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A Poincare-invariant formalism for the scattering of three distinguishable scalar particles is

developed. Lorentz invariance in the form of velocity conservation and a parametric relation be-

tween the two- and three-body off-shell continuations in energy are introduced in order to satisfy
unitarity and physical clustering. The three-body-invariant probability amplitude is derived from
the two-body transition matrix elements.

I. INTRODUCTION

We present a self-consistent, relativistic scattering
theory for three distinguishable scalar particles of finite
mass. From arbitrary pairwise interactions satisfying
Lorentz invariance, individual particle mass conservation,
and unitarity we derive integral equations leading to the
probability amplitude for scattering in the full three-body
system. The treatment satisfies several important cri-
teria. '

(1) Relativistic invariance and four-momentum conser-
vation. The equations, derived in an arbitrary Lorentz
frame defined by an overall velocity, lead to an invariant
probability amplitude. Four-momentum conservation is
recovered in the on-shell limit as the product of energy
conservation and velocity conservation.

(2) Two- and three-particle unitarity. The two-body in-

put is constrained to satisfy unitarity. The form of the
off-shell continuation guarantees that three-body unitarity
follows.

(3) Unambiguous off-shell continuation. A set of pa-
rameters, corresponding to asymptotic single-particle en-
ergies, is introduced in order to write the relation between
two- and three-body off-shell variables in terms of exter-
nal quantities, independent of the integration over inter-
mediate states. Both systems are then effectively
dispersed in terms of the same variable, the three-body to-
tal energy.

(4) Proper cluster decomposition. Clustering, in the
physical sense, is satisfied. If the interaction of one parti-
cle with each of the others vanishes, the solution decom-
poses into the product of a spectator and a two-particle
scattering state.

(5) Correct nonrelativistic limit. In the low-energy limit
the equations satisfy the same physical criteria as the non-
relativistic Faddeev equations.

The conditions of relativistic invariance, clustering, and
unitarity place severe restrictions on the form of a scatter-
ing theory. In the three-body problem, the occurrence of
successive pairwise interactions in different center-of-
momentum frames leads to a consideration of the Lorentz
transformation properties of off-mass-diagonal matrix ele-
ments. Clustering and unitarity point to the need for a
parametric relation between the two- and three-body off-
energy-shell dispersion variables. These considerations are

treated here in the simplest possible context —the scatter-
ing of scalar particles.

Dirac first showed that several different forms of
Poincare-invariant relativistic dynamics are possible.
These dynamics are distinguished by the choice of invari-
ant hypersurfaces on which initial conditions are speci-
fied. The usual choice is the "instant form" in which the
hypersurface is t =const. In this case the generators of
space translations and rotations are kinematic operators,
while the dynamics is contained in the generator of time
translation and the generators of Lorentz boosts. We uti-
lize here the "point form" corresponding to the hypersur-
face t —x =const&0. Then the six generators of the
Lorentz group are kinematic, while the dynamics is con-
tained in the four-vector P. As a result, interactions are
Lorentz invariant but do not commute with the generators
of space-time translations. Since we are constructing a
scattering theory that connects two-body t matrices to
three-body t matrices, without explicit reference to the
spatial form of the two-body potentials, the "point form"
is the most natural for our purposes.

The various basis states needed to develop the scattering
theory are defined in Sec. II. Section III reviews the fun-
damental operator relations and the Faddeev operator
decomposition used to ensure well-defined integral equa-
tions. Section IV establishes the crucial connection to the
two-body input. Here velocity conservation of the transi-
tion operator matrix elements is introduced in order to
separate Lorentz invariance from the off-shell continua-
tion in energy. Two-body dispersion is related parametri-
cally to three-body dispersion. Section V presents the re-
sulting integral equations. The connection to physical ob-
servables is described in Sec. VI, where the invariant prob-
ability amplitude is obtained from the solutions of the in-
tegral equations. Section VII summarizes the conclusions.

II. COVARIANT STATES

Consider a system of three distinguishable scalar parti-
cles with conserved, nonzero real masses and no internal
degrees of freedom. States within this system transform
via a unitary representation of the ten-dimensional Poin-
care group U(l, a) for Lorentz transformations 1 and
space-time translations a:
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U(li, ai) U(l i,a i )= U(lil i,ay+ lpga i ) . (2.1) 8. Three-particle states

1

IPI')'/'
With u =(1+

I
u

I
)', we define a four-vector velocity

(2.2)

For convenience, we write U(1) for U(1,0).
A general Lorentz transformation 1 can be written in

terms of a pure Lorentz boost b and a pure rotation r.
The boost is characterized by a velocity P, from which we
define a relativistic velocity

Three particles can be grouped into a spectator a and a
pair (a+,a —), with (a,a+,a —) cyclic. The subscript
A is used to label quantities pertaining to the pair.

The 9 degrees of freedom of the three-body system can
be represented in terms of collective variables such as the
invariant mass of the system

W=[(ki+ki+kp) ~ (ki+ki+ks)]'

the relativistic four-velocity of the system
u —=(u', u) (2.3)

u =(ki+ki+ki)/W,

I
p(u) &=U(b(u))

I
1I'& . (2.4)

which satisfies u u = 1.
A general quantum state

I P& can be used to define a
new, boosted state

the two-body invariant masses

w„=[(k,++k, ) (k, ++k, )]'~i,

and the two-body relativistic four-velocities

I m„u, & =—U(b (u, ))
I
m„0& .

The four-momentum of this state is

kg =mgug

(2.5)

(2.6)

Since the individual particle masses are fixed, we adopt
the convenient notation

Ik, &—= Im„u, & .

%e choose the normalization

0

(k,
I
ka &=,5'(u, —u,')=2@,5'(k, —k,')

P7ly

and completeness

(2.7)

(2.8)

A. Single-particle states

Quantities pertaining to a particular particle are labeled
with a lower case roman letter or numerical subscript. A
single-particle momentum eigenstate of mass m, and
velocity u, is defined from a standard rest state of the
same mass:

u„=(k,++k, )/wz .

uz is used to represent the four-vector u& as observed
from the three-body center-of-momentum frame. In par-
ticular,

0
Ug =Q 'Qg (2.10)

pz is used to represent the magnitude and pq the direc-
tion of the three-momentum of particle a + as observed
from the center of momentum of the (a+,a —) subsys-
tem.

The specification of any nine independent variables is
sufficient to select a unique three-body momentum-space
configuration. The remaining variables are then fixed as
functions of these original nine variables and the three
conserved individual particle masses. This functional
dependence is not shown explicitly when it is clear from
the context.

The full three-body Hamiltonian H is assumed to
decompose into a noninteracting term plus a sum over
three asymptotically pairwise interactions

H =H"'+ g H„'" . (2.11)

= f d k, 5(k, m, )8(k, )Ik, &—(k, I,
where@, =(m, + Ik, I

)'

(2.9)

This leads to the use of several different types of three-
particle states in our treatment.

An eigenstate of the noninteracting Hamiltonian H' ' is
the direct product of three noninteracting single-particle
states, one for each particle in the three-body system:

H"'
I k„k„k,&

=E"'
I

k „k,,k, &, Z'"=e, +~,+~, ,

2Q~
(ki, k2, k3

I ki, k2, k' &= g 5 (u, —u,')=u g(w~, u„)5'(u —u')5 (v„—v'„)5(w~ —w„')5 (p„—p'„),
a=& ~a

(2.12)

where9

Su„( W —w„u„)0 0

Pw~ u~)=
~'~~'s~

Corresponding to each free state is the equivalent boun-

dary state of three widely separated, asymptotically nonin-
teracting particles:

H' 'I @0(ki,kz, ki); Wu &=E' 'I 40(k»ki, k3)pWu &

(2.13)
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where the total four-momentum P = Wu is a convenient
label' and E' '= Wu .

The eigenstates of Hz H——' '+Hz ' form a complete set
of clustered channel states. Specifying each state by its
overall velocity u and the characteristics of the asymptoti-
cally interacting two-body subsystem gives

Hz
~
u, uz, fq(w, g) }=Eq

~

u, u~, Pq(w, g) },
Eg ——8'u

W=wzvz+(m, +wq
~
vq

~
)

(2.14)

1{&(w,ri) represents a two-particle state of invariant mass
w„and internal quantum numbers summarized by the
single parameter gz. For two-particle scattering states
the mass w is a continuous variable. For two-particle
bound states w is one of a discrete set of bound-state
masses pz. The two types of states are orthogonal, with
norrnalizations

where

( u, u A, PA {w, 'g ) I
u u A, 4A ( w, 'g ) }

=u co( gw, gv}5 (u —u )5 (vg —vg )5(wg, wg )5 g

~A ~~A

(2.15)

pgg(pg, vg ) bound,
0

0
—,{p„/wz )g( wz, vz ) scattering,

5, bound,

5(wg, wg)=
'

5(wz —wz ) scattering .

The overlap of these clustered channel states with nonin-
teracting states defines wave functions

( k), k2, k3
~
u, u„g„(w,g ) )

=u [g(wq, vz )co(w„',v„)]' 5 (u —u')

X5'(v~ —v'„)P„(w,p ~

w', rl'), (2.16)

where

4&(w, p I
p', ri') bound,

q(w, p w', ri')= '

&PAL (w, p ~

w', g') scattering .

The wave functions are complete and orthonormal. With
'f dw„representing a sum over the bound-state masses
and an integral from mz=(m, ++m, ) to oo over the
scattering state energies,

g 'f dw„"y„(w,p I

w" n"W~(w ~p I
w",g")=5(wz —wi)5 {pz —pa),

~A

Wg P g g K,P P, 'g g W ~P P, 'g = r r

f."dw" f dp"W:{w",p"
I
w, n)W. (w",p"

I
w'. ~')=5(w. -w')5„„„„.

f ~~~ f ~t~w~'~~", r"
l

~ v~c~~~ r. ".

(2.17)

Below the scattering threshold the summation over 3}z ex-
tends only over quantum numbers corresponding to exist-
ing bound states.

Boundary states containing a bound pair of particles are
equivalent to the bound clustered channel states

=E~
I
~'~{u,u~, 4~(p, n)); Wu &,

(2.18)
Eg ——8'u

The eigenstates of the full Hamiltonian H represent the
solution of the physical problem

H ~%'0(k, ,kz, k3);Wu }=E
~
+O(k„k2, k3) Wu }

O'A {u,uq, P~(p, , 'rl)}; Wu }, (2.19)

Here k~, k3, and k3 are the asymptotic momenta of indi-
vidual particles and uz is the asymptotic relativistic velo-
city of the bound pair.

The symbols ~4;Wu) and
~
4;Wu) are used to

represent general boundary and fully interacting states,
respectively, with asymptotic limits containing either
three free particles (a=0) or a bound pair with a free
spectator (a =A ).

III. SCATTERING OPERATORS

To solve the physical scattering problem, the exact
eigenstates of the full three-body Hamiltonian are ex-
pressed in terms of the asymptotic boundary states with
corresponding momenta. The standard techniques of
scattering theory give
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~

40-'(ki, kz, kz); Wu )

= lim (+is)R (Z+ie)
~
C,(k, ,kz, k, ); Wu ),

e—+0
(3.1)

~

%z-'(u, u„,Pz(w, rt)); Wu )
= lim (+is)R (E+i E)

~
4&(u, uz, &pal(w, zl)); Wu ),

p~o

The components satisfy

TAzi(Z) 5ABTA(Z) y 5ADTA(Z)R (Z)TDB(Z) i

(3.15)

where T„(Z), the transition operator for the scattering
problem generated by the Hamiltonian Hz ——H' '+H~~»',

satisfies

R(Z)= l
(3.2)

is the fully interacting resolvent. We also define the
noninteracting resolvent

T„(Z)=H„'"-H„'"R"'(Z)T„(Z),
Rg(Z)=R' '(Z) —R' '(Z)Tg(Z)R' '(Z),

T„(Z)=H„'"-H„'"R„(Z)H„'",

(3.16)

(3.17)

(3.18)

R"'(Z) =

and the channel resolvents

(3 3) TA (Zi ) —TA (Zz )

=(Zz —Zi)Tw(Zi)R' '(Zi)R' '(Zz)Tw(Zz) .

Rg(Z}= 1

A

All resolvents satisfy the Hilbert identity

(3.4)

and

R (Zi ) R(Zz) =—(Zi —Zz)R (Zi )R (Zz)

R'(Z) =R(Z') .

(3.5)

(3.6)

Several relations follow directly from the resolvent defini-
tions:

(3.19)

The Freedman, Lovelace, and Namyslowski (FLN) proof
of unitarity' demonstrates that the unitarity of T(Z)
(3.13) follows from the unitarity of Tz(Z) (3.19).

Tz(Z) expresses the scattering of two particles in the
presence of a third, asymptotically noninteracting particle.
The relation of Tq(Z) to the purely two-body scattering
problem is the central issue of this treatment. It is dis-
cussed in Sec. IV.

To obtain integral equations with fully connected ker-
nels, Eq. (3.15) for T„tt(Z) is iterated once. Defining the
operator W(Z) and its coinponents Wza(Z) through

R (Z) =R"'(Z)—R"'(Z) g H„'"R (Z),

R (Z) =Rg(Z) —Rg(Z) g 5gttHtt 'R (Z),
B

Rg(Z) =R'0'(Z) —R' '(Z)Hg 'Rg(Z),

(3.7}

(3.8)

(3.9)

W(Z) = g Wga(Z),
A, B

Tati(Z) =5wtt Tw (Z)+ Wwa(Z),

glUes

(3.20)

(3.21)

where 5gtt = 1 —5gzi ~

The three-body transition operator T(Z) is defined to
satisfy a Lippmann-Schwinger~ '-type equation:

uzi(Z) =—5ga Tg(Z)R' '(Z)Ttt(Z)

—+5gg)Tg(Z)R' '(Z)WDtt(Z) . (3.22)

T(Z) = gH„"'—gH„'"R'"(Z)T(Z) .

Then

(3.10)
The solution of this equation yields T(Z), which then
through (3.11) gives the full resolvent R (Z). The connec-
tion to the physical probability amplitude is discussed in
Sec. VI.

R(Z)=R' '(Z) —R' '(Z)T(Z)R' '(Z)

T(Z)= g Hg ' gH„' 'R (Z) g—Htt
' .

(3.11)

(3.12)

The Hilbert identity for the resolvents (3.5) leads to a uni-

tarity relation for T (Z)

IV. TWO-BODY INPUT

The solution to the two-body problem is the input for
this formalism. The transition operator t (z},generated by
a Hamiltonian h =h' '+h' ' acting in a two-body space,
satisfies

T(Zi )—T(Zz) =(Zz —Zi )T(Zi )R' '(Zi )R' '(Zz)T(Zz). t(z)=h' ' —h' 'r' '(z)t(z), (4.1)
(3.13) r(z)=r' '(z) r' '(z)t(z)r' '(z), — (4.2)

As it stands, the Lippmann-Sch~inger-type equation
(3.10) for T(Z) yields an integral equation with a non-
compact kernel and therefore has no unique solutions. In
order to proceed, T(Z} is decomposed using Faddeev's
method into

t(z) =S"' Z"'r(z)a"', —

t(zi) t(zz)=(zz —zi)t(zi—)r' '(zi)r' '(zz)t(zz),

where

(4.3}

(4 4)

T(Z) = Q T„tt(Z) . (3.14) r(z)=, r' '(z)=Co)

s —z'
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The connection between t„(z) and TA(Z} cannot be writ-
ten in operator form, since these two operators act in dif-
ferent Hilbert spaces. Instead, a matrix element relation is
sought which satisfies covariance, unitarity, and cluster-
ing.

At the two-body level, I.orentz invariance and unitarity
restrict the form of the matrix elements of t(z) (Ref. 14).
Lorentz invariance requires that the scattering process not
alter the velocity of the center of momentum (see the Ap-
pendix). Extracting phase-space factors gives

& k. + k.- I
tA(z) lk'+ k'- &=(uA }'(wAwA) '"(16wAwA/pApA)'"&'(uA —uA)~A(w p I

w' f '~»
where

~A =z/uA ~

0

(4.5)

The function rA depends on the indicated center-of-momentum variables, the off-shell parameter 9A, and the conserved
individual particle masses m, +,m,

Unitarity (4.4) requires

~A(w f 1

w' f "~i)—~A(w f I

w' f', +z}=(~2—~i) f dwA f df A'~A(w f 1

w" f ";~i)

X „„rA(w"Ip
1
w, p', z) . ( .6)

WA —
i WA —

2

T(z) =-&A(z) . (4.7)

Therefore, the product of an energy-conserving 5 function
with a matrix element of TA(Z) must conserve both the
momentum of the spectator and the momentum of the
pair.

Both clustering and unitarity require the matrix ele-
ments of TA(Z) to be proportional to the function rA
Lorentz invariance requires the conservation of u. The
conservation of uA is also necessary to ensure the in-
dependent Lorentz invariance of the decoupled spectator
and the interacting two-body state in the clustering limit.

In order to connect three-body unitarity with two-body
unitarity a parametric relation must exist between Z and

This relation must reduce the three-body off-shell
behavior to that of the two-body problem. Defining ep"
to be a parameter equal to the physical asymptotic energy
of the spectator in the three-body center-of-momentum
frame, we write

N A ——(Z' —ep') /uA,

z'=z/u'.

The three-body unitarity condition (3.19) must reduce to
this same restriction.

Clustering is satisfied if the exact physical solution for
the case of a noninteracting third particle decomposes into
the product of a spectator plane-wave and a two-body
scattering state. When T~„+~(Z) and T~, ,~(Z) both
vanish, Eqs. (3.14), (3.21), and (3.22) give

This gives the correct on-shell limit:

WA ( W EII )/VA (4.9)

The linear nature of the resolvent denominator gives

(ki, k2, ki 18' '(Z) lki, k2, k3)

(ki, kz, ki
1
kI, k2, ki )8'u —Z

where

1
(ki, kz, kp 1

k'„k2, k j ),
u VA WA —NA

(4.10)

where

p( W, VA)=
a Pw

The form of the matrix elements of TA (Z} which satisfies
all the required conditions is

WA ——( W —ER~')/VA

By expressing the off-diagonal dependence of the matrix
elements of TA(Z) on vA through iuA instead of wA, the
restriction (4.6) on v „can be used to guarantee three-body
unitarity (3.13) through (3.19).

The three-body phase-space element can be written as

3 2 3

=(W /u )[p(W, )V) A'dWd u d u„dp„,
2u;

(4.11)

(ki, kz, kz
1
TA(Z) lk'&, kz, ki) =(u ) (WW') [p(W, V„)p(W', VA))' 5 (u —u')5 (vA —v'A)

y 8( w eu" mA u„}8—( w' —e~' rnAVA )v A—(w, p —
1

w ',p', ~), (4.12)



2344 LINDESAY, MARKEVICH, NOYES, AND PASTRANA 33

iuz ——( W —e~)/uz,
I q

——( W' —e~i ')iu„,
N& ——(Z' —e~')/u~ .

Since the matrix elements conserve bath u and Uz, the re-
lation between N „and Z is parametric. Using (4.10) and
(4.12) to evaluate the matrix elements of (3.19) reproduces
the two-body unitarity condition (4.6) written in terms of
the variables wz, iu z, and tu z, instead of ivq, iuz, and
iuz. The 8 functions in (4.12) provide the correct lower
integration limit.

Because of the three-body nature of the interaction H~ '

(see Ref. 6), Tz(Z) does not conserve the velocity of the
spectator off-energy-diagonal. However, as will be shown

in Sec. VI, (4.12) does lead to a Poincare-invariant S ma-
trix which clusters properly. In the limit (4.7}, M'„a' ——0
in (6.20). Then the substitution of (6.20) into (6.1) gives
an S matrix which conserves both the momentum of the
spectator and the momentum of the interacting pair.

V. INTECsRAI. EQUATIONS

Given the two-body inputs, (4.12) can be used in (3.22)
to generate a coupled set of integral equations for the ma-
trix elements of the components of W(Z). In these equa-
tions the e&" factors are formally treated as fixed parame-
ters. In Sec. VI we will show that the resulting matrix
elements are related to the physical probability amplitude
only for a unique choice of values for these parameters.

To simplify the calculation, define the functions M„a
by

(k),ki, ki
I

W~a(Z} 1k' k2 ki&=(u ) (WW'} [p(W u~)p(W' ua~)) & (u —u')e(W —~ ' —m~u~)

)&8(W' e$" —
maua

—)K za(W, v, p I

W', v', p', Z') . (5.1)

In addition to the indicated variables, P"„a depends parametrically on the individual particle masses and the factors eI)"",
eP', eP', and eP .

In order to write the integral equations satisfied by Mza another phase-space element is needed. Define the functions

co(W, iu, m)=Wui —Im; +W [(ur) —1]}'i

The phase-space element can then be written as

m(d Q) =( W,b /u )i( W,b, uq, va)d u d

vied

ua,
2QI

where

[co(W,b, vq, m)] [co(W~b, va, mb )] Bc@(W,b, uq, m, )

0
Ug

0 Bmg

Bcu(W~, ua, mb ) Ba(W,b, uz, ua, uz ua)

8mb aW.,

1
)( Wab~ua~ua) =0 0

4m, mb

K( W, ui, vg, gl'Qg) =m) +mj —W +2co( W u,lm))co( W, U,Jmj)QI'Qg,

and let WJ be the largest real root of the fourth-order equation in W

~(WJ, ul, vJ, ul uq) mb —0, k&——ij .

(5.2}

(5.3)

(5.4)

The driving terms in the integral equations have the form

~~a(W» pl W' «'.p'»')=i(W'b', u3, ua)[p(Kb' u~)p(W'b' ua)l'"8(W~' ~."' m~v~}e(Kb' —C —maua)—

)(r (g p I
g (I)

p
(I).~ ) r (g (I)

p
(I)

I
g p

.~ )
ab

where W~' is the largest real root of

a, ( b~W, „,uuuaz-u ) am, =0, c&a,b,—(I) 0 0' . ~ 2

(5.5)

iv '„'=(W'b' e~")/v„, )L) a'—=( W'b' —ep' )/ua, iu a ——( W' ep' }/ua, —N a ——(Z' —ep' )/ua .

p ~' and p ~' are specified through the four-vector

H( W, vl, vz, m;, mj. )=b '(vI)I —e,jk[c0(W, vj, mj )uj+ , ru(W, uz, m; )—vr]I,

where e,&k is the antisymmetric permutation symbol and b (vI ) is a boost from the center of momentum of the (i +,i —)
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system to the three-body center of momentum. Define

9'( W, vI, vJ,m;, m )
P'(W, vl, vJ, m;, mj )=

~

9'(W, vz, vJ, m;, m~ ) (

Then

~ {I) + {I) ~ 2 2 ~ {I) + {I) 2 2
p A ~ ( Wab svA &vB&ma gamb )~ pB ~ ( Wab svB&vA &mb trna

With integration to occur over d UD, the kernels have the forin

MAD( W, v, p i
W",v",p";Z') =i( W",UA, Ug )[p( W",UA )p( W",Ug )]'~

)(8(W E~~ —mAUA—)8( W —s'g —mDUD )1 A(N, p ~
N, p;~) w' —z'

where W" is the largest real root of

~~(W",UA, Ug, uA uD) —m, 2=0, e+a,d,

(5.6)

pA
——P(W",VA, VD, m, ,md ), pD ——P(W", VD, VA, mg, m, ), N'„'=(W" 6,"—)/UA .

Thus, the integral equations generated by the matrix elements of (3.22) have the form

MAB(Wv, p ~

W', v', p', Z')= —5AB&AB(Wv, p ~

W', v', p';Z')

-y. 5AD f d"D[~AD(W, v p~ W» p Z )~DB(W",v",p"
~

W', v', p', Z')],
D

where the dependence on the conserved single-particle masses and the sU" factors has been suppressed.

(5.7)

VI. PROBABILITY AMPLITUDE

The physical cross section is related in a well-known manner to the invariant probability amplitude W'+'(4,
~
4s , W)'

defined by

(%a ', Wu
~

%B+','W'u') =5aB(@a;Wu
~
4B, W'u')+2ni5 ( Wu —W'u')M'+'(4a

~
4B, W),

5 (Wu —W'u')=(uc/W2)5(W —W')5'(u —u') .
(6.1)

From (3.1) and (3.6)

( Va '; Wu
~

VIi+ '; W'u ' ) = lim lim ( es') (4a; W—u
~

R (E +i e)R (E'+i E')
~
4B, W'u ' ) .

e~O 4~0
(62)

From (3.11) and (3.13)

R (Zi )R (Z2) =R' '(Zi )[1—T(Zi )R' '(Zi )][1—R'"(Z2)T«2)]R'"(Z2) ~

R (Zi )R (Z2) =R' '(Zi ) 1+T(Zi )
1 —R"'(Z, )—

Z2 Z]
+R"'(Z, ) T(Z, ) R"'(Z, ) .

2 1

A. Elastic and rearrangement scattering

Consider first the case of elastic and rearrangement scattering. Each boundary state consists of one asymptotically
free particle and a bound pair. Define a set of operators QAB satisfying

R' '(Z) WAB(Z)R' '(Z)=RA(Z)QAB(Z)RB(Z) .

Then, by writing (3.5) as

R (Z2) R (Zi )[1 (Zi Z2)R (Z2)]

and using (3.17) and (3.21), the second term on the right-hand side of (6.3) can be written as

(6 4)
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R' '(Zi)T(Zi) R—' '(Z ) R' '(Z )= R' '(Zi)T(Zi)R' '(Zi)
Z2 Z1 Z2 Zl

gR"'(Z, )T„(Z,)R"'(Z, )

+ g R„(Z& )Q»(Zi )Rrr(Z& )
2 1

g [R„(Z~) —R ' '(Z, )]
2 1

+ QRg(Z))Q»(Zt) Rrr(Z—&) Ra(Z2) .
1

A, B 2 1

With a similar manipulation on the third term, (6.3) becomes

R (Z))R (Zz)= g [Rg(Z))Rg(Z2)] —2R' '(Z))R' '(Zr)
A

1 1+ +Ra(Zi) Q»(Z)) —Ra(Z|) — +Ra(Z2) Q»(Z2) Ra(Z2) .
A, B 2 1 2 1

Substituting this into (6.2) with Z& ——E+i e and Zz E+ie,——and using the principal value relation

1 1
lim =P —+i re(x),
e~O X+l6

(6.5)

(6.6)

(6.7)

gives

&q'~ 'Wu
I +B W&u&=~ah&@'~;Wu

I
@a W'"'& —2~it)(E —E')&@'~ Wu

I
Q~a'(E)

I
a's, W'u'&,

where

Qqrr (E)= lim Qzrr'(E+ie) .
e~O

(6.8)

Equatio n (6.4) relates Q» to W». Taking the matrix element between noninteracting states and using completeness
in clustered channel states, along with the wave-function definitions (2.16), gives

&k&&k2&k3 I W»(»
I
ki k2, k3 &, =[g(wg, u~ )g(w, , ua )]'"

X g )f dwg'de"[cg(wg', u~ )ap(wa", us )]
rt III

~A ~~8

Xgq(w, P I

w", 9")4a(w', O'
I

w"', 0"')

X &" » A(w "»")
I Q»(» I

u' uB PB(w"' r)'") & (6 9)

Consider a scattering process characterized by a physical energy Er. The parameters EI', u, and uz together specify a
unique invariant mass p~q for the (a +,a —) system Similarly E~, u, and u~ specify a unique invariant mass p~ for
the (b+,b —) system

1

p„=ay(W uq m,&), &pg ——co(W &urr&mb ),
where

Wr =Er lu, W~ =E~lu

(6.10)

In (6.9) set Z =El'+is, multiply both sides by ( —ie), and take the limit @~0. Since the wave functions and the matrix
element of Q» are nonsingular, the right-hand side will vanish unless the invariant masses (6.10) correspond to actual
two-body bound-states masses. Assume, for simplicity, that the spectrum of two-body bound states is nondegenerate.
Then
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(6.11)

»m( —i~)'&ki&k2&k3
I
WAB«'+«)

I
k'i k2 k3 &

EP g~o EP

=[Pw~ v~4(wB UB)]'"[~(p~,u~)~(uB UB }] "V~(w pl p' 4)A" (w' p'I p'B ns)

X(,ir u~ y'„(y' n')
I
Q~rr'«') Iir»B A'(p' ri')& .

Z =E'g +pg Ug, Z =6~ +Ply Ug

I

Z'=op'+i2BUB', Z'=op'+mBUBU' .
(6.12)

%e have chosen u =u', since this is the only case which
will contribute to the probability amplitude.

u, uz, and uB are parameters of the particular physical
process under consideration. Their values restrict the
range of bras and kets which can appear on the left-hand
side of (6.11). The requirement that the left-hand side of
(6.11) vanish unless p~z and }EBB correspond to existing
two-particle bound-state masses uniquely determines the
values of the eu factors in terms of the physical parame-
ters. To see this we must consider the singularity struc-
ture of W(Z).

The "primary singularities" due to the ~ functions in
the driving terms (5.5) occur to all orders of iteration of
the integral equations (5.7) for the components of W(Z).
The singularity structure of the r functions follows direct-
ly from (4.3). Takin~ a matrix element of (4.3) between
free states, using ii' =h —h' ', and inserting complete-
ness in terms of exact eigenstates of h shows that v „(2')
has poles at 2'=p, z, for each two-body bound state pz,
and a scattering cut extending from N=mz to +00
along the real axis. Because of (4.8), this means that the
matrix elements of MzB(Z) have "primary singularities"
at

These singularities must correspond to poles at Z'= 8'~
for values of Wr which satisfy

p, ~ rv——(WB,uq, rn, ), pB ro(W——I,UB, tris, 2) . (6.13)

Therefore, the left-hand side of (6.11) has the correct
behavior in the @~0limit only if

eI"'= WB—co(WI, ur, m; )ur,

eI'" = Wr —co(WB,ur, m; )vr
(6.14)

The eU factors are independent of the off-diagonal in-
tegration used in the coupled integral equations (5.7). All
six eu" factors are fixed by (6.14) because matrix elements
of each of the components of W(EI+ie) between the
same free-particle bra and ket correspond to possible
physical processes in different channels.

Having established the values of the ei'" factors in
terms of the physical problem under consideration, we re-
turn to the relation between WzB(Z) and Q„B(Z) in the
case of physically realizable asymptotic states. With ptz

and pB now particular bound-state masses in the outgoing
and incoming channels, the wave functions in (6.11}can
be expressed in terms of the two-body input (4.5). Using
Hq ' Hz H' ' ——in (3.—18), completeness in the clustered
channel states, and the wave-function definitions gives

&ki.k2 k317~(» lki k2 k3&

=u g(wz, uq)5 (u —u)5 (vz —vz) g ~E,
'

dwz'
~
gz(w, p ~

w", ri")
~

(E" E) (E" E)—„—(E—" E) . (6.15—)
It

~A

Substituting (4.12), setting Z =E +i e, multiplying by ( —i@), and taking the limit as @~0gives

U/W p(W Ug) lim ( icy)1g(w, p ~

w—, p p~g+iFg)= g(wg, vg—)(W —WI)'~ qg(w p (pt g) ~',
e~ ~0

where

ez ——e'/uq, e'=e/u, wq ——(W —W )/uz+cu(W, U&, m, ) .

Similar considerations hold in the incoming channel.
Define

(6.16)

&( W ur pr pr)=[vr W~rv(y~r, vr)] [—lim ( iver)&r(w, p ~
w, p p—i~+i@i)]'

e~ —+0
(6.17)

Then the comparison of (6.1) with (6.8},along with substitutions from (5.1), (6.11), and (6.16), yields the elastic and rear-
rangement scattering probability amplitude:

~'+'«~(~, u~, 4~(C', 4» I
@B(~ ~B A'(p' 4 )} W')

= —P(WU&, P&,PB&)P(W', UB,PB,P$) lim lim ( ENWEB)~gB(W—V, P ~
Wqv qP ~W +ie ) .

~0
(6.18)

The e ' factors needed to evaluate this expression are fixed by (6.14), with ur determined by u, uz, W, and pz.
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B. Free-particle scattering

In the case of free-particle scattering each boundary state consists of three free particles. Substituting (6.3) into (6.2)
with Z& ——8+i e and Z2 ——E'+i@' gives

(%0 ', Wu
~

sIP0+','W'u') =(40,'Wu
(
40', W'u') 2—mi5(E —E')(spo,'Wu

~

T'+'(E)
I
40', W'u') .

The comparison of (6.19) with (6.1), along with substitutions from (3.14), (3.21), (4.12), and (5.1), gives

M'+'(40(ki, k2, k3)
~

@o(k'),k2, ki); W)

=—g [p( W vz )p( W U~ )]'~ [5»5 ( vz —vz )r'„+ '(w, p ~
to, p'; w) + Wzz'( W; v, p ~

W v', p '; W)] .
A, S

(6.19)

(6.20)

The e~" factors needed to evaluate this expression are fixed by (6.14), with W~= W. The result is that each e~' factor is
equal to the corresponding asymptotic single-particle energy, as observed from the three-body center-of-momentum
frame.

C. Breakup and coalescence

Breakup and coalescence involve transitions between boundary states containing three asymptotically free particles and
boundary states containing a spectator and a bound pair. Define the operators E„~(Z) for breakup and Eza(Z) for
coalescence through

R' '(Z)Wgg(Z)R' '(Z)= gR' '(Z)Eq~(Z)Rg(Z), R' '(Z)Wqg(Z)R' '(Z)= QRg(Z)Egji(Z)R' '(Z) . (6.21)

Then an analysis similar to that of Secs. VIA and VI 8 gives the probability amplitude for breakup:

W'+'(@0(ki, kz, ki)
~

4a(u', ua, ga(pi', re' )); W~)= —g [p( Wu~)]'~ X(W', ua, pii, ija)
A

X lim ( i'E'g)—Mgg(W, v p ~

W', v', p', Wi'+i@')
~Q

(6.22)

and coalescence

M'+'(Csg(u, ug, gg(p, re'))
~
40(ki, k2, ks); W~)

= —QX(Wsuz, pz, pz)[p(W, ua)]' lim ( leg)$ ga—(Wsv, p~ W, v, p';W +iE ) .
8 eg -+0

(6.23)

VII. CONCLUSION APPENDIX

%e have succeeded in deriving an explicitly invariant
probability amplitude from considerations of the three-
body problem in an arbitrary frame. Two ideas were cen-
tral to this treatment. The first was the use of velocity
conservation in place of momentum conservation in order
to separate Lorentz invariance from the off-shell con-
tinuation in energy. The second was the introduction of
ei' factors into the connection between the two-body in-

put and the three-body problem. The resulting equations
exhibit exact unitarity and physical clustering.
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Poincare invariance requires matrix elements which
correspond to physical observables to remain unchanged
under the action of the unitary operator U(l, a). Exact
solutions

~
g) are eigenstates of the four-momentum

operator P, which forms four of the generators of the
Poincare group. Noninteracting states

~ P) are eigen-
states of the noninteracting four-momentum operator
P' '. This choice of noninteracting basis is made to en-
sure that the Poincare boost generator is the same three-
vector operator for both the fully interacting and the
noninteracting systems. Since in the point form

[P,P"']~0,
matrix elements such as

do not, in general, conserve three-momentum. Instead,
they must conserve three-velocity in order that a transfor-
mation to a well-defined center-of-momentum frame be
possible. Let U be such a transformation and A be the
corresponding Lorentz matrix. Then
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&pt(Wu) I~ Ipz(W', u')&=5'(u —u')f(W, W')

transforms into

&(()t(W,u)
I

U 'UHU 'U l(()2(W, u)&

=An&/)( W, O)
I
P"

I
$2(W', 0) &

=u 5 (0—0')g(W, W') .

In the center-of-momentum frame both the three-
momentum and the three-velocity vanish. Therefore, in
this frame the conservation of one is equivalent (up to a
Jacobian) to the conservation of the other.

In order to show a connection with the more common
instant form, we consider the two-body potential. We
refer here specifically to the operator which connects the
generators of time translations in the interacting and the
noninteracting systems

a =I"'+V.

A general instant form potential expressed in a
momentum-space basis conserves three-momentum

&pl pz I
~' lp t pz & =5'(P —P'»'(@p

I

E' p'»

P =pl +p2, p 2 (p& p2) '

On the energy shell this becomes

5(E E—')&pi pz I
I"

I pi p2 & =5'(P —P'»'(p
I
p'W»

where

W =P.P
is an invariant.

A general point form potential conserves velocity

&pi p2I ~'lpi p2&=5'« —U'»'(wp
I
w'p'»

where

On the energy shell this becomes

5(E —E') &pi,p2 I
v'I K,p2 &

=W [U ] 5(P
Thus, the two forms of the potential
shell result in the center-of-momentum

u (p I
p', W) = W u (p I

p', W) .

P')u —(p I
p', W) .

give the same on-
frame ( U =1) if

The existence of different forms for the off-energy-shell
extension reflects an ambiguity in the specification of this
physically unobservable quantity. Each form preserves
certain symmetries off the energy shell and breaks others.
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