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%e use the results of a Monte Carlo simulation of quantum chromodynamics in the quenched ap-
proximation to compute the first two moments of the ~ and p distribution amplitude. Our results
turn out to be surprisingly large, and we discuss some of the phenomenological implications of this

turn of events. In addition to the distribution amplitude itself, we predict the pion form factor and
the cross section for yy~n m, and we compare the former with experiment. We also contrast
lattice-gauge-theory predictions with those of (}CDsum rules.

I. INTRODUCTION

Detailed theoretical predictions in many areas of parti-
cle physics are limited because no one has calculated ma-
trix elements with hadronic contributions. However, the
development of numerical algorithms2 and special purpose
computers indicates that lattice gauge theory will provide
the basis needed for these calculations. In the meantime,
it is worth remarking that many relevant matrix elements
can be evaluated from existing Monte Carlo ensembles of
gauge field configurations and their associated quark
propagators. This article presents the results of such a
calculation for the first two nonzero moments of the rr-

and p-meson distribution amplitude.
In perturbative quantum chromodynamics a wide

variety of processes can be "factorized" into a convolution
of perturbative scattering amplitudes and nonperturbative
functions. The moments of the latter are hadronic matrix
elements of local operators which appear in the operator-
product expansion and which have been recently investi-

gated in lattice gauge theory. Because the lattice theory
breaks some of the invariances of the continuum theory,
any naive lattice formulation of the operators introduces
power-law divergences. Reference 5 shows how the
divergences of the naive operators are related to operators
of lower mass dimension and how to remove them by ex-
plicit subtraction. For example, to calculate the second
m6ment one needs three counterterms in addition to the
naive operator.

The distribution amplitude P(x;,Q) contains the non-
perturbative information needed to predict exclusive
scattering amplitudes at wide angles; in a physical gauge
it is the probability amplitude for a hadron to consist of
valence partons which have fractional momentum x; and
which are colhnear up to scale Q. For mesons it is con-
venient to define g=xe —x&. Then the moments of the
distribution amplitude

(0
~

g(k)
~

h )(g) g (k)(Q)(p . . . p traces)

(1.2)

where Q is an ultraviolet cutoff in the theory, and

(1.3)

Here I „=y„ys(y„) for the sr and helicity-0 p mesons,
respectively.

The lattice calculation can give the moments at only
one specific value of Q, which is related to the lattice
spacing, as explained in Ref. 5. To extend our calculation
to all values of Q, one can use the renormalization group.
The operators in Eq. (1.3) mix under the renormalization

group, so it is convenient to diagonalize the anomalous di-
mension matrix and work with Gegenbauer moments,

1

&2n, f— C('")(g)(((g,Q)dg (1.4)

and associated operators,

tn/2]
g (n) ~ b(a) —(n —zk)g

&W&'''I'n ~ 2k &ok+&
k

g (Zk)
&g &W)

' '&ik

—traces, (1.5)

where the b'2k' are the coefficients of the Gegenbauer
polynomial, C„' '. For these moments the renormaliza-
tion group tells us that

A '"'(Q) ln(Q /A )

g (")(Qo) ln(Q() /A )

where y„ is the one-loop anomalous dimension of g '"',
and Po = 1 1 2nf /3 is the one-loop coefficient of the P
function. Equation (1.4) can be inverted to give the distri-
bution amphtude in terms of the moments:

&"'(Q)-=&2 .f,A(C.Q)dr {1.1)

are proportional to matrix elements of local operators:

~n, {2+n)(1+n)

a form which will be useful in phenomenological applica-
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tions of our results.
We have computed the first two moments for the m and

the p using 19 configurations of SU(3) Monte Carlo data
at p=5.7 on a 6 X 12X 18 lattice. These data neglect the
effects of quark vacuum polarization. We had quark
propagators at three values of the hopping parameter:
EC =0.325, 0.34, and 0.355. Further details of the simula-
tion have been published elsewhere.

II. CALCULATION

3„=(2a) '(r„t „)—, (2.1)

where t+„are translation operators which transport fields

by one link in the p, direction. Similarly

A. Operators and notation

Since the operators of Eqs. (1.3) and (1.5) contain
derivatives in the continuum theory, one must formulate a
discretization prescription; we use the symmetric differ-
ence prescription of Ref. 5. To be specific

suit for 0' ' is exhibited in Ref. 5.
For the pion we considered the component of 0&„'2

with p=v=A, =O. Using the naive definitions of Eqs.
(1.3) and (2.2) gives an operator with power-law diver-
gences. These can be removed by

and

'iT&olr sD'0

'toit')'sf

(2.3a)

(2.3b)

o"'=a 'Piro''s4.

The results of Ref. 5 show that

(2.3c)

O,'"=O,'"—C, (1.58O'"+4.83O"'+2.58O"')
4m

(2.4)

is free of power-law divergences to 0((z). [The coeffi-
cients in Eq. (2.4) may seem large, but we point out that
CFa/4n =8.9X 10 for p= 5.7.] Finally, from Eq.
(1.2), the moment, A' '(Q), is related to Oii

'
by

Dl. Dl. D ——I, (Z—a) '( —Tq Tq+ T—q T„)—, (0
~

O("
~

~)((2)=~(2)(g)( 2(po') . (2.5)

(2.2)

where the T's transport fields covariantly, and the back
arrow (+—) indicates that the operator acts on fields to its
left. Using these definitions it is straightforward to ex-

pand the 0'"' in terms of gauge field matrices U; the re-

(The factor —,
' is due to the trace term. )

The case of the helicity-0 p meson is slightly more com-
plicated because the polarization vector e makes the ten-
sor decomposition of Eq. (1.2) incorrect. If one makes no
dynamical assumptions the correct decomposition is

{0
~

0' '
~
p;Ii =0)(&)= A i (Q)(p Xp Xp —traces)+A z (Q)(@Xp Xp —traces)mz

+A s '(Q)(» X e Xp —traces)m~ +A 4 '(Q)(e X e Xe—traces)m~ (2.6)

The continuuin analysiss requires the combination of the
A ' that is given by the p=v=A, =+component. '

Furthermore, a helicity-0 vector meson has e+ —p+/m in
any frame, so we have

Our numerical calculation indicates that the "imaginary
part" is consistent with zero. Repeating the calculations

of Ref. 5 for the "real part" yields the result that

where

"""
I P ~ =»'~'=~'"({?)(p')' (2.7)

0' '=O' ' —C ( —13.690"'+9.570"'+4.280' ')
4m

(2.11)

Q (2)(Q) g ( )(Q)+g (2)(Q)+g (2)(g)+g (2)(g)

(2.8)

is free of power-law divergences to 0(a).

B. Matrix elements

The power-law divergences of 0'2'+++, with I =y, can
be removed with

To calculate a matrix element of a local operator,
(0

~

0'"'
~

m }, for n =0,2,c,e, consider the correlation
function

(2.9a)

(2.9b)

C("'(t)=g (0'")(x,r)O""(0 0) ) . (2.12)

Oq' ——a Pi (2.9c)

Inserting a complete set of relativistically normalized

states yields

C(")(t)=g (2m, )-'(0
~

O'")
[ q & &q [

0(o)'
[ 0)F(m, ,r),

can be written in terms of Cartesian com-
ponents (we assume symmetrization of the indices): (2.13)

0+++= (0;a —30oo; ) + i (Oooo —30();, ) . (2.10) where
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F(m, t) =e '+e

=2e ' cosh[m ( —,
'
&4 —t)] (2.14)

04

l ( I I I I ( I i i I i

~ Tr

~ p

where the M's are abbreviations for the matrix elements.

Once the correlation functions have been computed
from the numerical simulation, one can fit them to the
shape indicated by Eq. (2.15) to determine the masses, and
the coefficients of the functions F. From the latter the
matrix elements can be extracted. We have done this for
O' ', O' ', C"', and O'". For C' ' this analysis is quite
straightforward; we obtain the same value for the matrix
element when we throw out the first 3, 4, or 5 time slices.
Unfortunately we are not so successful on the other corre-
lation functions, which is probably a consequence of the
notorious problems" in fitting the expression in Eq.
(2.15). We find adequate fits for a wide range of different
values of mq and of the M's.

However, once a particular matrix element, say, M'i ',

has been determined satisfactorily, it is actually unneces-

sary to rely on any fitting procedures to predict, say, M'i '.
If one takes the ratio of two correlation functions, one ob-
tains, near t =Nq/2, where F(m2, t)/F(m i, t) is small,

Z( ~(t)-=O'"""
O"'(t)

m, M,""F(mt, t)

m, M',"F(mi, t)

~(.) ~(o)
2 2

~(e) ~(o)
1 1

(2.16)

For our time axis, N4 18, and fo—r the masses that
emerge from fitting C'0' the second term in the large
square bracket is negligible for t&6(8) for the m(p)
meson. Hence the desired matrix element, M'i"', can be
deduced from the ratio, 8'"'(t}, near t =N4/2, and the
(theoretical or experimental} knowledge of M( '.
following we will denote by 8'"', without the explicit time
argument, the ratio M'i"'/M'( '.

reflects the periodicity in the time direction, whose axis
has length N4. If the radial excitations, j& 1, have large
enough masses, C'"' should be well approximated, near
t =%4/2, by two terms:

O(gj(t) M(n)M(0)e ' +M(n)M(0)e 2'F(mi, t) F(m, t)
1 1 2 2

2P?l 1 2' 2

(2.15)

0.32 cL35 (g4 A@5 036 QH' K p

K

FIG. 1. Zeroth moment A' ' of the m and p distribution am-
plitudes as a function of E, extrapolated to the physical value

E~ =0.379. Circles denote numerical data for the m and squares
the p.

tive procedure of using ( m,f„}to determine (E~,a) gives
the same answers for this simulation.

The first moment of the distribution amplitude is pro-
portional to weak or electromagnetic decay constants:

(3.1)

Linear fits of these quantities for the three values of I(' are
shown in Fig. 1, and agree very well with experiment:
A' '=139 MeV (expt. 132 MeV} and A~ '=252 MeV
(expt. 214 MeV).

For the second moment it is sensible to extrapolate one
whose expected K dependence is mild. First, one should
remove the power-law divergences at the unphysical
values of K in case the size of the "finite" part is set by
the pion mass. Tables I and II, respectively, for the m and

p, show the three ratios of matrix elements needed to do
this, as well as the combination, given by Eqs. (2.4) and

(2.11), that is free of divergences to 0((z). From Eqs.
(2.5) and (2.7) one expects these ratios to be proportional
to m3 in the continuum limit, and hence quite strongly
dependent on I(.'. To account for 0 (a 2) terms one can in-
terpret the p on the right-hand sides of these formulas as
sinp =i sinhm. This would be correct for a qq state in a

0

free Euclidean lattice theory. Then one can use Eqs. (2.5)
and (2.7) to determine Ati

' as a function of J . From Fig.
2, which is a plot of Hit vs E, we obtain A' ' =233 MeV
and Az ——259 MeV. We have also fitted the ratio of mo-(2)

ments, Aa /A, to straight lmes, which is shown in Fig.(2) (O) ~ ~

3. The results are somewhat smaller than those from Fig.

III. RESULTS

Unfortunately it is impossible' to compute quark prop-
agators numerically near physical values of K, and one
must extrapolate to that value Ez to obtain honest results.
%'e determine j;p by assuming that m~ is linear in E and
tuning to m~ =140 MeV. To do this one needs the value
of the lattice spacing in physical units. Using the string
tension as input implies a =0.993 (MeV) '; the alterna-

0.325 —0.970(30)
0.340 —0.875(30}
0.355 —0.772(30}

—2.785(50) —3.65(15) —0.797{30)
—2.861(50) —3.48(15) —0.709{30)
—2.91(10) —3.31(15) —0.612{30)

TABLE I. Raw results for the ratio of m correlation function,
and the ratio that is free of power-law divergences.

g (c)
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TABLE II. Raw results for the ratio of p correlation func-
tions, and the ratio that is free of power-law divergences.

R (e) R(2)
R

B«OP 0.325
0.340
0.355

—0.501{2)
—0.469(2)
—0.459{10)

—0 760{10) 0 961(1)
—0.772(10) 0.787(1)
—0.782(10} 0.635(1)

—0.713(5)
—0.668{5)
—0.646(12)

Q( I I l I l I I I I l l I I

Cg2 Cg3 Q34 (g5 Cg6 +37 K p

FIG. 2. Second moment A~
' of the n. and p distribution am-

plitudes as a function of E, extrapolated to the physical value

X~ =0.379. Circles denote numerical data for the m and squares
the p. These data have power-law divergences removed as indi-

cated by Eqs. (6.2) and (6.9).

Some authors' prefer to extrapolate in 1/K; we have
done this also and found that the quality of the fit is not
as good. The numerical values of our results change by at
most 1% when we adopt this strategy.

IV. AN ENCOUNTER %ITH EXPERIMENTS

2—A' '=191 MeV and A' '=235 MeV; hwvever, the
statistical error alone is about 20 MeV for the numbers
quoted here, so both methods agree. '3 Finally, the rela-
tionship between the continuum scale Q and the lattice
spacing implies that Q =7.5 GeV for the rr, and Q =6.8
GeV for the p.

Numerical values for various quantities are in Tables
III and IV for the rr and p, respectively. Careful readers
will notice that the column labeled Aa '/A'0' is not quite
the ratio of the columns labeled Aa

' and A' '. This is be-
cause ere determined the ratio by computing directly

g(2) C(2)
R R

g(0) ( Ig )2( (0)
(3.2)

which mimics the continuum analysis where the parton

momentum (D ) is scaled by the total momentum (8).
We have also used the Monte Carlo data to compute

(0~ 0'"
) Ir) and (0 (0'" (p) which should vanish by

charge-conju~ation invariance. The associated correlation
functions C' ' are smaller than C' ' and C' ' by 2 orders
of magnitude, and they fluctuate in sign as a function of
1 We the. refore conclude that the matrix elements are
consistent ~ith zero.

The values we have obtained for the second moments
are large, indeed radically so. For ground-state mesons
one might expect, by analogy with nonrelativistic quan-
tum mechanics, P to have no nodes in the interval
—1&(&1, although this attitude is certainly not well
founded. However, our calculation insists that the Ir dis-
tribution amplitude has a zero because

A' '/A' '= J g Pdg I Pdg&1,

and it suggests very strongly that the p distribution ampli-
tude has one as well. We have illustrated this in Fig. 4,
which shows the asymptotic distribution amplitude along
with those based on our results for the pion and the as-
sumption that the higher (n & 4) moments in Eq. (1.7) are
negligible. Although that assumption is untenable, the
conclusion that the distribution amplitude differs greatly
from the asymptotic shape, even at high Q, is inescap-
able.

In the following we will continue to concentrate on the
pion, rather than the p, because the character of our ex-
perimental predictions would be quite similar in both
cases, and because the pion is easier to identify in experi-
ments.

The most accessible experimental data that might test
the theoretical calculation is the pion form factor. I.epage
and Brodsky have shown that at large Q2

I I 1 I I I I I I I I I I

(.0-
TABLE III. Results for the m extrapolated to the physical

value of E. All quantities are dimensionless; physical units can
be restored using a =993 {MeV)

0.5 ~
~i I I I I I I l I I I l l

0.32 0.33 QM Cg5 (Q6 CP7 K p

K

FIG. 3. The ratio of moments A& '/A' ' determined from lhe

ratio of correlation functions in Eq. (6.16).

0.325
0.340
0.355
0.379(5}

Experiment

1.000(40)
0.723(34)
0.476(55}
yields Kp
0.020

0.243(8)
0.215(13)
0.184(20)
0.140(28)
0.133

g (2)

0.133(5)
0.159{8)
0.192(20)
0.235(25)

g (2)

g (0)

0.547(20)
0.735(40)
1.05(10)
1.37(20)
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FIG. 4. The n distribution amphtude for various values of
A Pf'{Q). {a) The asymptotic result A e'{Q)=0. (b) The result
from QCD sum rules, Ref. 15, that worked at Q =0.5 GeV. {c)
The result of the present numerical work, using the method of
Fig. 2; Q =7.5 GeV. Using Eq. (1.6) to reconcile the momen-
tum scales increases the discrepancy between curves (1) and (c}.

2

Q'F.(g')=C, a,(g') g "+ ~ '"'(g)
n,

' „,„{2+n)(1+n)

I & I s s a a I s s

Qg 0.4 QS

COS ec ~

a s I a I ~ ~

OP l.o

FIG. 6. Cross section for yy~m m, scaled by the form fac-
tor as suggested in Ref. 18. Curves (a)—(d) correspond to the
methods hsted in Fig. 5.

7 ~'"'(Q)
=16m'fe ag(Q ) 1+ + ~ ~

IS g {0)

(4.1)

(4.2)

The dependence on the distribution amplitude is in the
form factor F and g, which is a functional of ()) and a
function of the center-of-mass scattering angle 8, m . For
an explicit formula, see Ref. 18. Unlike F, g has no sim-

where on the second line we have set n, =3 and CF ——,'.
As shown in Fig. 5, the theoretical prediction is too small
when the second and higher moments are neglected; how-
ever, it is too large when only the second is included. One
possibility, of course, is that a higher moment has the op-
posite sign and thus reduces the right-hand side of Eq.
(4.1) to phenomenologically acceptable levels.

We have also predicted the cross section for yy-+ncrrc.
In perturbative @CD that cross section' is

do' 2(&raaM Fe(s)
Sl

pie expression in terms of the moments; indeed we per-
formed the necessary convolutions numerically for each
value of 8, . In Fig. 6 we have plotted this cross section
as a function of cos28, with the form-factor dependence
removed. '9

These moments have also been evaluated with QCD
sum rules, 's and the results are rather smaller than ours.
For exam le, the sum rules yield A'2'(Q =0.5 GeV)
=0.462'c for the pion, whereas we have [using Eq. (1.6)
and taking A~ ——0. 1 GeV] A ' '(Q =0.5 GeV) =2.922 'c'.

The dramatic disagreement between the two methods war-
rants some comment. Although @CD sum rules agree
impressively with a variety of experimental data, includ-
ing the pion form factor, as seen in Fig. 5, and heavy-
meson decays to rr pairs, their derivation is not entirely
rigorous. Moreover, the model distribution amplitude,
P-g (1—g ), proposed in Ref. 15 to reproduce the mo-
ments calculated from the sum rules, implies that there is
no probability of the quark and antiquark sharing the
meson momentum equally. This would be a very striking
and counterintuitive situation.

On the other hand, the distribution amplitude shown in
Fig. 4 indicates a large probability of equal sharing, as
well as a significant probability of skewed sharing. This
observation still holds if one introduces into the distribu-

IQ 2.0 50 lo.o 2QQ

0 (Gev )

TABLE IV. Results for the p extrapolated to the physical
value of K. AH quantities are dimensionless; physical units can
be restored using a =993 (Me&)

FIG. 5. The pion form factor. {a) Asymptotic theoretical
prediction. (b) @CD sum-rule prediction. (c) and (d) The pre-
diction of the present work, assuming that higher moments are
negligible (they are not), using Figs. 3 and 2, respectively. The
points are from ep~en~+ {squares, Ref. 16) and g~w+n {di-
amond, Ref. 17}. Vfe present both of our extrapolations here to
give some indication of the systematic (and statistical) errors in
our calcultion.

0.325
0.340
0.355
0.379

Experiment

1.07(4)
0.94{5)
0.81{4)
0.60(9)
0.775

P

0.382(32)
0.346(44)
0.312(60)
0.254(110)
0.216

g (2)
P

0.146(14)
0.176{20)
0.229(30)
0.261(50)

0.383{30)
0.507(30}
0.73(11)
0.933(20)
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tion amplitude of Fig. 4 higher moments, A '"', n & 4, of
the appropriate magnitudes and signs to obtain agreement

with the form-factor pair-production data. The distribu-

tion amplitude that would emerge from playing with the

higher moments in this way would have many nodes, a
structure which would arise if the meson's constituents
were constrained by a boundary but otherwise free. 20

Instead of drawing profound conclusions, however, we

should note that there are several aspects inherent to any

Monte Carlo lattice gauge theory calculation which may
lead to systematic errors. These include the mass extrapo-
lations in Figs. 1—3 due to the failure at small mass of the
quark propagator algorithm, finite-size effects due to the
finite box that must be used, and finite-lattice-spacing ef-

fects related to the value of the coupling constant. Also,
we cannot be certain that P=5.7 is a sufficiently weak

coupling that the one-loop scaling formula, Eq. (1.6),
holds. If not, the Q2 evolution in Figs. 5(c} and 5(d)
would be modified, not only because of a different scaling
law, but also because of higher twist effects, which we

have neglected. Finally, it is important to note that these
calculations were done in the quenched, or valence, ap-
proximation. ' Hence, it is clear that there are many pos-
sibilities to improve these calculations, and that such im-

provements ought to be incorporated as simulations of
QCD become more refined.

V. SUMMARY AND CONCLUSIONS

Because it determines only two nontrivial moments, the
numerical study of the meson distribution amplitudes

presented here is far from complete and, hence, not yet

quite compatible with experimental data. Nevertheless, it
does provide some physical insight to hadronic structure.
Reference 5 argued that the size of the counterterms is re-

lated to the separation of the valence quarks; for example,
for 0' ' and its most severe counterterm a 0' '

—2(0(0)) —2(yi y) [2
(5.1)

( ) U (yI'jjjjy) a

where l is the typical qq separation. Our numerical work
indicates that the ratio of Eq. (5.1) is actually quite
small —wf —1—so that the typical separation of the
valence quarks l is about the same size as the lattice spac-
ing a =0.2 fm. Fu~he~ore, the valum of RU(2) in Tablm
I and II indicate that the p is somewhat larger than the m,

which is consistent with the analysis of meson wave func-
tions. Nevertheless, both I's might support the notion
that the hadron is a tightly bound valence core surround-

ed by a pion cloud. On the other hand, the shape of the
distribution amplitude in Fig. 4, which hinges on the
magnitude of the renormalized matrix element, might
contradict the core picture. Assuming that the systematic
errors inherent to the simulation have not misled us, the
view that emerges from Fig. 4 is that the quarks range
freely out to some surface, whose radius is presumably
about 1 fm. This implies a somewhat larger qq separation
than that implied by Eq. (5.1).

The surprisingly large values of A '
z have somewhat

ambivalent implications. Our results indicate that the
power-law divergences discovered in Ref. 5 are, in prac-
tice, quite bearable because they modify naive predictions
by only 20—40%. Therefore, we can encourage the com-
putation of the matrix elements needed for higher mo-
ments. On the other hand, the large values of the mo-
ments make the confrontation with experiments difficult
since most observables depend on the distribution ampli-
tude rather than a few low-order moments. Hence
developing an interface between perturbative QCD and
lattice QCD using the distribution amplitude formalism
may require knowledge of many high-order moments (if
they are large) in order to reconstruct the amplitude.
Thus, it would be quite interesting to analyze the opera-
tors for the next moment A ' '. As there are four deriva-
tives in 0 ' ' one will need a larger lattice and weaker cou-
pling than in our calculation. Also, because of the coun-
terterms, the 0 ' ' calculation yields the ingredients need-
ed to check our 0 ' ' calculation, including its systematic
errors. Even the sign of A ' ' would be very significant, if
our results are at least semiquantitative. If it opposes the
first two terms of Eq. (4.1} the lattice calculations could
become consistent with experiments. Otherwise, any
chance of consistency would require still higher moments
in Eq. (4.1). Finally, it would also be of great interest to
repeat this calculation with dynamical fermions.
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