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Scalar theories with a A,P +gP interaction are studied in 1+1 and 2+1 dimensions using the

Gaussian-effective-potential method. Restrictions on the range of parameters are derived. In par-
ticular, the (2+1}-dimensional theory is unstable if the P6 coupling exceeds a critical value

g, =0.255. For certain ranges of parameters the approximation indicates the existence of a two-

particle bound state, and yields expressions for its mass and wave function.

I. INTRODUCTION

The previous papers in this series' have discussed the
motivation for the Gaussian-effective-potential (GEP)
concept, and have applied the method to A,4 field
theories. This paper extends the results to P6 theories,

~=
2 dye&0 orna'0' ——~sN' (1.1)

in 1+ 1 and 2+ 1 dimensions. The principal motivation
is to illustrate how the GEP method can give information
about bound states. In (1+ 1)- and (2+ 1)-dimensional

AP theories, studied earlier, there are no bound states,
since the interaction must be repulsive (A, ~ 0) if the theory
is to be stable. In P theories, however, one may have an
attractive two-particle interaction, giving bound states,
without compromising the theory s stability which is en-
sured by a positive g'.

The (2+ 1)-dimensional P theory is also interesting in
its own right as a renormalizable, not superrenormaliz-
able, theory. It is known that the 1/N expansion indicates
that O(N)-symmetric ps has a nontrivial ultraviolet fixed
point at P =0(1/N) (Refs. 10—12). Our results support
the conjecture that this fixed point persists in the N= 1

theory: we find that the stability of the theory requires

0(g (0.254916 . (1.2)

Being a variational approximation, the GEP provides
an upper bound on the true effective potential, and so we
may definitely conclude that Eq. (1.2) is a necessary con-
dition for stability. We cannot say for sure, however, that
a theory with sufficiently small, finite g will be stable. It
may be that beyond the Gaussian approximation the P
coupling requires renormalization, with the bare g being
infinitesimal. (In the 1/N expansion, for instance, ( is fi-
nite at leading order but requires renormaIization in
higher orders. 'i)

We shall only say a few words about the important
question of the reliability of the GEP approximation,
since this topic is discussed in detail in papers I and II.
%'e are principally motivated by the considerable success
of the GEP approach in a wide variety of (0+ 1)-

dimensional systems, including strong-coupling situa-
tions. A method for systematically improving the GEP
results was proposed in I, and it is hoped that such calcu-
lations will be pursued in the future, so as to give a quan-
titative indication of the accuracy of the present results.

The plan of the paper is as follows. In Sec. II we calcu-
late the GEP, and introduce the renormalized parameters.
Section III analyzes the allowed ranges of the parameters,
including the stability requirements. The general features
of the GEP are discussed in Sec. IV, and some illustrative
graphs are presented. Bound states are discussed in Sec.
V, and the conclusions are summarized in Sec. VI. The
Appendix deals with the evaluation of matrix elements.
Our notation follows II, with which we assume the reader
is acquainted.

and substituting

0=00+4
=00+ f (dk)o[uo«)e '"'+no(»e'"'],

thereby evaluating

where 10)o has the defining property

ao(k)10)o ——0 .

(2.2)

(2.3)

(2.4)

Since the result for A,P theory has been calculated in II,
we need only to evaluate the contribution of the A/6 term:

o&0144'10& ok' ' 01+54o'&0 '&o

»+y, '&y'&, &+j'&,), (2.5)

where

II. CALCULATION OF THE QEP

As explained in II, one calculates the GEP by taking
the Hamiltonian density

,' P '+ ,'(VP—)'+,' m—,'y'+ A,,—y4+@', g. 1)
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The GEP itself, Vg(gp}, is defined as the minimum
with respect to Q of Vg(do, Q). Sometimes the minimum
occurs at an end point of the range 0 & Q & 00, but usually
Q is determined by the condition dVg(gp Q)/dQ=O
which gives the "Q equation:"

Q =ma +12Aa(Io+yo )+304(yo +6Iodo +3Io )

(2.8)

[with Io ——Io(Q) here].
The P theory has three free parameters: ms, k,s,g. In

order to have the results in manifestly finite form, free of
divergent integrals, we need to reparametrize the theory in
terms of a set of three finite parameters. As ms, A,a, g
are essentially the second, fourth, and sixth derivatives of
the original potential at the origin, an obvious strategy
would be to use a set of "renormalized parameters"
mit', k,it, fa, defined through the second, fourth, and sixth
derivatives of the GEP at the origin. We shall follow
this program in spirit, though our final choice of a con-
venient set of parameters is based on a desire to keep the
final results as compact as possible, as well as manifestly
finite.

We proceed, therefore, to investigate the derivatives of
Vg(go) at the origin. The first derivative of Vg(go) can
be obtained from a partial differentiation of (2.7), because
of the fact that 8 Vg/BQ vanishes for Q =Q. Hence,

d Vg 2
=go[ms +4As(go +3Ip)

0

+6/(go +10Iogo +15Io )] . (2.9)

Differentiating again, we shall need to allow for the ((}p

dependence of Q, which from (2.8}is

(2.6)

(The calculation of such matrix elements is discussed in
more detail in the Appendix. ) The net result is

Vg (Po, Q) =Ii + —,
'

(ms —Q )Io+ ,
'

rn—s Po

+~a0o +8'o +64Ioko +3~aIo

+150Ioko'+ 3Io'4o'+Io') .
d Vg

ma =— ——Q
d4o &o=o

=ms +1 2A sI o(mR )+90k[Io(mii }]
(2.12}

As in the P case, ' the parameter ma, so defined, proves
to be the physical particle mass (see Sec. V).

Differentiating (2.11) twice more, keeping only the
terms which contribute at Pp ——0, yields

where

d Vg [1—12K„I i(rn, R)]
4! dgp4 yo=o

" [1+6K,,I i(ma )]
(2.13)

)I,,=—As+ 15$Ip(mii ) . (2.14)

Unlike Ip, in v+ 1 dimensions (v=1,2) the integral I
is convergent:

I i(ma)= . 1/(2mmx ), v= 1,
1/(4mmii ), v=2 . (2.15)

Consequently, as far as the removal of divergences is con-
cerned A,, is as good a parameter as A,a. We choose to
work with A,, to avoid unnecessary algebraic complica-
tions.

Similarly, we find that the sixth derivative of Vg(gp) at
the origin is finitely related to g, A,„and ma, so that we
may choose to keep g as one of our set of parameters.

We now proceed to reparametrize the results (2.7) and
(2.8) in terms of the parameter set ma, l,„g. We use Eqs.
(2.12} and (2.14) to eliminate ms and Aii, and we isolate
the vacuum-energy constant term

D= Vg(gp 0}=I i—(mx )———3A,,[Ip(ma )]

d V
, =ms +12&s(Ip+pp')+30/'(po +6Iopp +3Ip')

d4'o'

I 12[~a+50 3Io+0o')] 1

'
—0o'I-i 1+6I,[A, +15/(I, +((},')]

(2.11)

Evaluating this at the origin, and comparing with (2.8),
shows that

d Q ' 12[4+5@3Io+4o')]

dgp 1+6I i [A,s+ 15$(Ip+Pp )]

Using this, one finds for the second derivative

(2.10)

+ 15$[Ip(mx )] (2.16)

Algebraic manipulations, utilizing the Ii(Q) —Ii(mx )

formula from Table II of II, then lead straightforwardly
to

Vg('!}p Q) D+ 2 mR Qo +~ Qo +fop ma L2(x)/(8'lr)+ ,
'

(mx Q—)bdo+3A—,,(Mp)

+6~.(~o)4'o'+15k ~o)[4o'+ 34'o'~p+(~o }'] (2.17)

with

Q =m~ +12k,„(Mo+Pp )

+3%[do'+Co'~o+ 3(~o}']

where

AIo =—Io(Q) —Io(mii ) = mg" 'L i(x)/(4—m ) . (2.19)

(2.18) It is amusing that these equations are exactly what one
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would obtain by replacing Ii and Io by their finite parts
(defined by a subtraction at Q=ma) in Eqs. (2.7) and

(2.8), while ignoring the distinction between mz, k,a and

ma, A,„. That procedure would, of course, have no a pnori
justification, but it does provide a useful mnemonic for
the result of the proper substitution procedure.

At this stage it is convenient to introduce some new no-
tation, so as to work with dimensionless variables. %e
thus define, for the GEP and the Po field,

P 6 ——( Vg D)—/ma "+',

F=4e+p, 4oz ——Po2/ma"

for the (() and P couplings

3A, - A,a=, Aq=
lflg

4-Zv
7Flg

and for the Q variable
T

in@, v= 1,
z =Li(x)=

( x —1), v=2,

x =Q /ma

(2.20)

(2.21)

(2.22)

-0,5 0 0,5 1.5

in this section. The results are summarized by Figs. 1 and

2, and the impatient reader may decide to inspect the fig-
ures and omit the rest of this section.

S. Stability considerations

Q
FIG. 1. The a,P parameter space for (P6)~+~ theory. The al-

lowed region lies to the right of the solid curve and above the a
axis. [The numbers along the curve indicate how zo varies in

the parametric form (3.15).] Outside the region enclosed by the

dashed curve the t))0 =0 vacuum is no longer the global

minimum of the GEP.

P G(go, Q)= [(F+ ,'aF +—„PF—')+g(z}
Sm.

+az(z —2F)——,'Pz(F 3Fz+z )], —

(2.23)

where

g (z) = —[Lz(x)+(1 X)L i(x)]—
e*—(1+z), v= 1,
z (1+-,'z}, v=2 .

The Q equation becomes

(2.24)

In terms of these new variables we can rewrite the results

in a form suitable for further analysis and numerical
evaluation:

m, (C „Q ~ ) = ,
' (1 P)—z',— (3.1}

We begin by showing that P must be positive. For P
negative in 1+ 1 dimensions the GEP would be governed

by the Q~O (z~ —ao ) end point of (2.23). This would

give the infrared catastrophe that VG(4o)~——,
' Pzi~ —ao, at all 4o. In 2+ 1 dimensions the in-

frared behavior is much milder, and the Q~O end point,
which now corresponds to z~ —1, yields a finite result
for PG(@o). However, the GEP is not bounded below,
since the pFs term in (2.23) dominates at large F, render-

ing the theory unstable.
More surprising is that, in the (2 + 1)-dimensional case,

P must not be too large. The existence of such a bound is
obvious if one considers the Q~ac (z~ac) end point,
which gives

x (z) —1=2a(F z)+ ,'P(F 6F—z+3z—), —

where, from (2.22),

Q2 e', v=1,
i ——x (z)=

ma (1+z), v=2 .

(2.25)

(2.26)
-1.0
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III. THE a, P PARAMETER SPACE

A. Summary

The P and P coupling parameters a and P [Eq. (2.21)]
can, a prion, take on any real values. However, not all

values lead to stable theories. More subtly, not all distinct
points in the a,P plane correspond to distinct theories,
and to avoid duplications one should restrict the parame-
ters to certain regions. These matters are studied in detail

FIG. 2. The a,P parameter space for (P6)q+ ~ theory. The al-

lowed region is the semi-infinite strip a & —1, and

0 ~P ~ P, =0.145. . . . The solid curve marks the onset of sym-

metry breaking: In region A the symmetric vacuum is stable; in

region 8 there are degenerate vacua at $0 ——+c ( c+0), with the

origin being a local minimum; in region C the 0=0 end point is

operative, making the origin a local maximum. [See Eq. {4.3).]
The dotted curve indicates where the 0=0 end point first be-

comes relevant. [See Eq. (4.7).] Not shown is the fact that the

unbroken-symmetry region extends only up to a=1.5. Thereaf-
ter, as in (P )q+ i theory, spontaneous symmetry breaking sets in.
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z~AI',
where the constant A satisfies the quadratic equation

(3.2)

(3.3)

implying that Tg(@p)= —oo at all 4p if P&1. The
reason is that the contribution from the kinetic term,
g(z), diverges only like —,'z and can be overwhelmed by
the ——,'Pz term from the P6 interaction. [This cannot
happen in I + 1 dimensions, where g(z) diverges ex-
ponentially as z —+ ao. ] The same instability was observed
in O(N)-symmetric (P )&+i theory in the 1/N-expansion
analysis of Bardeen, Moshe, and Bander. "

The bound on P is actually stronger than P&1, and
arises from consideration of the large-4p behavior of
P g(4 p). As F, =4m@p, ~ co, the solution of the Q equa-
tion (2.25) behaves as

be a different root of the Q equation. Exactly the same
situation was encountered in (P )&+i, and the story that
follows parallels Sec. V B of II.

Vfhen a & ——,, the true particle mass squared, denoted

ma, differs from the "fake" m~ by a factor e ', where

zp is a nonzero root of the Q equation at the origin:

e*'=1—2azp+Pzp' . (3.9)

(In fact, there are two nonzero roots when a & ——,'. The
relevant one is that which gives the global minimum of
Wg. ) To correct for the misidentification of mx, we

need to rescale all the variables so that they are measured
in units of the true mass ma.

z'=ln(Q /mr'i )=z —zp,

Substituting into (2.23), one finds the large-4p behavior of
the GEP to be

F~g(4p)~ [—„P+A —PA(1 —33+A )]

a' = (m„ /ma )a=ae

P'=(mx /m~ )P=Pe

kg+const=(ma /rnJi )&g ——1"ge

(3.10)

Fs p 1 —4[—,
' p(1+2p)]'rz

(3.4)
8ir 45 6[—p(1+2p)]i/2+ 1+5p

i.e., 4p Xconst. Stability of the theory requires this con-
stant to be positive, and hence

[A constant term must be added to P g so that the zero of
the energy scale corresponds to &g(4p ——0)=0 with
Q

~ & p
——mz, rather than mz. ] Inserting (3.10) into the

Q equation (2.25) yields

e* —1=2(a' —P'zp )(F'—z')

P&P, =(~10—2)/8=0. 145285, (3.5) + ,
' P'(F' 6F—'z'+3z'—) . (3.11)

which translates into

=0.254 916 .
4S 8

(3.6)

We observe that this has the same form as the original Q
equation, except that the effective a' parameter is

[In the critical case P=P, the large-4p behavior of the
GEP is governed by what is normally the subleading 4p
term. Carrying out a more detailed version of the above
analysis, we have found the subleading term in (3.4) to be
(F2/8m)A (a+P)/P. Hence, in the critical case P=P„
the theory is only stable if a & —P, . This implies that for
P's just less than P„ the onset of spontaneous symmetry
breaking (SSB) must occur near a= —P. See the solid
curve in Fig. 2.]

C. Avoiding duplications (1 + 1 dimensions)

A root of the Q equation will only correspond to a
minimum of Vg if d Vg /dip ~n lt&0. This condition
requires

0a,'tr =a' —P'zp =(a —Pzp )e (3.12)

In the same way, inserting (3.10) into (2.23) leads to Wg
taking the same form as &g, but with a replaced by a,'tt,
and all the other variables replaced by their primed coun-
terparts.

This means that a theory with parameters mti, a,P with

a & ——,
' (for which mx does not correspond to the parti-

cle mass) is equivalent to a theory with parameters
mi't, a,'tr, P' (where mii does correspond to the particle
mass). It is easy to see that a,'tt& ——,

' whenever a & ——,',
as follows. Equation (3.9) corresponds graphically to the
intersection of an exponential with a parabola. When the
slope of the parabola exceeds that of the exponential at
the origin (as is the case when a & ——,), the reverse must
be true at the other two roots. Therefore,

1+6I i(Q)[Xii+15/(Ip(Q)+$p )]&0 . (3.7) e '
& —2(a —Pzp), i.e. , a', tt& ——,

' (3.13)

We consider first the (1 + 1)-dimensional case, where this
becomes

—,e'+a+P(F —z) & 0 . (3.8)

In particular, we see that at the origin (F=O) the z=O
root (corresponding to Q=mit) is not in fact a minimum
unless a & ——,

' . If a & ——,
' we are in a mess because rntt

no longer
corresponds

to its definition as
d Vg/dip ~y, p ——Q ~~, p, since the real Qz~~, pmust

Thus, any theory with an a parameter less than ——,
' is

simply a duplicate of an equivalent theory with an a pa-
rameter greater than ——,'. No generality is lost by re-

stricting the a parameter to the region a & ——,'.
However, there is more to the story, since even if z=O

is a local minimum of P g, it may not give the global
minimum. (In 1+ 1 dimensions the Q equation can have
three roots, two of which correspond to local minima of
P g. ) Hence, a transformation of the form (3.10) and
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1+2a—(a+P)z, + —,
'
Pz, '=0 . (3.14)

From this equation, together with (3.9) for zp, one can ob-
tain a parametric form of the boundary curve:

(3.12) will be necessary in this case also. This considera-
tion effectively restricts the a parameter to the region to
the right of the solid curve in Fig. 1. The boundary curve
corresponds to the case where the two local minima of
P G(O, Q) one at zp ——0, one at zp&0, are exactly degen-
erate. The condition for this, obtained using (3.9) in (2.23)
for F=O, is

(1+z)+a+P(F—z) & 0 . (3.21)

Hence, mff will be the wrong root for Q
~ & p whenever

a & —1. If a & —1, the real mR will be mf'i

=mff (1+zp), where zp is the nonzero root of the Q
equation at the origin:

D. Avoiding duplieations g + 1 dimensions}

A similar story occurs in the (2+ 1)-dimensional case.
The condition for a root of the Q equation to be a
minimum of VG is now

(1+zp) =1—2azp+Pzp (3.22)
a =[2zp+ 3+ (zp —3)e ']/zp

P=3[zp+2+ (zp —2)e ']/zp',
(3.15) Rescaling the variables to express them in units of mz, we

have

enabling one to plot it straightforwardly.
Insight into the equivalence between superficially dif-

ferent theories can be gained by a closer consideration of
the relations between bare and renormalized parameters.
Returning to (2.14) and (2.12), and eliminating Ip(m~ ) be-
tween them, yields the intriguing result

z' =Q/ma —1 = (z —zp )/(1+zp ),
F'= (mff /mf'f )F =F/(1+zp),
a'=(ma/mf'i )a=a/(1+zp),
P'=P

F"G+const= (mff /mz )i&G ——t"G/(1+zp)3 .

(3.23)

5/ma 2A„—=5(,mff 2Ae— (3.16)

which implies that this peculiar combination of bare pa-
rameters is finite. In the notation of Eq. (2.21) this be-
comes

Inserting these into the Q equation (2.25), and into Eq.
(2.23} for &G, we find that those equations regain their
original forms, now in terms of the primed variables, ex-
cept that the effective a' parameter becomes

(P—a )ms ——F, (bare), (3.17) aeff =a' —P'zp /( 1 +zp )

Pm~ —— (=F2(bare) .45
8~2

(3.18)

Finally, at the expense of introducing an arbitrary mass
scale p, we can write (2.14) as

where Fi(bare) is a function of the bare parameters only.
Trivially, we have also that

=(a —Pzp)/(1+zp) (3.24)

Again, by noting that whichever side of (3.22} has the
greater slope at the zo ——0 root will have the lesser slope at
the other root, one can see that a,'kg —1 whenever
Q g —1.

Of course, in this case we can solve (3.22) explicitly for
the nonzero root:

[a+Pin(m„'/)M')]m„'=F, (bare, p), V)u, . (3.19)
zp= —2(1+a)/(1 —P) (3.25)

In this way we have expressed the three renormalized pa-
rameters mff, a,P in terms of the bare parameters in the
Lagrangian with all renormalized parameters on the left-,
and all bare parameters on the right-hand side.

Now, if zp is a root of (3.9), then the transformation

0a~a,'ff =(a —Pzp )e

P P"=Pe

2 e2 2 ~0
Mg ~Etta =Pllg 8

(3.20)

leaves the left-hand sides of all three equations invariant.
Hence, the primed and unprimed parameter sets corre-
spond to one and the same Lagrangian. They ought to
produce the same theory, and indeed they do. Since (3.9)
has at most three real roots, the transformation (3.20) re-
lates up to three versions of the same theory. Only for
one of the three parametrizations will the ma parameter
correspond to the particle mass. %'e may avoid the less-
convenient duplicate parametrizations simply by staying
in the region prescribed by Fig. 1.

(P—a )mfi ——F,(bare),

P=F2(bare),

(a+P)mff Fi(bare) ——.
(3.26)

If zp is a root of (3.22), or equivalently (3.25), then the
transformation

a~a,'ff =(a—Pzp)/(1+zp),

P P'=P,

mff ~mfa ——mg (1+zP)2 ~ 2 2 2

(3.27)

leaves the left-hand sides invariant, implying that both

but this does not seem to provide any new insights, and
we have proceeded in direct analogy with the (1+ 1}-
dimensional case. Unlike that case, however, the Q equa-
tion has only two roots, one a maximum and one a
minimum of P G, so it suffices to restrict a to a & —1 to
avoid duplications.

The (2 + 1}-dimensional analogues of (3.17)—(3.19) are
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eters describe the same theory.sets of parameters esc
'

t tion a~ —1, and theFinally, we note tha that the restriction a~ —,
r uirement in ecorresponding a p ——, req

'

dimensional case, both corr poes nd to

1+6K,,I i(mx) &0, (3.28)

for =0. This has an interestingwhich is ]ust (3.7) for (I)o——.

to e
' '

the A, , A,„relation (2.13).to therightof thepolein the s, „re

IV. THE GEP FOR y' THEOalES

A. 1+ 1 dimensions

i- -4OG

6ults for the GEP for (P }2+& theory,FIG. 4. Illustrative results or t e
=0.1, and a varying from 0 to — in swith mq ——,

—0.25. See also Fig. 5.

z = I[(1+a)'+2(a+p)F+-,' p(1+2p F' '"
—(&+a+pF) I /(1 —p) . (4.1)

n be evaluated directly from (2.23).The GEP can then eva
results are shown in ig.Some illustrative res

is sufficiently negativebreaking sets in when a is su ic'symmetry r
'g.

Q=Oend point. The Q=O ence z=—

[(2+3a+p)+3(1+2a+p)FP o($,Q=O) =

e ormulas (2.23)—(2.26) we have explored nu-

minimum at the g
minima symmetrica y p

case Clearly, there
beh ior of the theory once

'
r is familiar from the case.

e ualitative be avior o

ed
'

ll h thi

,P, dh
e have investigat num

ition occurs in term so tea, ptrans' '

the dashed curve in Fig. l.~ ~

esu s shown by t e as
in the (1+ 1)-dimension c

e that this represents a true phasenot immediately conclude t at is ase
s ontaneous-symmetry- rtransition to a p

h h forbid a first order-phase. There are theorems w ic o
'

h -order transition is athough a ig er-or
1+1 di io, mpossibility. The p

'
e oint is that m

there is the possi i i'b'lity of mixing be-
Th' i i di edtween the two degenerate vacua. is p

'

in Secs. IV A and IV 8 of II.

B. 2+ 1 dimensions (4.2)
1 3+(a+P)F'+ „PF ], —

'
ns in the (2+ 1)-dimensional caseNumerical calculations in t e

are simplified yb the fact that the equa
'

ed lytically. The relevanuadratic and can solved ana y ica
root [scc (3.21)] is

P in re iona of Po where the z fromand this gives the GEP in region o from
lex or real but less than —1 e .

1onl arises i the coup
'

. (4.7) belo, d h do
f hth th. An illustration o w a ap

d 'led i of thr ofi . 5, which shows a etai
d h tth Q=O rti ofth

htth
. 4. Wc ind t Rt c

a minimum, so t aGEP never contains
or metastable) govern yany vacuum (stable

ct the A=0 part o ep
from the true vacuum, an so is

Th 1 exceptions arise very
hi hi h

h sics. T e on y e
near to the SSB phase transition, w ic i

lu h f t that for sufficientlyig () hoiHllustrates the ac a
negative a t eh Q=O end point governs t e
origin. This happens when

« ——,(2+P) (4.3)

ults for the GEP for (y'), +, theoryFIG. 3. Illustrative results or e
with a= —P, and a varying from —O. l to —.
—0.1.

is then negative at F=O, andnd so is lowerbecause Eq. (4.2) is t en n
' = nd

-Cq

the 0 equation applies and one as
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C. The m~2 ——0 case

In the (2+ 1)-dimensional case one may have mx ——0
because Mo in (2.19) is infrared finite:

O. 2 5

0 —0EI0 ——— —1
4m my, 4m

as m~ ~0 . (4.8)

Equations (2.17) and (2.18) then become

Iv, VG(go, Q) = a(Q —2QF+ ,'F —)+ F
Sm

' 45

0+ ——,PQ(Q' —3FQ+F'), (4.9)

--2

m. =-0,5

- -20

with Q given by

Q = —2a(Q —F)+p(Qi —2QF+ —,'F~) . (4.10)

FIG. 5. As Fig. 4, showing details of the behavior near the
origin for three cases: (a) a = —0.25, (b) a = —0.5, (c)
a= —0.75. The GEP is represented by a solid or a dashed line,
depending on whether 0 is given by the 0 equation or by 0=0.
The continuation of the Q=O result, when inoperative, is indi-
cated by the dotted line. In cases (a) and (b), the origin is a local
minimum; in case {c)it is a maximum.

The notation here follows (2.20) and (2.21), except that we
have not, of course, divided through by powers of rntt
Thus, for this section only, a and F have the dimensions
of mass.

There are three cases to consider: agO, a~0, and
a =0. If a is negative then the correct root of the Q equa-
tion at the origin is not Q

~ ~, o
——0, but

Q
~ p, o

———2a/(1 —P) (&0) . (4.11)

=Qi~& o&0, so that the origin is always a local

minimum. However, once the Q=O end point takes over,
the origin becomes a maximum, since the coefficient of F
in (4.2) is then negative. Thus, for a& ——,'(2+p) there

ceases to be euen a nMtastable state with unbroken syrnrne

try.
Finally, we return to the question of when the Q=O

end point first becomes relevant. Basically, the Q=0 end
point is not relevant provided the 0 equation always has a
solution with Q&0. ' This requires z & —1 in (4.1},and
hence

[(1+a)'+2(a+p)F+ 7'p(1+2p)F']'" & a+p+ pF .

(4.4)

] dVG = —2A, ,= — a&0.
4. dQo p =0 3

(4.12)

The exceptional case is a=0, which is a scale-invariant

Hence, the true m~ is not zero. This case is identical to
the case a = ——,

' (1+p) with tnt ——1, already included in
the previous analysis.

If a & 0, we may choose units such that a= l. We then
obtain the results shown in Fig. 6. Note that all these
theories exhibit SSB. In fact, the origin is unstable —so
that there is not even a metastable state with massless
particles —because the fourth derivative there is negative.
We see this from (2.13), in which I,(mx}~oo for
mz ~0, so that

Squaring each side, rearranging, and extracting a factor of
(1—p), this simplifies to

(1+2a+p)+2(a+ p)F+ ,
' pF2 & 0 . — (4.5)

Clearly, the inequality always holds if a & —p. If, howev-

er, a & —p, then the left-hand side has a minimum at

F= —3(a+P)/P ( & 0) .

If the inequality is to hold even here, we shall need

a & ——,
' t2P+[P(3 —2P}]'

(4.6)

(4.7}

and this condition is shown as the dotted curve in Fig. 2.
For a's less than this there will be a region of F, around
the value in (4.6), where the Q =0 result takes over. [Note
that, for F given by (4.6), the right-hand side of (4.4) is
positive, so that it was in fact legitimate to square each
side of the inequality. ]

FIG. 6. The GEP for (P )2+~ theory in the case ma ——0,
a= 1. The two extreme values for P are shown; intermediate
values show intermediate behavior. For P & P, an instability ap-
pears at very large Po.
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theory, since it has no parameters with dimensions of
mass. [The study of Bardeen, Moshe, and Bander" has
previously discovered a scale-invariant phase of O($}-
symmetric P theory in the N~ ao limit. ] The GEP thus
has a pure $0 behavior, and in fact is given exactly by Eq.
(3.4), which we obtained previously as the large-(be
behavior in the general case.

D. The mg~ ———1 case

A peculiar feature of the (2+ 1)-dimensional case is
that it appears possible to choose ma to be negative, i.e.,

ma =+i
I
ma

Normally, this is impossible for two reasons: (i) ma is
the solution to the Q equation at ((}n

——0, and Q must be
positive for the Gaussian wave functional to be normaliz-
able, and (ii) a negative ma gives rise to imaginary parts
in the Iz integrals, implying that the bare parameters are
complex, so that the Hamiltonian is not Hermitian. Here
the first objection is nullified because the GEP at the ori-
gin will turn out to be governed by the Q=O end point,
not by the Q equation. The second objection is circum-
vented by arranging that the imaginary parts cancel out.
Since

(4.13)

lm[lo(ma )]=+
I ma I

/(4n'} (4.14)

we see from Eqs. (2.12) and (2.14) that the bare parame-
ters will be real if

15
ma

4m

That is, A,, must also be pure imaginary. Defining

3 ~r 45(
2n' ma 8n

as usual, we see that the necessary condition is

(4.15)

(4.16}

(4.17)

+PF(3x EVx +—„F)], —(4.18)

with the Q equation becoming

V x = I[—(1—P) + —,'P(1+2P)F ]'i PFI /(I —P), —

(4.19)

where

P g ——( VG D)/
I ma I, x =Q—/

I ma I
(4.20)

in this subsection. (The expected cancellation of imagi-
nary parts in VG was explicitly checked. )

One may also derive this by considerin~ Eq. (3.26}. (The
latter relations also imply that the m~ ———1 case is not
equivalent to any of the ma ——1, or m„=O cases dis-
cussed earlier. )

Returning to the GEP in Eqs. (2.17) and (2.18), we ob-
tain, for ma = —1, ct= —P,

[(1—P)(x~x+3v x —3F)I
24m

', P Pc

FIG. 7. The GEP for (P }2+i theory in the case ms2 ———1,
a= —P. Two examples, P=0.01 and 0.1 are shown. The
dashed portion of the curves indicates where the 0=0 end point
is operative. The dotted curves correspond to the 1imiting
behavior as P~O or P~P, .

U. SOUND STATES

We first consider the one-particle state built on our trial
vacuuIQ

I p&o, y, =n'o(p)
I 0&o,y, .

Its energy may be computed straightforwardly as

Ei((}}op) =q, ,o&p I
~

I p&oy, /y, ,o&p I p&o,y,

which gives

(5.1)

Ei(gp, p) =cop(Q)+[ma —Q +12Aa(ID+go )

+30$(((}p'+610$n'+ 31O') ]/(2ni~ )

+e o&OIH IO&op (5.3)

(see the Appendix, and also Refs. 2—5). The second term
vanishes by virtue of the Q equation (2.8). Subtracting off
the vacuum energy, we see that the extra energy due to the
presence of a particle is just co~(Q}=(p +Q )' . In-
cidentally, it is clear from the formulas in the Appendix
that this result mill generalize to any polynomial potential.
Thus, for any $0 which is a minimum of the GEP, we

Clearly, there is no real solution for x at the origin, and
in fact an acceptable solution does not appear until
F ~3(1—p)/p. Thus, the Q=O end point will govern
the behavior near the origin. If p is very small, the Q=0
end point dominates almost everywhere, giving
P"G(4n)= ——,

'
4n until the 4n behavior finally sets in at

very large 4e. The large-4n behavior is, in fact, the same
as always. Thus, the restriction p& p, still applies. When
p= p„one can show that, except near the origin,
WG(@n)= —8@a. Thus, for p near either end of its
range 0~P&P„ the GEP has a deep minimum, very far
from the origin. This SSB minimum is shallower, and
much nearer the origin, in the intermediate cases. See
Fig. 7.
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rr(k) = A

cok(2tpt, —M2)
' (5.8)

where A is some normalization constant. Inserted back
into (5.7) this yields

1+6K,,tt f (dp) =(),1

rpz 2rpz —M2
(5.9)

which clearly allows bound-state solutions [M & 2Q
& 2roz(Q)] only if A,,tt is negative.

We now show that, in the GEP approximation, there
are no bound states in any $~0 uacuum From (.2.9), any
minimum of VG((()p), except (()p ——0, will satisfy

mtt +4~tt(ko + 3Io)+6/(go + 10Ioko + 15Io )=0 .

(5.10)

Using the Q equation (2.8) to eliminate me, this means
that

may identify the corresponding Q as being the particle
mass in that vacuum.

Next we examine the possibility of having a two-
particle bound state, using the ansatz

I2&n, q, = f (ds»n~(p)ati(p)ati( —p) I0&n, q, (54)

which describes an s-wave state, with o(p) being the
Fourier transform of the spatial wave function. For con-
venience we work in the overall center-of-mass frame, so
that the energy of this state, minus the vacuum energy,
gives the bound-state mass M2,

f (dp)o (p)4' +12k,,tt(gp) f (dp)rr(p)
M2 ——

P 2NpcT P

(5.5)

The form of the result is exactly as in the (() case, ' ex-

cept that A,s is replaced by

~.tt(0o) =~a+154[Io(Q }+((o']

a finite combination we have met before in (2.10) and
(3.7).

The optimum form of the function o(k) is obtained by
functionally minimizing Eq. (5.5). This leads to the in-

tegral equation

tr(k)rpk(2cok —Mz)+6k, ,tt f (dp}o(p) =0 . (5.7}

Since the last term is k independent, a(k) must have the

ri =M2/(2mtt ), (5.13)

so that Og g ~ 1 corresponds to a bound state. Using the
dimensionless variables of (2.20) and (2.21) we inay
rewrite (5.9), in the (1 + 1}-dimensional case, as

(5.14)

Performing the integration one obtains

).0-

1 —g q~1, a&0
sin 'i)+ —[1—(1—i) )'~ ]

2

(5.15)

which, when inverted, gives the bound-state mass as a
function of the coupling parameter a. (Note that P does
not appear: the effect of the (t coupling here is solely to
renormalize the effective P interaction. ) A weak-

coupling expansion of (5.15) yields

rr g 9 ~r
ri —1 — a'+ —1 —— + ~ (5 16)

m„'

which agrees with the perturbative calculation of Dimock
and Eckmann. See also Refs. 7 and 9. The full formula
is plotted in Fig. 8(a).

Since ri decreases monotonically as ( —a } increases, one
might worry that, for sufficiently large, negative coupling,
the bound-state mass could become zero or even negative.
This is not so, because, as we explained in Sec. III, a is ef-
fectively bounded below by ——,'. Thus, in fact, t) can
never be less than =0.60. Moreover, if we require the

Po
——0 vacuum to be stable, then we must stay within the

dashed curve in Fig. 1, limiting ( —a) to at most 0.27, and
so g is at least 0.83. Thus, the bound state is never ultra-
tightly bound, and can reasonably be described as two
quasifree particles plus some binding energy. Hence, the
simple ansatz (5.4), which ignores higher Pock states, is

quite self-consistent.
The corresponding formula in 2 + 1 dimensions is

Q =8Ae((tp +24/go (5Ip+Pp ), (5.11)

so that A.,ff at a nontrivial minimum can be expressed as 0 0.5 0

(b)

A,,tt(gp '"&0)= + 12/go
8(f o'

(5.12)

which is positive definite.
In the Po

——0 vacuum, however, A,dr becomes A,„which
may have either sign. As the single-particle mass in this
vacuum is Q

I ~, p mtt, we def——ine

FKJ. 8. The bound-state mass g=—M2/(2m~) as a function
of the coupling a in (a) 1+ 1 dimensions, (1) 2+ 1 dimensions.
See Eqs. (5.15) and (5.18), respectively. The curves are shown as
dashed lines if the (()o

——0 vacuum is necessarily metastable. If
no Pp ——0 vacuum can exist (region C of Fig. 2) the curve is
shown only by a dotted line.
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aIld hence

(5.17) P=P, allowed only if a& —P). However, one may also
have mit ——0, with a =1 (by choice of units), and
0&P&P, . Also possible is mii ———1, a= —P, with
0&P&P, . Both of these possibilities always exhibit SSB,

a=2')/ln(l —ri), g &1, a &0. (5.18}

This formula is plottixl in Fig. 8(b}. Note that the binding
is a purely nonperturbative effect, being exponentially
small in the coupling constant a:

2
(1—ri)=exp

2 21+ exp + '''

(5.19)

In this case a is bounded below by —1, as we showed in
Sec. III, so that i)&0.80. Also, we found in Sec. IVB
that, because the 0=0 end point prevails, the origin is not
a local minimum if a & ——,

' (2+P). Thus, for any
a& ——,(2+P, )=—0.7, there is no $0——0 vacuum on
which to build a two-particle state. This implies that g s
less than =0.92 are never realized, physically. Finally, if
we want the Po

—0 vacuum to be globally stable, we must
stay to the right of the solid curve in Fig. 2. This requires
a & —0.25, even in the most favorable case, and implies a
binding energy fraction (1—il) no bigger than 3.4X 10
Thus, in 2+ 1 dimensions we are dealing with a very
weakly bound system.

The bound-state formulas given above are in agreement
with those found in Ref. 17, which we received as this
work was being completed. That reference deals with the
:A,(P —P ): model, also studied in Refs. 7—9. This model
corresponds to a one-parameter subset of theories selected
rather arbitrarily from the full two-parameter set of possi-
bilities. %e have slight objections to this model on
aesthetic grounds: The "normal ordering" device seems
rather ugly and artificial; it harks back to perturbation
theory, which we want at all costs to avoid. In our view it
is much more satisfactory to treat P theories in their full
generality, as we have done here.

and do not seem in any way pathological: the origin does
not correspond to even a metastable vacuum, so that no
massless or tachyonic particles arise. Finally, there is the
unique possibility that the theory is scale invariant:
mit ——0, a=0, 0&P&P, .

According to the GEP approximation bound states can
occur in the $0——0 vacuum, for certain ranges of parame-
ters: one needs ma 2 ——1; a &0; and for the origin to be at
least a local minimum. An SSB vacuum never has bound
states. %'e conjecture that this is related to the steepness
of the potential at these minima. In quantum mechanics
one has a "bound state" (E2 Ei &Ei——Eo) only when
the potential mell rises less steeply than a parabola. Some-
thing similar seems to hold, at least qualitatively, in the
field theory case.

A variational calculation of excited states is, of course,
not rigorously justifiable. Nevertheless, we believe our
bound-state results are worth taking seriously, for three
reasons. First, the equivalent calculation for excited states
of the anharmonic oscillator, and other (0 + 1)-
dimensional models, yields very satisfactory results. '

Second, our (1+ 1)-dimensional results agree with the
perturbative calculation and with a recent lattice calcula-
tion. Third, our results seem very reasonable and self-
consistent: potential embarrassments, such as the bound
states becoming ultrarelativistic or even tachyonic (which
would indicate an instability of the vacuum) never in fact
arise.

Perhaps the most encouraging aspect of our work is
that with a simple approximation, based on free-field
theory, we are nonetheless able to find bound states, as in
(P )i+ i theory, where the binding is a purely nonperturba-
tive effect.
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APPENDIX: CALCULATION OF MATRIX ELEMENTS

The GEP method involves calculating the matrix ele-
ments of P, where P =P—$0 [see Eq. (2.2)]. The neces-
sary formulas are derived in this appendix.

The main difficulty lies in the combinatoric factors that
arise. These are easiest to calculate in the (0 + 1)-
dimensional case, where the formalism is simplest. Once
the combinatoric factors have been identified it is very
easy to determine which field-theoretic factors go with
them.
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Essentially we require the normal-ordered expression
for (a+a )", where [a,a ]=1. This is provided by
Glimm and Jaffe, ' who give

For vacuum matrix elements, only the i=O term will
contribute. Reinstating the full formalism, in which

Q 2
—II/2(a i+a )II

En/2)

y c 2 ig-. &i-

j=0
where

n!
(n —2j)fj(2i

P= f (dk)o[ao(k)e '" "'+ao(k)e'" "],

(A 1)
we see that

o&0 I 0
'"

I
o&o= „,IIo«)]" .

For a one-particle excited state
A2

(A5)

are the Hermite polynomial coefficients, and

8 Pf,

.gn. 2—n/2 ~ atian —i

I —0
(A3)

I
1 &o=ao(p) I

o&o (A7)

the i=0, 1 terms in Eq. (A4) both contribute, and we ob-
tain

by the binomial theorem.
Since we are interested in diagonal matrix elements, we

need only those terms in (at+a)" with equal numbers of
a's and a 's. This is zero for n odd. For n even, =2K,
we obtain For a two-particle state

l
2&o= f (dp)o~(p)ao'(P+p)a'(P —p)10&o (A9)

o&11(t" l
»o= „(o&1

i
»oIo+»Io"-') . (AS)

2 X!

+ (terms a 'a' with j&i) . (A4) the i=0,1,2 terms of (A4) contribute, giving
I

o&210"12&o= „o&212&olo"+g»o ' f (dp)o~'(p)+4&(& —1)ro" ' f (dp)o~(p)
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