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The question of which quantities are measured when a gauge field is experimentally detected is in-
vestigated. The Josephson effect is considered in connection with this question and a generalization
of this effect for non-Abelian gauge theories is obtained. It is shown that the gauge field in an n-
dimensional manifold can be reconstructed from the holonomy transformations (parallel-transport
operators around loops) for an n-dimensional set of loops. An application is given to Minkowski
space-time compactified by the addition of null infinity. An equivalence principle for gauge fields is

also formulated.

I. INTRODUCTION: LOCALITY AND GAUGE FIELDS

In order to do physics, it is necessary to communicate
information. In the present space-time description of
physics, this information is typically a vector at a point in
space-time which must then be compared with a similar
vector at another point in space-time. This vector may, in
classical physics, be the energy momentum or angular
momentum of a particle and, in quantum physics, the
value of the quantum field or wave function at a given
space-time point, which may belong to the spin vector
space, color vector space, etc. Therefore, any local physi-
cal theory must confront the problem of comparing vec-
tors at different points.

A natural way of making this comparison is to intro-
duce a connection. By this is meant a prescription for
parallel transporting a vector v at a point P to another v’
at a point Q along a path C joining P and Q. A compar-
ison between v’ and a similar vector u at Q may then be
regarded as a comparison between v and u with respect to
the path C. If v is a tangent vector or a spinor vector
then the connection is the usual gravitational connection.
On the other hand, if v belongs to an internal vector space
such as the color space then the connection is called a
gauge field.! But the physical measurements made in an
actual experiment are local measurements. So, v and v’
have to be determined by separate measurements and this
knowledge therefore cannot give information about the
connection. Hence, to determine how v is parallel trans-
ported along C, it is necessary to compare v’ with its
parallel transport v} along another path C,, joining P and
Q. Since the vectors v’ and v are at the same point Q,
they can be compared by means of a local measurement
and this will give information about the connection. But
v} can then be obtained from v’ by parallel transport
along the closed curve formed by C and C,. If this paral-
lel transport is the identity for all closed curves then the
curvature of the connection is said to be zero. If not, the
connection or gauge field is nontrivial. To summarize,
the locality of the laws of physics first suggests the intro-
duction of a connection or gauge field and second requires
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that all the physically meaningful information in the con-
nection is contained in parallel transport along closed
curves.

The important connection between the locality of the
laws of physics and gauge fields can also be seen from the
following consideration. A priori, it would have been pos-
sible to define gauge fields on momentum space as much
as on space-time. The position operator is a derivative
operator in momentum space and can be written as a co-
variant derivative with respect to a connection on momen-
tum space. This may seem especially natural for the har-
monic oscillator, whose Hamiltonian contains momentum
and position symmetrically. However, such a
“momentum-space gauge field” would introduce nonlocal
correlations in space-time which, so far, have not been ex-
perimentally observed.

An example of communication of information in
space-time is given by a particle beam described by a wave
function ¢. If P and Q are two points on this beam then
a priori we have no way of comparing ¥(P) and ¥(Q).
However, if the beam is coherently split at P and recom-
bined at Q then the result of the interference contains in-
formation about how the wave is propagated along each
of the beams. Suppose that we turn on an electromagnetic
field, which is the simplest example of a gauge field.
Then it is well known that the shifting of the interference
fringes is determined by the phase factor

F,=exp , (1.1

i
%’;‘ ¢,,A,,dx“

where g is the charge of the particle, 4, is the vector po-
tential, and ¥ is a closed curve going around the interfer-
ing beams. This F, is the operator acting on the wave
function when it is parallel transported around y with
respect to the electromagnetic connection. Its importance
is seen from the fact that, as pointed out by Aharonov
and Bohm,? it has physical consequences even when the
field strength vanishes along the beams.

For this reason, Wu and Yang® pointed out that the
complete description of electromagnetism is provided by
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phase factors of the form (1.1). This remark has been
subsequently generalized* to all gauge fields when it was
shown that the “holonomy transformation”

Fy=P[exp [~ig §4iTiax+ | | (1.2

determines the interference pattern for two beams in-
terfering around y which is a piecewise-differentiable
curve that begins and ends at a point 0 (a loop at 0) in the
interference region. Also, a gauge potential 4; can be
reconstructed from transformations of the form (1.2),
with O being any fixed point, and it is then unique up to
gauge transformation.>® Here, T® generates the gauge
group and P denotes path ordering. When the holonomy
group is compact or semisimple, the traces of the opera-
tors (1.2) in the fundamental representation are sufficient
to reconstruct the gauge potential up to gauge transforma-
tions.> Using the traces has the advantage that they are
gauge invariant, whereas F, is gauge covariant.

What is directly observed in the interference of two
beams is really not (1.1) or (1.2), but rather a Hermitian
operator H,. For a compact gauge group, H,

(e'¢F +e~F] y)» where @ is the phase difference be-
tween the interfering beams in the absence of the gauge
field. Then, F, can be regarded as unitary and the inten-
sity in the mterference region is determined
by*  (p+eF ) (v+eF,p)=20"v(1+y'H, v/y'Y),
where ¢ is the value of the wave function for one of the
interfering beams. The space-time varlatlon of the inten-
sity determines the “interference term” ¢ H ,l///i/r Y. By
doing the experiment for different ¢’s, the Hermitian
operator H, can therefore be determined.

To determine F, from H,, note first that a basis can be
chosen in which H and F, are simultaneously diagonal.
If F,=diag(e o,e a’ .. ") then H,=diag(cos(6,
+¢),cos(92+¢) . ,cos(6 +¢)) in this basxs Hence,
0,+¢ (r=1,2,...,n) can be determined from H, only
up to a sign and modulo 27 by this experiment and even
then it is necessary to separate 6, from ¢. But the result-
ing ambiguity in F, can be eliminated by noting that the
sign of the known phase ¢ is fixed by convention and that
it is proportional to the mass for a massive particle
whereas 6, is independent of the mass or that 6, is a
type-1I phase shift as opposed to ¢ which is a type-I phase
shift.* This determines 6, modulo 27 and, hence, F, is
uniquely determined. Also, as will be seen later, the
Josephson effect, when generalized to an arbitrary gauge
theory, enables sin(6, +¢), r=1, ... ,n, to be determined,
in principle, which would be an alternative way of elim-
inating the above-mentioned ambiguity in determining F,
from H,.

But when a charged matter field ¢ is coupled to the
electromagnetic field, we also have gauge-invariant quan-
tities of the form

Fe=¢*(x¥)exp W(x¥) (1.3)

—iL [ 4 dxr
lﬁc!x‘ udx

where the integral is along a path C that joins two points
whose coordinates are x4 and x4. A gauge transforma-
tion on A4, is compensated by the corresponding gauge
transformation on y so that (1.3) is gauge invariant. This
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raises the questions as to whether quantities of the form
(1.3) are experimentally observable and if so whether it
violates the statement of Wu and Yang that quantities of
the form (1.1) associated with closed curves contain all
the observable information in the electromagnetic field.
In Sec. IT we shall answer the first of these questions in
the affirmative and the second in the negative by consid-
ering the Josephson effect for superconductors. This
leads to a generalization of the Josephson effect for non-
Abelian gauge theories and possible applications are men-
tioned. For non-Abelian gauge fields, however, it is point-
ed out that a measurement of the gauge field, in general,
determines operators that are more general than (1.2) [see
(2.8)].

Nevertheless, the operators (1.2), for all loops at a point,
are sufficient for reconstructing the gauge potential (up to
gauge transformations) because of the theorem® men-
tioned above. But they are not all necessary. Indeed, it is
shown in Sec. III that in an n-dimensional manifold M,
there exists an n-dimensional subset of the infinite-
dimensional set of loops at a fixed point such that the
holonomy transformations (1.2) for this subset of curves
are necessary and sufficient for reconstructing the gauge
field. An interesting application of this result is given to
Minkowski space-time made compact by adding confor-
mal infinity.

In Sec. IV we make use of this result to formulate a
“principle of equivalence” for gauge fields, which is
analogous to Trautman’s formulation of the principle of
equivalence for the gravitational field. It is therefore
hoped that this principle would be of help in providing in-
sight into the problem of unifying gravity and gauge
fields.

II. THE JOSEPHSON EFFECT AND GAUGE FIELDS

Superconductivity is due to part of the conduction elec-
trons forming pairs called Cooper pairs, which can be re-
garded as being in a pure quantum-mechanical state that
is spread out over the entire superconductor, normally of
macroscopic dimensions. The order parameter ¥(x*) may
be regarded approximately as the wave function of these
Cooper pairs. So, in a Josephson junction, by which is
meant a thin normal conductor or an insulator separating
two superconductors, the wave function tunnels from both
sides of the junction to interfere and give a current.
Hence, this current should be periodic in the gauge-
invariant phase difference

Ag*= [ -dr Q.1

c*t

v¢--—A

where ¢ is the phase of i, 2e is the charge of the Cooper
pair, and the integral is over the shortest path C across
the junction in the frame of the junction. Therefore the
lowest-order component of the current density is

Jj=JosinAg* , 2.2)

which was first predicted by Josephson.’
We now rewrite (2.1) as
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i2e ™1
~ T Je Auit

[P(x8) | [dxh) ]

P* (xk exp P(x¥)

expl(iAd*)=

(2.3)

It follows immediately that quantities of the form (1.3)
are observable by means of the Josephson effect. But this
does not violate the statement mentioned in the previous
section that the phase factors (1.1) (which are special cases
of (2.3) corresponding to x; coinciding with x,) provide a
complete description of the electromagnetic field. This is
because, in order to measure the electromagnetic field by
means of the Josephson effect, or any other effect that de-
pends on (2.3), it is necessary, in the experiment being per-
formed, to fix physically the relationship between ¥(x)
and ¥(x,). This can be done only by parallel transporting
¥(x,) and ¥(x,) along curves C; and C, to a common
point x and comparing the results

Y, =exp __Lﬁgci fo#dxl‘ P(xt)
Cl"l
and
y=mexp |~ 22 [ % a,dxb |pixh) .
Cy, %2

Suppose ¥,=X1;, where X is a complex number to be
determined by the experimental conditions. Then, from
(2.3),

e —(x¥*/| X | exp

’

i2e
N $, A,dxt

where y is the loop at x formed from C,, C, and C,.
Hence, the Josephson current (2.2) depends on the phase
factor (1.1) associated with a closed curve and the phase
of X which depends on the experiment being performed.
An example of such an experiment is a superconducting
ring interrupted by a Josephson junction and enclosing a
magnetic flux. Since, in the interior of the superconduc-
tor there is no electromagnetic field and no current, ¢ is
covariantly constant in directions normal to the four-
velocity t* of the superconductor inside the ring except
inside the junction. Therefore, if the superconductor is
nonrotating
— l—ﬁczi "2 4 pdx*
C 1" 1

P(x,)=exp Pixy),

where C, is the longer spacelike path perpendicular to t#,
through the interior of the superconductor, joining the
points x;,x, on the two sides of the Josephson junction.
Therefore, this is a special case of the above analysis cor-
responding to X =1 and x,=x. Hence,

_ieg

. i2e
exp(iAd*)=exp ——ﬁ—c—éyA”dx“ =exp P

’

where F is the magnetic flux enclosed by the ring, and a
Josephson current, given by (2.2), will flow through the
ring. It should be noted that the y here is spacelike, un-

like the ¥ for which (1.1) is determined by the interference
of two coherent beams, which is made up of timelike
curves. But if the superconducting ring has an angular
velocity , then we cannot find a closed curve around the
ring which is perpendicular to t* everywhere, and it fol-
lows that® ¥ =exp(i2m QA /#) in the nonrelativistic limit,
where 2m is the mass of the Cooper pair and A4 is the area
enclosed by the ring.

The above discussion of the Josephson effect suggests a
generalization of this effect for non-Abelian gauge fields.
Suppose that ¢ is a matter field coupled to a gauge field
A,. Consider a “Josephson junction” by which we mean
a potential barrier that enables ¢ from both sides to tunnel
through and interfere. If x; and x, are the extreme
points of a shortest path C through the junction, then it is
shown in the Appendix that the component along the path
C of the current density at any point x on this path is

JR=i F [T Ukxgxy)
— ' UM WUx,)], (2.4)

where

Uk(x)=P

x : .
exp [—ig fx 2A{‘dex“] ]

X T*P |exp {—ig f"Afodx#} 2.5)
x, TH .

and T/ generate the relevant representation of the Lie
algebra of the gauge group. For the superconducting case,
the gauge field is the electromagnetic field and g7/ are re-
placed by 2e. Then (2.4) and (2.5) give (2.2) with (2.1), for
this special case. Thus (2.4) is a generalization of the
Josephson equation (2.2). It must also be supplemented by
the equation of motion for the ¢ field.

There are two possible applications of this effect in the
very big and very small scales. According to the
inflationary-universe scenarios,” based on grand unified
theories, there was a spontaneous symmetry breaking in
the early Universe with the formation of bubbles in which
the Higgs field had different expectation values, in gen-
eral. The Higgs field is like the order parameter in a su-
perconducting system which is believed to obey the non-
linear Ginzburg-Landau equation. The energy of the
space between the bubbles is that of the original “false
vacuum” which is greater than the energy of the true vac-
uum inside any of the bubbles. So, when two such bub-
bles come sufficiently close to each other, by which we
mean that the shortest distance between them is
<#/V'2mV where V is the height of the potential barrier
(the difference between the energies of the false and true
vacua), the Higgs field ¢ should tunnel through this bar-
rier producing the current density predicted by (2.4). It
follows that the total current (integrated current density)
will depend on the gauge field present. Another possible
application is in nuclei. If quarks pair to form the ana-
logs of Cooper pairs, then we may expect tunneling phe-
nomena, similar to the superconducting type, in nuclei.
Also, if absolute confinement is not assumed in the bag
model of hadrons, then there would be tunneling between
two bags giving rise to a generalized Josephson current.

It is known that the magnetic flux enclosed by a super-
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conducting ring is quantized. We consider now the ana-
log of this for a non-Abelian gauge theory. Suppose that
we have an n-dimensional representation D(G) of a gauge
group G. Let 1,45, ...,¥, (m <n) be a set of fields on
which D(G) acts such that the only element of D(G) that
leaves them invariant is the identity apart from points
where one or more of these fields vanish. For the ground
state, far away from such points, there would exist a hy-
persurface orthogonal timelike vector field ¢# such that
Y,¥,, . ..,¥, are covariantly constant in the directions
perpendicular to #¥. Then if ¥ is a closed curve, the
points of which are at such far distances, and which is
orthogonal to t* everywhere, then

P [exp

—ig §, alriaxr | |=1. 2.6)

Hence, ¥ can enclose a vortex line containing a gauge field
flux which is quantized according to (2.6). A particular
case of this, for an SO(3) gauge theory, for which n =3
and m =2, has been given by Nielsen and Olsen.!® If the
gravitational field is non-negligible, and ¢ has intrinsic
spin, then we must generalize (2.6) by adding the gravita-
tional connection to the gauge field connection in (2.6).
The bubbles in the early Universe, mentioned above, are
usually assumed to be simply connected. But it is a priori
possible for them to be nonsimply connected. For in-
stance, it can be in the form of a ring enclosing a gauge
field which is subject to the condition (2.6).

For completeness, we also consider the non-Abelian
analog of a nonrotating superconducting ring with a
Josephson junction. Then in (2.4),

III(XZ)—_—P ¢(X1) ’

exp | —ig foA{‘Tjdx”

C*

where C, is a spacelike path through the ring. Hence, on
defining

Y(x)=P [exp [-—ig f:l A{‘Tidxl‘] ]1/;(x1) ,
JMx)=i :FO [t/ﬂ(x)P {exp [—ig gﬁ,,A{,dex“ ] ]szlz(x)

— ' (x)TIP |exp | —ig éyALTjdx”] ]l/l(x)‘ ,

(2.7)

where 7 is the loop at x formed from C and C,.
Thus, in this special case, the current (2.7) measures

P [exp [—ig ¢,A{,dex"J ]

associated with a closed curve. Another case of an experi-
ment in which this quantity is measured, discussed in Sec.
I, is the interference of two coherent beams in the pres-
ence of a gauge field.* In general, however, the above
considerations suggest that an experiment to measure a
gauge field would measure an operator of the form

X1 L,
X.P [exp [—ig L2 ALTde"”

12 . 3
XX,P |exp | —ig [ A{,dex#H-~-
X3

XX, P

. *no i
—ig fx1 A{,dex#] ]X,,+,+H.c. ,
(2.8)

exp

where the operators Xy, ...,X, . are determined by the
experimental conditions. These need not commute with
the parallel-transport operators which depend on the
gauge potential. This is an essential difference between
the non-Abelian and the Abelian gauge fields. Neverthe-
less, (2.8) is also associated with a closed curve that begins
and ends at x,, similar to the Abelian case. Since the ap-
paratus responsible for the operators Xi,...,X,,; is
made up of matter fields that interact with the same
gauge field A{,, it is reasonable to suppose that
X1, ... Xp41 transform covariantly under a gauge
transformation (i.e., undergo similarity gauge transforma-
tions). Then (2.8) also would transform covariantly. Oth-
erwise gauge invariance would be broken. As seen above,
it is possible to have special gedanken experiments in

which X, ...,X, | are each equal to the identity. Then
(2.8) is
P |exp [—ig @,,A{,Tjdx"] ]+H.c. ,

where y is a loop at x;. As mentioned in Sec. I, from
these quantities 4, can be reconstructed up to gauge
transformations and we can then determine (2.8) for any
given experimental situation.

III. GAUGE FIELD AS A MAP
ON A FINITE-DIMENSIONAL SET OF LOOPS

As already remarked, the set of all loops at a point O in
an n-dimensional manifold M form an infinite-
dimensional space. It is convenient to have a finite-
dimensional subspace of these loops so that the specifica-
tion of the holonomy transformations (parallel-transport
operators) for these loops is sufficient to determine the
gauge field up to gauge transformations. It was shown
previously that there exists a 2n-dimensional set of loops
so that specifying the holonomy transformations for these
curves is sufficient to reconstruct the gauge field.® But
these holonomy transformations had to satisfy certain
compatibility conditions which implies that there is
redundancy in the chosen set of curves. We shall show
now that there exists an n-dimensional set of loops at 0 so
that specifying the gauge group elements for these curves
in a differentiable manner is sufficient to reconstruct the
corresponding gauge potential, which is then unique up to
gauge transformations.

Let (x#, u=1,2,...,n) be a coordinate system on M.
If M does not admit a coordinate patch that covers all of
M then the construction to be given now may be done lo-
cally, or it can be easily extended to apply to the entire
manifold. Let O be a fixed point in M and K a set of dif-
ferentiable curves through O which vary differentiably so
that for every PEM, P+0, there is a unique curve be-



2284

longing to K which passes through P. By an rth coordi-
nate line we mean a line for which the coordinates
x!,...,x" with the exception of x’, have fixed values,
while x” varies over the real line. Let = be a hypersurface
containing O such that every coordinate line meets X at
exactly one point (Fig. 1).

Let P(x*) be an arbitrary point in M. Suppose that the
rth coordinate line through P meets = at P,. Let [, I, be
the unique elements of K that pass through P and P,,
respectively, and y, the closed curve at O formed from /,
the rth coordinate line through P and /, in the obvious
way. Then 7, (r=1,...,n) may be regarded as a func-
tion of M and hence {y,} form an n-dimensional sub-
space of the infinite-dimensional set of loops at 0. Assign
an element g(y,(x*))=g,(x*) of the gauge group G to
each y,(x*) such that, for each 7, g, is a differentiable
map of M into G, and when y, encloses zero area g(v,) is
the identity. We now show that from {g(v,(x#))} the
vector potential can be determined in a particular gauge.
This implies that no further restriction needs to be placed
on g, for it to describe a connection.

Suppose P'(x° ...,x"+6x",...,x" is a point neigh-
boring P and I'€K passes through P’. Then &g,
= {g(y,(P"))} ~'g(y,(P)) is the holonomy transformation
for the closed curve formed from /, the rth coordinate line
segment connecting P and P’, and /'. Choose a gauge so
that the parallel transport along any portion of each ele-
ment of K is the identity. Then &g, =1—igd/T/6x" so
that g,~ ag ,/3x"=igA}T/ (no summation over r, g is
the coupllng constant), from which 47 can be determined.
By varying r, the vector potential A’(x“) p=1,...,n,
can be determined in this gauge, which is called a radial
gauge. Also, 4'/(x?) is any other vector potential having
the same g,(y,) as the holonomy transformations if and
only if A'J, and AJ are related by the local gauge
transformation

U(x#*)=P

exp | —ig fPTjA'{‘dx"
10

This can be proved by writing g,(x+dx)"'g,(x) in
terms of the connections 4 and A’ which then give the
stated gauge transformation between them and conversely
this gauge transformation immediately implies that 4 and
A’ have the same g,’s. Also g, satisfies the Yang-Mills
equation -

FIG. 1. Reconstruction of the vector potential in a radial
gauge from the holonomy transformations for an n-dimensional
space of loops in an n-dimensional manifold.
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asa’ ’—-8,6 as+2[a-"asa’]_[a”asas]

'"[asyaras]+[as’[asra’]]= Tijir ’

where a, =g, a,g ,,» and d, denotes 3/9x".

An example of M is the four-dimensional Minkowski
space-time and A{, is then the usual gauge potential in the
radial gauge. Another example of M is the conformal
completion of Minkowski space-time into a compact man-
ifold!! by adding a boundary called the conformal infinity
<, which is suitable for studying massless fields such as
gauge fields. Then every asymptotically timelike line
passes through two points I+, I~ on # called future and
past infinity, respectively. Every asymptotlcally space-
like line originates and terminates at a point I% on s,
called spatial infinity. The hypersurface .# contains two
hypersurfaces called the future null cone #+ which has
I as the vertex and the past null cone .# ~ which has I~
as the vertex. Every null line originates at a point on . ~
and terminates at a point on £ .

The point It may be taken as the point O in the con-
struction given earlier and #* the hypersurface =. The
congruence K can be taken to be a set of parallel timelike
lines and the generators of the cone # 7, all of which pass
through I*. The coordinate system can be chosen so that
one set of coordinate lines are the same as the timelike
lines of K and the other coordinate lines are spacelike
lines which pass through I° It follows that the gauge
field can be constructed from the holonomy transforma-
tions associated with triangles that have two fixed vertices
I*, I° and the third vertex varying over the entire Min-
kowsk1 space-txme The gauge in which A’ (;1 0,1,2,3)
is constructed is then called a temporal gauge since A{, 0
in this gauge in the above coordinate system. Thus, the
temporal gauge is a special case of a radial gauge in this
conformally completed Minkowski space-time. Also, it is
interesting that, in this case, the basis loops are triangles
with two points fixed, which is the simplest possible basis.
It should be noted that a finite-dimensional basis of loops
for the conformally completed Minkowski space-time has
also been given by Kozameh and Newman.?

IV. AN EQUIVALENCE PRINCIPLE
FOR GAUGE FIELDS

It may appear at first sight that it is not possible to
have an equivalence principle for gauge fields because dif-
ferent particles, in general, have different motions in a
gauge field. For instance, in an electromagnetic field,
which is the simplest gauge field, particles with different
charge-to-mass ratios have different classical trajectories.
But by considering the quantum-mechanical motions of
the particles, it is possible to formulate a principle of
equivalence for gauge fields, which is analogous to
Trautman’s'® formulation of the principle of equivalence
for the gravitational field. The latter principle states that
the same affine connection on space-time is determined by
the classical motions of different test particles in a gravi-
tational field.

But while classical motions are given by trajectories in
space-time, quantum-mechanical motions are given by the
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propagation of De Broglie waves in space-time. We saw
in Sec. IT that when a gauge field is measured by a
quantum-mechanical wave function, we determine a map
from a set of loops into a representation of the gauge
group, in an approximate sense as explained below.

To make this idea mathematically precise, we define by
L, the set of all piecewise-differentiable closed curves in a
manifold M beginning and ending at 0, which we called
the loops at 0. Then L, has a differentiable structure ob-
tained from M, which makes it an infinite-dimensional
manifold."* Let .£, be the quotient set of L, by the
equivalence relation that identifies any two loops whose
images differ by the image of a loop that encloses no area,
i.e., a path section which doubles back on itself. Then any
function of .#, can be regarded as a function on L, by
making this function constant on equivalent loops of L.
By a map on .%, being “differentiable” we shall mean
that it is differentiable as a map on Ly. Clearly .% is a
group with the product defined by the composition of
loops. Then by using a particle p which probes the gauge
field by means of an appropriate experiment, such as the
interference of two coherent beams* or the generalized
Josephson effect discussed in Sec. II, we can determine, in
principle, a homomorphism m, from %, onto I, up to
conjugacy, where I, is a group of linear transformations.

Owing to the quantum uncertainty principle, this map
can be determined operationally only approximately: The
particle p cannot distinguish clearly between two loops
whose images are separated by shortest distances of the
order of the Compton wavelength #/mc of p. This uncer-
tainty may be decreased by increasing the mass m, which,
however, increases the Schwarszchild radius 2Gm /c? of
the particle. Since the uncertainty must also exceed the
Schwarszchild radius, there is then a minimum to this un-
certainty which can be shown to be the Planck length
(G#/¢*)'2~107% cm. This is like the determination of
the geometry of space-time by a quantum-mechanical
probe which can at best be determined to an uncertainty
of the order of the Planck length.!* If we do not take a
strictly operational approach then the existence of m, as a
precise map may be postulated and should satisfy the
principle of equivalence for gauge fields which we now
state as follows.

There exists a finite-dimensional group G and differen-
tiable homomorphisms ®:.£y—G and D,:G—T, such
that the following diagram commutes for every particle p:

¢
< » G

mp Dp

[ P
Even though the group I', and the maps m,, D, de-
pend on the particle p, G and ¢ are independent of the

particle and determine the geometry of the gauge field in
the spirit of the usual principle of equivalence. Example:
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For an electromagnetic field, I', consists of just the iden-
tity if p is neutral and T, is a nontrivial representation of
U(1) or T(1) (translational group in one dimension) if p is
charged. But G and ® are the same in both cases. If G is
chosen to be U(1), then the I'’s are restricted to be images
of representations D, of U(1) implying that charge is
quantized. Conversely, the empirical fact that the charge
is quantized, which is reflected in {I',}, justifies the
choice of G=U(1) for electromagnetism. Thus the
Aharonov-Bohm type of experiments or the Josephson ef-
fect which give the map m,, together with charge quanti-
zation, imply that electromagnetism is a U(1) gauge field,
according to the above principle of equivalence. This is
because, using the theorem mentioned in Sec. I, for an ar-
bitrary Lie group G, the gauge potential can be construct-
ed from ® and it is unique up to gauge transformations.>$
But Sec. III implies that the potential can be constructed
from the restriction of ® to a finite-dimensional set of
loops. Hence, in the above equivalence principle L, may
be replaced by this finite-dimensional basis of loops.
Then ®, m,, and D, (whose domain is the range of ®)
should obey only the restriction that they are differenti-
able and take the identity into the identity.

The above principle of equivalence will, of course, ap-
ply to the gravitational connection, in which case
G=SL(2,C). An interesting problem is whether it can be
extended to provide a complete description of the gravita-
tional field including the metric, in which case we would
have a unified description of gravity and gauge fields.

Note added in proof. 1 have recently become aware of
the work of R. Giles [Phys. Rev. D 24, 2160 (1981)] and
of L. Gross [J. Funct. Anal. 63, 1 (1985)] on gauge field
and holonomy which are related to the present work.
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APPENDIX: GENERALIZATION
OF THE JOSEPHSON EFFECT
FOR NON-ABELIAN GAUGE THEORIES

Consider a matter field ¥ minimaly coupled to a gauge
field 44, and obeying a wave equation analogous to the
Ginzburg-Landau equation obeyed by the order parameter
in superconductivity. Suppose that there is a Josephson
junction (a barrier that enables i from both sides to tunnel
through it), in the region x; <x <Xx,, in a Cartesian coor-
dinate system.

In the case of superconductivity, the current through
the Josephson junction can be obtained from the boundary
conditions for the Ginzburg-Landau equation that were
found from the microscopic theory by De Gennes.!'¢
These conditions may be stated, in a slightly more general
form, as



2286

i( 1>+i—‘°ﬁA (x Jxy)

=a |Bexp | — i2e ‘Axdx P(x)—P(xy) |,
ﬁc E?)
(A1)
d »)
%(xz)—{—iﬁci/ix(xz)w(xz)
a |Y(x,)—Bexp | — i2e 2A,cdx Pixy) |,
ﬁc x

where a and B are real positive numbers, and we have put
in the electromagnetic phase factors in the right-hand side
of these two equations to make them explicitly gauge co-
variant. The simplest generalization of (A1) for an arbi-
trary gauge theory is

J

jk(x1)=— fap {dJT(x )T*P |exp

FHxy)= "‘"‘B [w*(xl)P[exp[—zg f AJdex]]T"¢<x2)—¢*<x2)rkp

ko —if trk
J (x)———zm [¢(x) T

-—tgf AJT’dx”l,b(xz AE?Y) 2
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5f(x, )+igdd(x ) Thb(x,)

Xp oL
=a‘BP [exp [—ig fxz A,{T’dx] ]¢(x2)——1/}(x1)l ,
(A2)
%)‘cw—(xz)+igA:{(x2)le//(xz)

=a [wix) 8P [exp [ —ig [ aTlax | [vxn |

If ¢ is a scalar field then its current in the x direction is

exp

—g;'f—(x>+ig,4,{(x)rf¢<x)

+
T*p(x)

>

— [%%(x)-}-igAj(x)Tjgb(x)

(A3)

where T are the (Hermitian) generators of the representa-
tion of the gauge group. Hence, on using (A2),

exp ~—th A-’T’dxHT"llf(xl l ,

(A4)

——1gf AJTde”d;(x, ]

exp

To obtain the current at any point x €[x,,x,], we try the ansatz

tﬁaB

jkx)=—

— 9 (x,)P |exp

—ig fx 2A,{Tjd:'c] }T"P [exp [——ig f:l A,{Tjdx] ]1//(x1)j, X1 <x<Xx;p,

ttf(xl)P[exp [—tg f Afodx] ]T"P {exp [—tg f A T/dx ] ]z/z(xz)

(AS)

which contains the equatlons (A4) as special cases. We now show that the current (A5) is covariantly conserved, in the
stationary situation in which a gauge can be chosen such that 44=0 and 9; 0/ dt=0. Then,

-k
Q-L(x)=
ox

exp

tix
—2—5&4 [a/ﬁ(xl)P

—ig f:l Aldx ] ]

X(T*T'—T'T*)P {exp [—ig f,: AL Tidx ] ]1,[)(x2) } +H.c.—gCkimq!m

on using the Lie-algebra relations [T/, T*]=ic**™ T™. Hence, the gauge-covariant divergence of the current

,Z lkm my __
o +gC A,J =0.

Since (A5) is covariantly conserved and is in agreement with the currents at x =x; and x =x,, it follows that (AS) is the

current at any x €[x,x,].
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