductions in
the nucleon energy, due to projo:tion and variation, these
should be taken only as a measure of the importance of
"recoil corrections*' to the energy. The full implications
of our results for nucleon properties in the model will not
be clear until this program is complete. In particular, the
model parameters will need to be refitted, to obtain the
correct nucleon energy and size. Other properties, such as
magnetic moments and g„/gi, will then provide a test of
whether the model can adequately describe physical nu-
cleons.
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