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The Einstein-Podolsky-Rosen (EPR) reality criterion is generalized to fit with the notion of
positive-operator-valued observables occurring in quantum optics, stochastic quantum mechanics,

and other fields of quantum physics. The resulting concept of unsharp reality for quantum systems

is illustrated within stochastic spin space where it leads to a notion of unsharp spin property. Final-

ly we investigate the possibility of joint spin measurements and give a brief discussion of the EPR-

Bell argument for unsharp spin properties.

I. INTRODUCTION

In recent years a generalized notion of quantum-
mechanical observables has been developed and found suc-
cessful applications in various fields of quantum physics
such as quantum stochastic processes, quantum optics,
(non)relativistic quantum theory, or even the interpreta-
tion of quantum mechanics. Whereas the usual quantum
theory describes observables as self-adjoint operators or,
equivalently, in terms of their [projection valued (PV)]
spectral measures, in the new, extended frame certain pos-
itive operators, the effects (self-adjoint with spectrum
within the interval f0, 1]), are included to build positive-
operator-valued (POV) measures as generalized observ-
ables.

POV observables occur in a natural way in the above-
mentioned topics: as devices for the description of
sequential measurements on open quantum systems' they
allow impleinentation of information theory into quantum
physics; ' as nonorthogonal resolutions of the identity
they are obtained in quantum optics~ as well as in
(non)relativistic quantum mechanics for phase-space rep-
resentations of the canonical commutation relations
yielding, for instance, relativistically covariant probability
currents; furthermore, the problem of photon localization
has been solved by ineans of covariant POV measures.

There is also a number of conceptual and interpreta-
tional problems which could only be tackled within the
extended frame. In particular, phase-space observables
give rise to proper probabilities for joint measurements of
position and momentum. Such measurements yield values
(q, 5q), (p,5p) with unsharpnesses obeying the uncertainty
relations 5q5p&A'/2 (Ref. 8). In this way the original
Heisenberg interpretation of the uncertainty relation could
be justified within a systematic theory of measurement
and the significance of these relations to joint measure-
ments could be completely clarified. 9'o

We see that unsharp values are necessary (and suffi-
cient) for the possibility of joint measurements. Our final
example shows that quantum measurements of observ-
ables possessing sharp values may be generally impossible.
This fact goes back to a discovery by Wigner" who
proved that predictable measurements of a quantity A are
impossible whenever A does not commute with a con-

served quantity. Since any measurement is reducible to
some localization, and since sharp (predictable) position
measurements are forbidden by momentum conservation'
we must conclude that no observable can be determined
sharply. Thus, in order to maintain consistency between
theoretical concepts (here, observable) and experimental
possibilities one has to give up the PV observables in favor
of POV observables.

In the preceding examples it has become clear that POV
observables have to do with unsharply defined measure-
ment values or value sets; for that reason they have been
called approximate, ' fuzzy, stochastic, i or unsharp ob-
servables. In the present paper I shall try to show that
one can make precise sense of this way of speaking. One
aim of the so-called quantum logic approach is to estab-
lish the lattice ot'(P ) of Hilbert-space projections as a
language for quantum systems and their (sharp) proper-
ties. ' ' Similarly one can start within the convexity ap-
proach (see Ref. 9 for further references) to show that the
partially ordered set 8'(P') of Hilbert-space effects con-
tains elements representing unsharp properties of quan-
tum systems. Projections H (A ) are characterized
through measurement-theoretic notions such as predicta-
bility, repeatability, preparatory (ideal first kind) measure-
ments which, as we shall see in the next section, can be re-
laxed to select the unsharp properties from g'(A ). To
this end I propose a slight modification of the famous
Einstein-Podolsky-Rosen' reality criterion into a defini-
tion of "elements of unsharp reality. "

The present work is a direct continuation of the investi-
gations performed in Ref. 9; the general concepts are fur-
ther e1aborated and applied to obtain results on spin ob-
servables similar to the results of Ref. 9 on position and
momentum. In particular, I shall discuss measurements
of unsharp spin properties in Sec. III. In Sec. IV criteria
for the coexistence (i.e., existence of joint probability dis-
tributions) of different spin components are derived which
show that noncommuting unsharp spin properties may
well possess simultaneous (unsharp) reality. Working
within stochastic spin space' leads to a thorough general-
ization and a simple geometric interpretation of previous
results by Margenau and Hill' and by Prugovecki. ' Fi-
nally (Sec. V) a brief discussion of the Einstein-Podolsky-
Rosen- (EPR) Bell argument is given for the case of
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unsharp spin properties which shows the "stability" of
that argument against the introduction of reasonably
small unsharpness.

II. UNSHARP REALITY OF QUANTUM SYSTEMS

A. Motivation

In view of its mathematical (probabilistic) structure
quantum theory is widely seen merely as statistical theory.
Nevertheless physicists are thinking in terms of individual
elementary particles possessing definite properties. Our
aim is to show that this is more than a convenient way of
speaking: quantum theory allows formulation and tests of
statements referring to indiuidual systems just—in the
way that one has learned in classical physics or even in
every day life to constitute systems (objects) from empiri-
cal data. [In the following I prefer to use the term
"(physical) system" rather than the more specific "object"
or "particle. "' ] The fact that "an electron" is not a clas-
sical particle does not imply that quantum theory does not
refer to individuals. On the contrary, the well-known dif-
ficulties in ascribing an unobservable ("hidden-variables" )

deterministic path reality to an electron in the double-slit
experiment seems to call for a realistic use of quantum
theory: the electron should be regarded as a (nonclassical)
system which is localized at most to the extent defined by
the union of both slits. Accordingly, the models of joint
measurements of quantum position and momentum of
Ref. 8 were devised to justify the uncertainty relations as
statements about individual systems (cf. Sec. I}. The first
ideas of a general reconstruction of quantum theory as a
language for indiuidual systems were presented in a
conference recently. ' Now I try to give a systematic for-
mulation of the relevant notions within the statistical
framework of the convexity approach. One may hope
that this procedure will shed light on the operational
background of the Hilbert space structure of quantum
mechanics.

8. Short sketch of the convexity frame

In the convexity approach an experiment is divided into
several stages, the preparation (of "input data }an"d the
measurement (registration of "output data" ). In short (for
details see Refs. 9 and 20), the preparations are represent-
ed by the set of states V+ which is a norm-closed-
generating ( V = V+ —V+ ) cone for a complete base norm
space ( V,B). V is an ordered real Banach space, 8 a base:
V+ = U (AS:A, & 0) defining a strictly positive linear func-

tional e:V~ R such that e(a) =1 for a in 8. The par-
tial order & on Vis connected with the positive cone V+
via a & P iff P—a G V+. The extreme elements Ex(8) of
8 (convex) are the pure states. The states are intended to
represent the experimental situation after some prepara-
tion procedure. Any further preparational manipulation
and, in particular, measurements are described as certain
state transformations: an operation P:V~V,at Pa is a
positive, norm-nonincreasing linear map. A measurement
operation P leads to an effect cog which is detected in the
final stage of the experiment. The set 0( V) of operations
exhausts the whole set E( V) of effects, i.e., all elements a

of the dual space (V', e) of ( V,B) satisfying 0&a &e.
The ordering a & b iff ( b —a)(a) & 0 for all a G V+ makes
E( V) a positive bounded by 0, e. On E ( V) a complement
operation is defined by at-+ a':=e —a [obeying
(a')'=a, a &b = b'-&a']. Finally we note the concepts of
instrument and observable .An instrument (X,I) is an
operation-valued measure I:X—+0(V) on a Boolean ring
X; it defines an obseruable ( X,A ),A:XE ( V) [via
e(I(X)(a))=A (X)(a) for all a in V,X in X] as an effect-
valued measure.

In Hilbert-space quantum theory a realization of this
abstract scheme is given in the following way. The states
are the positive trace class operators ( V,B)
=(W, (A ),W, (A )i+). The effects are represented via the
trace functional by positive bounded self-adjoint operators

E ( V) = 8'(A )

= IEGER, (A ):0&E&II:
e(a)=tr(a), E(a)=tr(a E) .

[Note: X;(A )'=L, (A ).] In this way we arrive at the
extended Hilbert-space frame of quantum theory men-
tioned in the Introduction and needed for incorporation of
the POV measures. In the standard Hilbert-space frame
the measurements are restricted to those bearing extreme
effects Ex(E( V))=9'(A ), i.e., projections.

C. Some measurement-theoretic notions

A priori a measurement result may refer either to the
past (the preparation) or to both past and future. In the
first case the measurement is only detertninatiue, its statis-
tics reflects certain features of the preparation. In the
second case we have a preparatory measurement. Indeed,
the map 4:0(V)~E( V), pm %(p), qi(Q)(a) =cop(a),
ctCB, is surjective but not injective so that the set 4 (a),
a 6E{V) will contain elements which may or may not be
"preparatory" with respect to the effect a. Let us start
with some definitions.

Definition 2.1. (1) A measurement of an effect a CE ( V)
is any operation P in 4 '(a):= tP E 0 ( V):cog
=a) =M(a). (2) A (joint) test of a nuinber of effects
a i, . . . , a„ is any element P of U [M(c):c&a;,i
= I, . . . , n]=W(a„. . . ,a„}=0,. W(a;). Joint tests pro-
vide evidence for the effects a; if the outcomes of the c
measurements are positive. This notion is a relaxation of
the concept of coexistence.

Definition 2.2. (1) A set of effects ai, . . . , a„ is coex-
istent if it is contained in the range of some observable A.
(2) Observables Ai, . . . , A„are called coexistent if their
ranges are contained in the range of some observables A,
U,.8 (A;) CR (A). Such an A is called ajoint obseruable
for the a;,A;. A characterization of the determinative
power of a measurement is given by the following.

Definition 2.3. An observable (X,A) is informationally
canipiete if A(X)(ai)=A(X)(a2) for all XEX implies
a, =ate{a;&8).

The next definition will be most important for our sub-
sequent considerations.

Definition (2.4). Let e be a real number, 0&@&1,
QEO( V), a CE( V). (1) P is e-predictable (e-pred) if there
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exists a state a&8 such that e(pa)) 1 —e; the corre-

sponding effect eo tI) is called e-actualizable and is e-actual
in a. (2) tNIt is e r-epeatable (e-rep} iff P is e-pred and
e(tIIa) &1—e implies e(P a) &(1 —e)e(Pa) for all a68.
t)) is e-rep with respect to a iff a is e-actualizable and
a(a) &1—e implies e(ga)&0 and a(ga)&(1 —e)e(iI)a)
for all a CB. Such effects are called e rep-roducible. (3) P
is e-preparatory (e-prep) iff e(P a) &(1 e)e—(Pa) for all
a EB. tti is e-prep with respect to a iff a(tI)a)
& (1 e—)e (Pa}. Such effects are called e prep-arable

Among these notions the following relations hold: @-

prep-- =-e-rep =-e-pred. For e=O we obtain the usual
concepts of predictability, repeatability, and preparatory
measurements: tI) is predictable iff e(tI)a)=1 for some
a &8; iI) is repeatable iff it is predictable and e (Pa )= 1

implies e (/~a) = 1 for a 68; tI) is preparatory iff
e(P a) =e(Pa) for a EB. According to the introductory
remarks predictable (e=O) measurements seem to be im-
possible. Therefore the case a&0 will be employed as a
straightforward relaxation. The number r = 1 —e
represents a positive lower bound for the probability of
obtaining or reproducing certain measurement results: r
will be interpreted as an estimate of the reality content of
an effect; in actual experiments one will try to make e as
small as possible if e=O is not realizable.

D. Quantum systems

Now we are ready to formulate necessary and sufficient
conditions for inferring the presence of a physical system
in a given experimental context. Let us start with a verbal
description of the most general features characteristic of
any "system. " A system is a part of the "whole" of phys-
ical reality which, in spite of its interactions and connec-
tions with the rest of the world, is recognizable as a
separate entity. Thus a system must be observable, that is,
have a regular infiuence on its surroundings: it must pro-
duce observable effects; in this way systems give rise to the
euent structure of physical reality. Moreover, systems
themselves are sequences of events. These events must be
causally connected, at least in the sense of a probability
law, in order to infer the presence of a "system. " This
first minimal requirement is already incorporated in the
convexity framework: certain preparation. and registra-
tion euents are assumed to be connected by probabilities
a (a). Further, in order to test these probabilities statisti-
cally one must be able to perform a large number of re-
petitions of the "same" experiment. This implies that the
experiment must be invariant under the group T of
space time t-ranslations, i.e., as(as) =a (a) where as and
as denote the state and effect of the translated experi-
ment. Since an objective system constitution has to be ob-
server independent, the above invariance requirement
must be extended to the full Galilei or Lorentz group.
This shows that the usual procedure of characterizing a
system type (i.e., the essential properties) as unitary repre-
sentations of an invariance group is based on necessary
preconditions of the objective constitution of individual
systems. (In this argumentation I follow a similar exposi-

tion made in Ref. 14 where it is applied to derive certain
important features of the abstract quantum language. }
Once the state space ( V,B) of a system type has been estab-
lished along these lines one can proceed to formulate
necessary snd snyficient conditions for the possibility of
interpreting an event sequence as being caused by an indi-
vidual, pn'manently existing system. An individual sys-
tem must be recognizable and identifiable, at least during
a certain period of time, by means of some of its acciden-
tal properties. ' In their famous attempt to criticize the
completeness of quantum mechanics Einstein, Podolsky,
and Rosen' propose the following as a sufficient reality
criterion: "If, without in any way disturbing a system, we
can predict with certainty (i.e., with probability equal to
unity) the value of a physical quantity, then there exists
an element of physical reality corresponding to this physi-
cal quantity. "

Here the presence of the system is taken for granted.
According to the above discussion the EPR criterion turns
out to be even a necessary condition for the presence of a
real system.

Definition 2.5. An effect a&E(V) is an (accidental)
unsharp (e-) property (potential or actual=e-real) of some
system of type ( V,B} if it satisfies the following condi-
tions for some e, 0& @& —,':(P,1) both a and the comple-
ment a'=e —a are e-actualizable, (P,2) a admits pure
tests P which leave (at least) all pure states a GEx(8}with
a (a) & 1 —e almost (e) unchanged, i.e.,

a (a) & 1 —e =-a (Pa) & (1 e)e(it—ta)

V b eE( V):
~
b (ya ) $(iz )e (yiz ) —

~
&p (e}

for some small p(e}& 0.
Now we can formulate the criterion of unsharp reality

(R,): There exists a system S=(a, tz) of type ( V 8) pos-
sessing in state a=a(S) the e real (u-nsharp) property
a =a (S) if a E(V) is an unsharp property and is e-actual
in a68. Such effects represent "elements of unsharp
reality" in a.

An operation P is called pure if it transforms pure
states into pure states. Nonpure states may be produced
by mixing pure states; to exclude complications arising
with this kind of subjective ignorance we have introduced
in (P,2} the tentative restriction to pure states. Actually,
it seems possible to admit "unsharpness" also with respect
to subjective uncertainties by including "almost pure"
states: we call a &8 almost pure if it possesses a decom-
position a =X;y(,;a; into pure states a; with A, ,
& O, X;A,; = 1 and one of the A,; being close to unity.

The nondistiirbance postulate (P,2) makes the concept
of unsharp property a proper relaxation of the notion of
(sharp) property (e=O) used in quantum logic or in stan-
dard Hilbert space quantum theory: e=O,p(e) =0 charac-
terizes the pure, ideal, first kind measurements of the pro-
jections PEP'(A ).

The restriction e ~ —, is necessary for avoiding the situa-
tion that an effect and its complement may be e-actual in
the same state. The property postulate (P, 1} guarantees
the premise of (P,2) to be realizable and represents a re-
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laxation of the EPR condition ("probability equal to uni-
ty") of predictability; it excludes the effect intervals

[0,—,
' e] and [—,

'
e,e] from the set of (nontrivial) properties.

(For a further specification of the set of unsharp proper-
ties one might introduce additional requirements such as
closedness of the set of properties under complementation,
but we shall not pursue this here. )

The following result shows that the set 8'(4 ) of
Hilbert-space effects contains unsharp properties which
are not projections.

Proposition 2.2. Any e-actualizable effect EC N'(A ) is
an unsharp property; in particular, the Luders operation
PL, .a-+Pt. a=E' aE' is e-repeatable and satisfies the
nondisturbance postulate (P,2}with p(e) =~e.

Proof. It is straightforward to calculate the spectrum of
~ =Py«py) 4'L(PQ) —and to estimate ll~ II &p'
using the assumption E(P&) &1—e; this gives

I b(yt. Py) b(Py)e—(yLPy) I
(p(e) for all b&@(A ) On.

the other hand, for any a C8 with E(a) & 1 e, —

E(/La) =tr(aE ) & [tr(aE)]

=E(a) & (1—e)E(a),
i.e., Pt is e-rep. This completes the proof.

The Luders operations are a generalization of the ideal
first kind measurements at +PaP of—the projections
P=P C9'(A ). The above statement proves that the
POV observables admit an interpretation in terms of
unsharp properties of (unsharply constituted) systems in
the sense of the modified EPR reality criterion (R, ). As
an application of this conception of unsharp (quantum)
reality it was shown in Ref. 19 that phase-space observ-
ables admit e-prep measurements; thus, position and
momentum can be simultaneously e-real unsharp proper-
ties: in this sense bubble-chamber tracks are seen to be
elements of unsharp reality for individual elementary par-
ticles. In the remaining sections we shall establish similar
results for spin observables. It was mentioned in Sec. I
that quantities which do not commute with conserved
quantities do not possess predictable measurements: they
never can represent elements of sharp reality; but they can
be elements of unsharp reality. ' Moreover, there exist
quantities such as momentum which, by their very opera-
tional definition (as dynamical quantities) can only be
measured by disturbing their values. In the case of
momentum we have to distinguish it from velocity which
is defined via time-of-fiight measurements: momentum is
a property of particles which characterizes their behavior
in collisions —thus it wiB be changed during its measure-
ment. This shows that particles with rather well-defined
momenta, as they are produced by an accelerator cannot
be considered to be real in the sharp a=0 sense; but they
are constituted in the sense of our notion of unsharp reali-
ty. These examples illustrate some of the advantages of
the generalized reality concept which corresponds to the
generalized, POV measure description of observables.

III. MEASUREMENT OF UNSHARP SPIN PROPERTIES

In the following we are dealing with the two-
dimensional (A =A 2) representation of the spin algebra:

aJerk
——iejktai, oJo'k +crkc'~ 2——5gkI .

Any linear operator A on P 2 can be written in the form

A=aoI+a er, (ao,a)E I(:

In particular, effects FG e(A ) are uniquely represented as

F= ,'y(I—+A,o)=W(A. ,y)

with

«y A=IIAII(i (posit'»ty F&0)

y( (F&I) .2
—1+

For later use we denote

F(A,,y)=yE(A), E(A)=-,'(I+A. tr),

Tx ——E(A, ), A, =A.IA, (for A&0) .

The Tm are the one-dimensional spin-projection operators
on A z. The complement of F =F(A„y)=yE(A, ) is

F'=I —F=(2—y)E

A ("simple" ) spin observable shall be determined through
a direction A, which is (unsharply} defined by orientation
of the measuring device. If a positive outcome for
F(A.,y) corresponds to a spin-up result then this should be
equivalent with a spin-down result for E( —A„y) since the
apparatus for the latter effect results from that for the
former simply by changing the orientation from A, to —A, .
On the other hand, the results "spin up" and "spin down"
should be complementary to each other; thus we select
from the set of possible unsharp properties F those obey-
ing F'=F( —A„y) as unsharp spin properties. But this re-
quirement implies y = 1, i.e., only the E(A, ) may be "spin
properties. "

The spectral decomposition of E(A,,y) is

F(A, y) =+(I+A tr) =+( I+A) Tx+ +( I —A)T - .
2 2 k 2

The eigenvalues of F, r =(y/2)(i+A, ) and u =(y/2)
(1—A, ) (which are just the values of the confidence mea-
sure of fuzzy spin space' ), represent the (maximal) reality
degree (r) and the (minimal} unsharpness (u} of F. The
following simple statements give a characterization of the
unsharp (spin) properties

Proposition 3.I. (1) F(A, ,y) is an unsharp property iff

1 v 1r=+(1+A, )& —and u= (1—A, )&—
2 2 2 2

which implies —,
'

& y & —,. (2) F(A, ,y) is an unsharp prop-
erty for al/ A, (0& A, & 1) iff y= l. (3) Let r, u and r', u' be
reality degree and unsharpness of F and F', respectively.
Then r=r' iff u =u' iff y=1. (4) The "contrasts" r+u
of F and r'+u' of F' are simultaneously optimal (i.e.„
their product maximal) iff r +u =r' +'u= » ff=y. 1

The contrast c(E) of an effect E is an overall measure
of its ability to distinguish between different states:
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c(E)=supI
~
E(a])—E(az) ~:a],azCB) .

We have c (F)=r +]c =y and c (F')=r'+]c'=2 —y.
The interpretation of u =y/2(1 —A, ) as "unsharpness"

can be illustrated by the following (always possible,
nonunique ') representation of an effect F=F(l],, y):

F(A, ,y) = f d]M(n) T„y=@(Q),
l(, =(n)„= f d]]c(n)n/p(Q),

with p, being a positive measure on the unit sphere Q of
This shows that A, may arise from the effective

orientation of the apparatus defining F(A„y), and A, & 1 is
due to unsharpness expressed by p, .

Now we turn to the discussion of measurements in sto-
chastic spin space. ' Let X=A'(Q) be the Borel sets on
Q. Then the following is a reasonably large class (if not
exhaustive) of instruments (X,I) defining the same observ-
able (X,A):

I(h)(a) = f dv(n)U(n)E(A, n)'/ a E(l], n)'/2U(n)+

(AeX,aeB)

with unitary U(n), v a positive measure on Q:

/I(b, )= f dv(n)E(A, n)

=Fa F(Aa, ya)——(b, EX)

ya ——f dv(n)=v(b, ),
A,a ——f dv(n}A, nn/v(h) .

These instruments are a generalization of the case
U(n)=I, E(il,n}=T~ studied in Ref. 16 which we shall
refer to as "maximal" measurements ]t]a~:

P~(a)= f dv(n)T~a. T, .

If we reduce the Borel sets X=%(Q) to a simple Boolean
algebra 9F(h],b, ]) generated by b, ],bT ——6'] EX we obtain
a simple (i.e., two-valued) observable; further division of
5]——b, ]2Ub, ]z and b;]=b;]2UEIz gives rise to a joint ob-

servable (X]2,A) for the observables (X],A) and (Xz,A)
with

X]——3F(h],b]), Xz=+(42, &y)

~2 ~12U~T2 ~2 ~]IU~l 2 '

X]2——%(X],X2) .

A11 these discrete observables are reductions of the origi-
nal observable (X,A) to certain Boolean subalgebras. By
this procedure of dividing into N, S,E, S" hemispheres
Schroeck arrived at a stochastic spin space interpreta-
tion of Prugovecki's' joint spectral densities for pairs of
orthogonal directions n&, n2. In the next section we shall
estabhsh a generalization of those results to arbitrary pairs
of unsharp spin properties E(k]),E(A2).

To conclude the present section I shall state some prop-
erties of Luders operations and of the above-mentioned
maximal operations. The Liiders operation PL for an
effect Fa ——E(A, ) is obtained from the general instrument

by taking a (two-) point measure dvz (n) =[5(k—n)
+5(A, +n)]dQ, U(n}=I, A,,=A, ,K=I]i (north hemisphere
with respect to the pole A, ):

P (a)=E(&)'/'a. E(A, )' '=I (b, )(a) (aEB) .

Proposition 3.2. (1}The Liiders measurement 4}L of the
unsharp spin property E(l(.) =trgl is nondisturbing in the
sense of (P,2} for arbitrary states a EB in which E(k) is
e-actual. (2) The maximal operation P is e-pre-
paratory for some e & —,

' if trP =E(A, ) is an unsharp spin
property and the measure v is rotation invariant around l(,

and 5=N is the "north" hemisphere with respect to the
"pole" A, .

Proof. (1) Write

E=E(A,)= (I+—A, cr)=rT&+uT

r = —,'(I+A. ), cc =—,'(1—A, ), a= —,'(I+a cr) .

Then after some elementary calculations one obtains

E1/2aE 1/2

+K[A,+(a k)]I .

Further,

W =aE (a)—Pr.a
=cr.—,

' I(1+a A, —/1 —l1, )[a—A(A, a)]—A[1 —(a A, ) ]J

=—cr A.
Now let F=y, /2(I +X.cr), then

iF(/La) —F(a)E(a)
~

= tr (I+i cr)(cr A).
2

(]]cA, =rp —Qp & 1 ) .
But

) ~
A) (

& e/2 for E(a) & 1 —e; this proves the nondis-
turbance property for Pr, .

(2} Let E(A, )=trog = f dv(n)T„a= —,'(I+a cr),
then

tr[p (a)E(A, )]=f dv(n) f dv(n')tr(aT )tr(T, T, )

= —,
'

tr[aE (A.)]+8]],
4Ra ——f dv(n)(n-a)(n. k, )+(A,.A, ) [v(h) =1] .

Now let v be rotation invariant with respect to
A, =Ra=A, .A, (A, &0}. If we choose Cartesian coordinates
with ez ——A, , then

4Rc] ——A, +c]3(1f, )1](ll, )1]

)A[(n, )]]—(n,z)a]=m, 0&m &1

A, =(nz)a= f dv(n)n3, etc.
L

since az) —1 and nz&0. Further, m &mtr[aE(A, )),
thus
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tr[P (cz)E(A, )]= —,
'

tr[czE(A, )]+Ra

I m

2 4
—+—tr[aE (i)]

—=(1—e)tr[aE(lL, )],

where e = —,
' (1 rn /—2) (—,

' . This completes the proof.
The operations P~ are called maximal since they pro-

duce a maximal destruction of coherence by transforming
even pure states into continuous mixtures of pure states.
This strong "disturbance" seems necessaty for the
preparatory infiuence as described above. On the other
hand, the Luders measurements with their "minimal" dis-
turbance are not e-preparatory for arbitrary initial states;
still they are probabilistically preparatory; i.e., they will
generally improve the reality content of the corresponding
e ect:

a(Pt ala (ct)}&a(a) (a =eoPt )

for a&8 with a(a)+0.
It is straightforward to derive from this the following.

Proposition 9.3. The Luders measurement PL, of an
unsharp spin property E(A, ) =troPL, is weakly e prep with-
e= —,(1—A. ), i.e.,

tr[PL, (a)E(A, )] & (1—e)tr[czE(A, )]

for all a EB with tr[aE(A, )]) —,
' .

This property of the Liiders operations turns out to be im-
portant for the Einstein-Podolsky-Rosen experiment (cf.
Sec. V and Ref. 25).

IV. COEXISTENCE OF VARIOUS SPIN COMPONENTS

A. Coexistence and lower bounds

Among the "unsharp properties" of stochastic spin
space the "unsharp spin properties" are characterized by
r+u =1. The property condition (P, l) is equivalent to
r &u (i.e., A, &0, or e& —, ). It will be shown that increase
of unsharpness to a sufficiently large amount makes pairs
or triples of different spin directions coexistent. The price
is a fairly low reality degree.

A criterion for coexistence of a pair IEi,Ez j of arbi-
trary effects in E( V) is given by the following.

Proposition 4.1. Effects IEi,Ez j are coexistent iff there
exists an effect E satisfying E(E, , E & Ez, E i

+Ez E&e. In that c—ase a joint observable (X,A) on
X=A~(1, 1,2, 2) is defined by

{12)mE»——E, (12)mE,—z=Ei —E,
(12)I E» —E,—E, (12) I E=|zeE, —Ez+E.
In particular, for Ez ——Ei ——e Ei this reduces to —a sim-
ple observable: E =0,2—= 1. As a simple consequence we
derive the following.

Proposition 4.2. If a pair of effects IEi,Ezj is coex-
istent then there exists a pair (Ei,Ez) from
IEi,Ei j X IEz,Ez j possessing a positive (nonzero) lower

bound, i.e., admitting joint tests.
Proof. Let IEi,Ez j be coexistent:

E, +Ez E—o(e I.f ED&0 then it is positive lower bound
for (E~,Ez); if E =0 then Ez is a positive lower bound
for (E-„Ez).

This statement motivates the search for joint tests; in
the two-dimensional Hilbert space simple PV observables
are noncoexistent if and only if they do not commute if
and only if they are complementary (i.e., admit no joint
tests). Thus the (well known' ) noncoexistence of spin
projections T„T, can be expressed in terms of the impos-
sibility of joint tests. Both kinds of verdicts will be re-
laxed by introducing unsharpness. A similar investigation
on joint lower bounds for position and momentum has
becai done in Ref. 24.

B. Lower bounds for unsharp spin properties

In Sec. III we introduced a one-to-one representation
of spin- —,

' effects on the three-dimensional closed unit

sphere S. For the following we denote by
S(a p):= Ix& 8:(~x —a~

~

&p j the closed sphere with ra-
dius p around the point a &S.

An effect F =yE(1) is a lower bound for E(A, ) if and
only if E(A.) —F)0 if and only if ~~A,

—yl~~ &1—y.
Since

[ [I ( )
( 1 this is equivalent to

yl&S(O, y)AS(k„l —y). But this intersection of two
spheres is always nonempty because

~
~A, ( ~

& 1, We collect
some simple statements.

Proposition 4.3. Let Ei ——E(A, i), Ez ——E(l{,z) be unsharp
spin properties, F =yE(l ) be a spin effect. Then (1) Any
spin property E(A, } possesses nontrivial positive lower
bounds F. (2) For E(A, )=Tx(A, =A, ) the only lower
bounds are F =yTx, y (1. (3) Ei —E(A, i) (Ez —E(gz)
implies l(, i

——Az, thus Ei —Ez. (4) Ei—and Ez (A, i+}(z)
possess positive lower bounds if and only if
z f lki —A,zf f

&1 and 1, A,z &1 (which can ea»ly be satis-

fied). {5) T, and T, (n&n') possess no positive lower
bound.

Proof. (1) has just been proved. (2) For A, = 1 one has
S(O,y)AS(A, , 1 —y)=Iyk, j, thus the only lower bounds
are F=yE(A, )=yTt„. (3) For y=1 one has S(Az, O)

AS(0, 1)=[kzj, thus Ei ——E(Az)=Ez is the only lower
bound for Ez with y= l. (4) First, let F=yE(l) (Ei,Ez.
This is equivalent to yl ES(A,„1—y ) A S(ll,z, 1 —y }

AS(O, y); it follows that S(A, i, l —y)AS(kz, l —y)+8,
0&r &1—

z ll~i —llzll.
Now X, .hz= 1 would imply A, , = 1=hz and, by (2), 1=k,i
and 1=k,z, thus A, i

——A,z. To show the converse, let
—,
'

)~A, i
—l{z[)&1; then there exists y&O, y&1

——,
'

[)A,i —ll,z[[. If both A, i~l~A, z then take

y (minI1 —Ai, 1 —Azj to obtain S(O,y}CS(A i, 1 —y)
AS(Az, l —y). If, e.g., A, i

——1&Az, take y&1 —Az, then

Iyk i j =S(O,y) AS(A, „1 —y) AS(Az, 1 —y). (5) follows
from (4): A, i A,z

——1.
Statement (5) together with Proposition (4.2} implies the

following.
Corollary 4.4. A Pair of Projcx:tions I Tz, Tx j with

A, '6 (A,, —A, j cannot be coexistent.
On the other hand, (4} shows that unsharp properties
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may well be jointly testable. We shall see that condition
(4} is not sufficient for coexistence.

C. Coexistence criterion

Proposition 4.1 brings about the following coexistence
criterion for unsharp spin properties IE(A, E },E(Az) I.

Theorem 4.5. A pair IE(A,E),E(Az)I of unsharp spin
properties is coexistent if and only if

z I I
~i+ l(z I I+ z I llI E

—~zl I
& 1 .

Proof. Evaluation of criterion (4.1) gives rise to the fol-
lowing set of inequalities for the parameters of some
F=yE(l):

I I
~i+ ~z —yl

I I
& y

being equivalent to

yl GS(A,„1—y) AS(Az, 1 —y)

AS(A. E+Az, y) AS(o, y)~8 .

However, S(AE, 1 —y) AS(Az, 1 —y)+8 iff y (1
—

2 I IA i
—Azl I, aild S(A i+Az, y)AS(0, y)+8 iff

y& 2 ll~i+~zll On the other hand, these last two ine-
qualities are already sufficient for coexistence since the
point —,

'
(A, i+ A,z) will then be contained in all four spheres.

This proves the theorem.
With this result we have found both a complete general-

ization of Prugovecki's results [referring to E (A, ER),

E(Azz)], and a compact characterization of coexistence in
two-dimensional state spaces. Moreover, we have estab-
lished an interpretation of coexistence conditions in terms
of unsharpness.

Let us note some immediate implications.
Corollary 4.6. Let O'Ez ——IE(A,E),E(kz)] denote a pair

of sPin ProPerties. Then (1) for A, i +Az & 1, all Pairs O'Ez

are coexistent, (2) for orthogonal A, i, l(.z, N'iz is coexlsteilt
iff A,

E +A,z & 1, (3) for XE
——A,z

—A,, I'iz is coexistent iff

~ & 2(1 1~i+411+I 1~i —~zl I
} '

=Ii+[1—(A, , j(, ) ]'
I

This upper bound is always less than unity, except for
Az& I A,„—Az I. (4) For A,

E

——1, gE'iz is coexistent iff
Az& [AE, —Ai] iff E(kz) =E(+Azki) iff E(AE),E(kz)
commute.

Proof. Consider the quantity

&:= —,
'

I I ~E+~zl I+ —,
'

I 1~i —~zl I,
X = —,(AE +Az )+—,[(AE +Az )

—4A,
E

A, z (A, E kz) ]'~

Then 8'Ez is coexistent iff X & 1 [Theorem (4.5)].
(1) A,

E +A,z (1 imphes X &1. (2) A,
E

A,z
——0 gives X

=A, i +A,z . (3) This condition can be immediately read
off from Theorem (4.5). (4) We have X & —,

'
(A, i

+Az )+ —,
'

l
A, , —Az

I
with equality only for (1(,

E Az) =l.
For A, i

——1 this reads X & 1; however, in the case of coex-
istence we have X (1; thus, X =1. For A, i

——1, X =1
implies A,z

——0 or (A, , A,z) =1 which, in turn, is equivalent
to commutativity. Finally, commutativity implies coex-
istence.

Statements (1)—(3) tell that arbitrary spin components
[E(A,E),E(Az)J can be made coexistent by taking suffi-
ciently small A, „A,~, that is, large unsharpnesses
ui ———,'(1—A, , ), uz ——,(1—Az). Especially for orthogonal
A, E, A,z the coexistence criterion takes a particularly simple
form. 8'Ez can be coexistent without commuting:

E(A, l) E(A2) —E(Az) E(A, E) = E

(A, E x Az) a .
2

This is zero if and only if (A,
E

A,z) =1. We see that coex-
istence coincides with commutativity if at least one of
both effects is a projection; for that reason, the statement
of Corollary (4.4) is an immediate consequence of the
above statement (4}.

Once one has chosen an effect E =E,z satisfying the
condition of Proposition (4.1) for coexistent 8', z
=IE(A.E),E(Az)] it is straightforward to write down a
joint observable. A simple example is induced by

Eiz ———,'E(A, E) E(Az)+E(Az) E(A, E) .

Let Z1= —Z, , Zz= —kz, Xi&I&E,—1(ij, &j&I&z, —~zI,
a;.= —,'(1+A,; A, ). Then the joint observable is complete-
ly defined by

EEE
——,' aEEI+ —,(Ay+A j ).o'—=a;EE

Marginahty conditions are trivially satisfied, e.g.,
E,z+E,z

—E(A, E), etc. Furthermore, positivity of all E~j
is given if and only if gE', z is coexistent: one readily calcu-
lates

a j &1—211~ —~jll Ef«j & E ll~ +~jll iff —,
' ll~i+~zll+ E ll~i —~zll &1.

For the discussion of the EPR experiment a consideration
of coexistence of a triple g'Ez3 —IE(AE),E(Az), E(&3)] «
unsharp spin properties turns out to be desirable. It ap-
pears difficult to give a general treatment since eight E,jk
are involved in a set of inequalities. Geometrically one
has to investigate the intersections of (at least) four
spheres; this does not seem to lead to simple solutions.
Therefore I shall only present a simple suffEcient condi-

I

tion. The operators
1 1

Eijk 2 aijkr+ 8 ~~jk ~

ajk ——
4 (1+A,;.Aj+A, ; Ak+Aj Ak),

A
Ej fg

—A E +Aj+A k

satisfy the marginality conditions Ejk+E, ~ Ej, etc. , ——
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with E;,E;k,E k being the above pair observables. There-
fore the Ejk define a joint observable if and only if they
are positive, i.e.,
—' I l~gkl I

& a jk = s (1—~i' —4' —4'+1+
I l~tja I

I'),
or

0((~~A,;tk~~
—1) +(1—&i —&2 —k3 ) .

The last inequality is satisfied for all directions A, i, Aq, A3 if
A, i +A2 +A, q &1. This proves the statements made in
Ref. 25 with respect to joint triple observables.

The existence of joint lower bounds and of joint observ-
ables implies the existence of joint test operations and of
"joint" instruments, respectively. Therefore we conclude
that noncommuting unsharp spin properties can indeed be
simultaneous elements of reality of a system in an opera-
tional sense. It remains to note that arbitrary pairs
E(A, i},E(kq) with ki A,2)0 can be simultaneously e actu-
al: take the p«e ~t~t~ T, with n=(&i+&2)/~ ~&i+f2~ ~,

then

if I A, i,kq, k, i2j is linearly independent.
(2) If there exists an informationally complete joint ob-

servable defined by Ei& ——yi2E (A, i2) then, according to (1),
~ere &=

2 ll~i+kll+ 2 ll~i —411
=1 then the set $(Ai, 1 —yi2) AS(A2, 1 —yip)
AS(0, yi2) = I —,

'
(A, i+%2) j contains only the vector

(yiz—= 1) yi2A, iz, in contradiction to informational com-
pleteness. On the other hand, if A, „A.2 are linearly in-
dependent and X&1 then the intersection of the above
three spheres contains more than one element, and A, iz can
be chosen to be noncollinear with A, i, A,2. according to (1)
it gives rise to an informationally complete observable.
This completes the proof.

The above results may be interpreted in the following
way. Introduction of unsharpness on one hand leads to a
decrease of the ideally available information with respect
to measuring values ("smearing of probability distribu-
tions increases entropy" ). On the other hand, unsharp-
ness is necessary for the possibility of joint measurements
and for informational completeness of a single observable.

+Xi�'X2

1 ~2 +~i'~2 1

+
4

In that state the sum of probabilities is even maximal and
equal to 1+7'

I I~i+%I I
~

D. Informational completeness

Until now we have bali mainly concerned with the ca-
pability of measurements to detect properties of systems;
next we turn to the determinative features, i.e., the ability
of measurements to determine the states of systems. As is
well known, the statistics of all three spin components
s„,s„,s, is needed in order to uniquely determine the
premeasurement state. An appreciable improvement can
be achieved by means of unsharp observables.

Theorem 4. 7. (1) A joint spin observable (Xi2,Ai2) for
unsharp spin properties E(A,i),E(A,2) is informationally
complete if and only if Ai2 is generated by an effect
Ei2 ——yi2E(A, iz) such that the set of vectors A, „A2,A, ,2 is
linearly independent. (2) There exist informationally com-
plete observables for E(A, i),E(A2) if and only if

i II~i+~211+ ~ ll~i —l(211&1

V. CONCLUSION: THE EPR EXPERIMENT

In Bohm's version of the EPR experiment a system
consisting of two spin- —, particles is prepared in the sing-
let state

[y (n)8$ (n)-y (n)8$ (n)] .
1

2

The argument deals with spin measurements on one of the
subsystems performed in a stage when both subsystems
are spatially separated so that they cannot interact with
each other during the measurement period. Then, accord-
ing to the EPR locality assumption, a measurement of any
spin property E(A.)=E' on subsystem I determines the
value of the correlated property E( —A, }=E'i of the
second subsystem without disturbing it. Therefore one
can apply the EPR reality criterion to conclude that E"
must be an element of reality. [For a detailed presentation
of the argument in abstract quantum language see Ref.
27; the translation into the language of unsharp properties
will be found in Ref. 2S where the relevance of the Luders
operations PL, (cf. Sec. III) is evaluated and a quantitative
treatment of "unsharp correlation" is given. ] Since A, was
arbitrary this conclusion holds for all spin properties.
This leads in a well-known way to Bell's inequality:

p(E', ,E,")&p(E'„E", )+p(E', ,E,") .
md I k&, kz j lin~ly indePendent . Inserting the quantum probabilities

Proof. (1) State operators a; can be represented as
a;=E(a;)=—,'(I+a; a), ~(a;~~ &1. T.hen

p(E,Ek')=(4,E 8E"4)

0=tr[(ai —a2).E;.] for all (ij ) E: I 1, 1 j X I2,2 j =(1—2e) —,
'

sin (Oi2/2}+e/2,

0= (a, —a2).k, i2 ——(ai —a2) ~ (A, , —A, ,2)

= (ai —a2)(A, 2—A, ») .
One can infer ai ——a2, i.e., ai ——a~ if and only if the set
IA, iq, k, i —Ai2, A2 —A, i2j is linearly independent if and only

12 I . 2 13
sm

2 2 2
& —sin

L

e
2 21—2e
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It follows that Bell's inequality can be violated as long

as e& —,', i.e., A, p( —', )' . Therefore, for reasonably small

unsharpnesse as they occur in the present experi-
ments —the EPR-Bell argument against local quantum

reality remains valid: small deviations from the idealizing
assumption of sharp properties do not disturb the argu-
raent. On the other hand, in principle one might con-
struct measuring devices with e& —,'. For such experi-

ments the contradiction between quantum mechanics and
locality will not occur: Bell's inequality are no longer
violated. [Note: the analysis of Sec. II shows that quan-

tum theory is compatible with (unsharp) reality; thus a
possible contradiction must be rooted in the additional as-

sumption of locality. ] In other words, objectivity of suffi-

ciently unsharp properties is an admissible assumption.
As shown in Ref. 25, this fact can be explained by the ob-

servation that (a set of 4) Bell inequalities represent neces-

sary and sufficient conditions for the existence of state

dependent joint probability distributions for triples
IE(A, , ),E(A2),E(A.3) I of unsharp spin properties. In fact,
the triple observable constructed in Sec. IV entails such
joint distribution for the subsystem state a= ,I c—orre-

sponding to the singlet state 4:
p (E;,E&,E )= —,'ai.„——tr(a F~k) .

To conclude, one may say that introduction of unsharp
POV observables into quantum theory provides a step
from quantum no-go statements (incompatibility, nonlo-
cality) "back" to more "classical" possibilities (joint distri-
butions, simultaneous reality in EPR-like situations).
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