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Path integrals and the solution of the Schwinger model in curved space-time
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We use the path-integral formahsm to derive the solution of the Schwinger model in curved
space-time. %e show that the nature of flat —space-time solutions persists even in the presence of a
background gravitational field.

I. INTRODUCTION

The Schwinger model' is an exactly soluble field-
theoretical model which has been studied extensively in
flat space. It is the theory of quantum electrodynamics in
1+ 1 dimensions and provides a simple example of
dynamical breakdown of symmetry. The gauge fields in
this theory acquire mass as a result of symmetry breaking
and the electric charge is confined.

In the past few years people have become interested in
studying quantum field theories in curved space-time. An
amusing question to ask in this connection is whether a
nontrivial structure of space-time affects the qualitative
behavior of qu'mtum field theories. In particular, in the
case of exactly soluble models one can ask whether the na-
ture of the solution changes by the introduction of a
curved background. More precisely one can ask whether
curvature affects long-distance properties of solutions
such as confinement.

Intuitively, of course, one would expect that if fermions
are confined in a theory in fiat space-time, they would
continue to be confined in a curved background. This is
because gravitation, being an attractive force, would only
help in confinement. Quantitatively, however, an attempt
was made2 to study this question in the case of the
Schwinger model in curved space-time by examining the
equations of motion and the results were inconclusive.
Namely, what was found was that although the gauge
fields still acquired the same mass as in the case of flat
space-time, the question of confinement was not an easy
one to answer since the current-current correlations had a
difficult form in a curved background.

Recently we studied the solubility of various two-
dimensional models in flat space-time in the path-integral
formalism. s It is of interest, therefore, to see whether
these methods generalize easily to curved space-time and,
if so, whether they lead to a more unique conclusion in a
simple way than the study of the equations of motion had
revealed. Our conclusions are that the path-integral
method generalizes readily to curved space-time and the
nature of flat —space-time solutions persists even in the
presence of curvature. More specifically, we show that
just as in the case of flat space-time, one can integrate out
the fermion fields completely from the generating func-
tional leaving an effective action only in terms of the pho-
ton field and the background gravitational field. The
photon field acquires a mass whose value is precisely the

II. MOMENTUM-SPACE CALCULATION

The Schwinger model in curved space-time is described
by the Lagrangian

L = .'g»"—g~—F„X~+t4e»'r. &,4,
where the zweibein fields e» satisfy the relations

p,a v gp, v ~pa~b ~ab

ae e =8„', e eb=5b .

(2.1)

(2.2)

Note that the world indices are raised and lowered with
the Minkowski metric whereas the Riemann indices are
raised or lowered with the metric. The curved-space
Dirac matrices are obtained from the fiat-space ones as

y»(x) =e»'y, .

The electromagnetic field strengths are given by

F„„=D„A„—D„A„=a„A„—a~„

(2.3)

and the covariant derivative acting on the spinors is de-
fined to be

D»f=(B»+ 2 to» tr~ —leA» )lp

=(V» ieA»)g (e—=electric charge) .

Here a~ are flat —space-time matrices defined as

~ah = Yl3 a~1 bi

(2A)

(2 5)

same as the flat —space-time case.
In deriving these results we make use of the ideas of

Fujikawa that the axial anomaly is related to the nonin-
variance of the fermionic measure under a chiral transfor-
mation. Normally to derive the anomaly in flat space-
time one uses a momentum representation which is not
available in general in the presence of a gravitational field.
In Sec. II we show how a local momentum representation
can be used to derive the anomaly equation simply be-
cause we are interested in the short-distance behavior and
hence can use the Riemann normal coordinates. In Sec.
III we calculate the change in the fermionic measure us-

ing the g-function method and show that it leads to the
same answer as the momentum-space calculation. In this
section the model is solved and some concluding remarks
are given in Sec. IV.
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+ ei'ef(B~~)e„' (a—~b)] . (2.6)

The action for the Schwinger model in curved space-time
has the form

where g =detg&„. Consequently the generating functional
can be written as

Z = DA~D D e (2.8)

Our metric convention in flat space-time is that of Bjork-
en and Drell. Namely, rl =1 and I)"= —l. y is Her-
mitian with square + 1 whereas y is anti-Hermitian with
square —1. y5

——y y' is Hermitian with square + 1.
Let us now examine the effect of an infinitesimal chiral

redefinition of the fermion fields, namely,

P~g'=e ' P=[1 ie(x—)ys]P,
(2.9)

P~ P
' =Pe =/[1 i e(x—)y5] .

Under this transformation

SS= fd—'x v' g[a„e(x)—y(x)y~y, y]

=+fd'x v' ga„—e(x)J~(x)

X6X ~
—gJ~5 X

= —fd'x P —g e(x)D„J15(x), (2.10)

where J~5 =pygmy"g. However, the generating functional
should be invariant under any field redefinition and hence

6Z= JDA„DQDtli6Se'~

DA~D D x —gE x DpJ~5 x 8

(2.11)

This leads to the naive conservation of the axial-vo:tor
current given by

and are the generators of the Lorentz group. The spin
connections are defined in terms of the zweibein fields as

~i6as= 2~ [e (di6em d—p b)

We can, therefore, expand the fermionic variables in these
basis states so that

f(x)= g a„6I)„(x), f(x)= g Pt(x)b„ (2.15)

DP= g da„, Dg= g db„, (2.16)

where a„and b„are elements of the Grassmann algebra.
We can also expand the chirally rotated variables in this
basis so that

f'(x)= ga„'P„(x)=g C„a P„(x), (2.17)

Csm =~we —
& fd x g e(x)gg{x)yyb~(x) (2.18)

Dg'= g da„' =(detC„)-' g da„=(detC„)-'D1{ .

(2.19)

To calculate the Jacobian of the transformation, note
that

detC„~ =exp(TrlnC„)
r

=exp i g fd —x g'~ e(x)gt(x)y5$„(x)

and this leads to the anomalous behavior of the axial-
vector current conservation.

To calculate the change in the fermionic measure let us
%ick rotate to a space with Euclidean signature. %'e do
this by letting x —ix, y iy, and Do iDz. Fur-
thermore, let us choose the eigenstates of the Dirac opera-
tor in this space as

&f„=y„D„Q„(x)=y„(V'„IeA—„)p„(x)=it„Q„(x) .

{2.13)

We assume that the eigenstates satisfy the orthonormality
and completeness relations given by

n& m&= nm»
(2.14)

gP„(x)P„(y)=g '~'5'(x —y) .

D~J~g(x) =0 . (2.12)
(2.20)

However, as is well understood by now, under this field
redefinition, the fermionic measure changes nontrivially

l

The exponent in the above expression is divergent and can
be regulated as

—A.„2/M2
i g fd xg' e(x)gt(x)y5$„(x)= lim i g fd xg'~ e(x)P„(x)ysP„(x)e

PE M2~ co pg

lim I g fd'x g'"e{x)yt(x)y,e ~"~'y„(x)-
M -+oo pg

g2 j~2 )/11II1 I d xg (e)Txy rSe g 5(x —x )

X ~Z

lim i fd x e{x)Try5e + ~ 5 (x —x') .
M2 —+ oo

X ~X

(2.21)
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lim i d xg' ze(x)Tryle a~™ed k

M2-+ cO (2ir)
y~o

The trace can be evaluated using the identity

(2.22}

(2.23)

and the value of the exponent then becomes

i g fd x g'~ ie( x}(t„)( x) ys(l„t( x)

Normally in flat space-time one would go to the
Fourier representation or the plane-wave representation
and evaluate the expression. In curved space, however, a
global definition of the momentum representation is not
available. On the other hand, we are only interested in the
short-distance behavior of the expression and hence can
introduce the Riemann normal coordinates

y"=(x —x')i' .

In terms of these coordinates one can introduce a local
momentum representation and the exponent becomes

i g fd2x g'~2e(x)P„(x)ysg„(x)

111. g-FUNCTION REGUI.ARIZATION METHOD

As we have argued in the previous section, use of the
momentum representation is not free from criticism in
curved space. The standard form of calculation in such
eases involves the g-function regularization method
which we will now describe. The calculation is done in
three parts. First, me wi11 rederive the anomaly equation
under an infinitesimal chiral transformation justifying the
momentum-space calculation. Then we will make a finite
chiral transformation so that the fermions decouple from
the electromagnetic field. And finally we evaluate the
generating functional for the fermion field interacting
with the background gravitational field using the (-
function regularization. Of course, we could have
evaluated the generating functional for the fermion field
explicitly, even when it is interacting with the photon
field. However, we choose to split up the calculation in
this particular fashion so that analogy with the corre-
sponding flat-space calculation is maintained at every
stage.

We have seen from Eq. (2.19) that the change in the fer-
mionic measure under an infinitesimal chiral transforma-
tion involves the quantity

detC„~ =exp i g—fd x g' e(x)P„(x)ysP„(x) . (3.1)

. e 1=i —d x e(x}e~Q~„

XEX 6'
p~

4m
(2.24)

From the form of the eigenvalue equation

it follows that

Thus the change in the measure for f can be written as 8 ()(„=A,„(I}„ (3.2)

Df=detC„D f'

=exp — 12x e(x)e„g„„(x) Df' .
4m

(2.25)
(t)„(x)(}()„(x)

g(s, x)= (3.3)

and we define a generalized g function associated with the
operator 9 as

One can show in a straightforward manner that the
measure for (t( also changes by an equal amount, i.e.,

DP exp — fd'x x(x)x„Px„(x) DP'
4m

(2.26)

so that the total change jn the measure under an infini-
tesimal chiral transformation reads as

DitIDP=Ditp'Ditp'exp — fd x e(x)e„g„„(x) (2.27)
2m

This implies that rotating back to the Minkowski signa-
tures, the anomaly equation is given by

It is clear that in terms of this function, the exponent can
be written as

i g fde g'~ e(x)gt(x)y5$„(x)

'xg'"ex Try, o,x . 3.4

To evaluate this expression, let us study the heat equa-
tion associated with the operator g . That is, we want to
study the equation

cf K(x,y, r)+8 K(x,y, ~)=0
APT

with the condition

D Jg= —( —g) '~2 eI'"F „P 2m K(x,y, 0}=g '~2(x)5 (x —y) . (3.5)

8„(& gJis ) = — el'—"F„„.

(2.28) Note here that the operator g acts with respect to the
first coordinate and r is the proper time parameter of
Schwinger and DeWitt. The function K(x,y, r) is easy to
find and has the form

This is precisely the covariantized form of the
flat —space-time anomaly equation.

K(x,y, r) = g e
'" 'y„(x)4„'(y) . (3.6)
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Furthermore, it is now straightforward to express the gen-
eralized g function in terms of the heat kernel, i.e.,

g(s, x)= f dug 'K(x,x,r) .
I s o

(3 7)

As is clear from the form of the heat kernel, this in-

tegral is damped for large r, and the only significant con-
tribution comes from small values of the parameter r
The asymptotic expansion for K(x,x,r) when r-+0+ is
known, and in two dimensions has the form

K(x,x,r) — [ao(x)+ai(x}+a2(x) +O(r }) .1

0+ 4nw

(3.8)

Here the coefficients a„(x) are scalar polynomials in vari-
ous fields and the first few of them have been calculated

a i(x}
4n'

(3.9)

The coefficient function ai(x) for the operator 9 has al-
ready been calculated to be

1 eai(x)= ——„R+ 2 yse„Q„„.
2g 1/2

(3.10)

Using this form, one can write the exponent now as

using the method of coincidence limits.
Putting the form of the heat kernel [Eq. (3.8)] into the

definition of the g function we obtain

g(o, x)= lim f d1-P [Qo(x)+g, (x)/1 ) 1=, or(s) 4m'.

+a, (x)r'+ 0 (r')]

i g fd'x g'~2m(x)gt(x)yqg„(x)=i fd x g'~~@(x) Tryst(0 x)

a i(x)=l xg 6x Trp5
4m

fd2x e(x)e„g„„(x). (3.11)

Thus we immediately see that

Dg=detC Dg'

=exp —i g fd x g
'~ e(x)P~(x)y5$„(x) Dg'

P(x )~e+'@'f(x),
g(x)~e '@"'P(x),

A„(x) A„(x)+—Bg(x) .1

(3.15)

=exp — d x e(x)e„Q„„(x) Dg'.
4m

(3.12)
Therefore, to simplify our calculation we choose a covari-
antized Landau gauge, namely,

V"Aq(x) =0 . (3.16)

Similarly, the change in the measure for 1T also contri-
butes an equal amount so that we can write

C

In two dimensions, the vector field can be decomposed
into the longitudinal and transverse components as

DQDg=exp — fd x e(x)e&Q„„(x) Df'Dg' .
2m'

Aq(x) =V~(x)+&—g e„„V"u(x) . (3.17)

(3.13)

This is, of course, the result obtained by the method of
momentum representation and as we have seen before
leads to the anomaly equation

With the gauge condition, Eq. (3.16), it is clear that the
gauge field takes the form

A„(x)=&—g e„„V"o(x)

so that

B~{& gJf )= —— O'"I'„„. (3.14) cr(x) ={V"V„) ' &Ei (3.18)

Let us next make a finite chiral transformation so that
the fermion fields decouple from the photon field. To see
that we can do this, let us follow as closely as we can to
the flat —space-time case. Note that the action for the
Schwinger model is invariant under a local gauge
transformation given by

Furthermore, we can use the identity involving the two-
dimensional y matrices given by

g&pvy =ysy—p

to write the Lagrangian density for the Schwinger model
[see Eq. (2.1)] as
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I 1 gpAgvpF

+'A' (dp+ scop oab 'e'Ys~pcr)4 (3.19)

massive with a mass el' ir which is precisely the value
obtained in flat-space calculations.

L = 4—g"'g"'~„Axp+&&r"(d, + i ~„"~.b)~ (3.20)

Following Refs. 3 and 8, one can calculate the change
in the measure under this finite chiral transformation
from Eq. (3.13), and the result is (in Minkowski signa-
tures)

2

DQDg=exp fd x v' —g A„(x)A"(x) Dg Dg. (3.21)

This shows that the effective Lagrangian density for the
Schwinger model when the fermions and the photon field
decouple is given by

2

I = —, g" g "~F—„+xp+ g""&„&„+iXy"V„X. (3.22)
2m

This shows that just as in the case of flat space-time, the
fermions decouple from the photon field. The effective
Lagrangian density shows that the photons have become

It is clear, therefore, that if we made a finite chiral
redefinition of the fermions, namely,

P(x) =X(x)e

then the fermion fields and the photon field would decou-
ple. Namely, the Lagrangian under this redefinition
would become

IV. CONCLUSION

We have tried to obtain the solution of the Schwinger
model in curve9 space-time using the method of path in-
tegrals in the manner of Fujikawa. We have derived the
anomaly equation for the axial-vector current using the
momentum-space representation. We have rederived the
anomaly equation using the g-function regularization. We
have chirally rotated the fermion fields so that they
decouple from the photon field. The photons in the
theory do become massive with a mass given precisely by
the flat —space-time value. The criterion for confinement
is not clear in the presence of the background gravitation-
al field. However, if being able to decouple the fermions
is a signal for confinement, it happens in curved space-
time also. W'e will conclude by saying that one would
qualitatively expect all features of the fiat —space-time
solution to persist in a curved background since the back-
ground has no dynamics. We see it explicitly in our solu-
tj.on and we believe other soluble models also would
display this.
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