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The problem of s-equivalent Lagrangians is discussed in generalized mechanics. Some results

known from ordinary {nongeneralized) mechanics are extended to the generalized case. A theorem

allowing the reduction of the higher-order Lagrangian description to the usual order is derived. The

theorem is found to be useful in the analysis of generalized mechanical systems, and it leads to a
new type of equivalence between Lagrangian functions. Some new perspectives are pointed out.

INTRODUCTION —(tra) =0 (1.4}

represents a necessary condition. This can be generalized
to the trace of all integral powers of a. In one dimension
the problem is simpler because here the elements aj.
reduce to a single function which is a constant of the
motion, as follows from (1.4}. The lack of more general
results perhaps explains why the problem of s equivalence
has not been considered so far in generalized mechanics
where the Lagrangian function contains higher-order time
derivatives of the generalized coordinates (but see Ref. 6).

The main objective of the present work is to discuss the
problem of s equivalence in generalized mechanics. In
Sec. II we shall discuss the possibility of finding s-
equivalent Lagrangians in generalized mechanics with the
help of a (new) higher-order reduction theorem. From
this theorem a weaker class of equivalence follows, which
we have called semiequivalence. In Sec. III we approach
the s-equivalence problem via Boehm s conditions and in
Sec. IV we summarize and discuss our results.

There has been considerable activity on the inverse
problem of Lagrangian mechanics, that is, on the problem
of how to find the Lagrangian function given the equa-
tions of motion (see Ref. 1 and references therein). From
the physical point of view the interest in this problem
arises from the question of how to find all nontrivially re-
lated s-equivalent Lagrangians, i.e., Lagrangians that lead
to the same orbits in configuration space but do not mere-

ly differ from each other by the addition of a total time
derivative of a suitable function or by the multiplication
with a numerical factor. ' The activities have led to an
enrichment in the classical description of mechanical sys-
tems, and have also revealed some interesting problems
concerning the quantum aspect, as it has been found that
the Hamiltonians which correspond to s-equivalent La-
grangians do not necessarily lead to the same orbits in

phase space. s However, the general problem of s-

equivalent Lagrangians has not been solved.
Some useful partial results exist. If we are given a La-

grangian function 1.(t,qi, . . . , q„;qi, . . . , q„}=L(t, q, q )—
with

aL d aI.
A(=—,. ——;——0,

dt aq
(l.la)

aI. d aL,
AI. = —,. ——,——0

aq' «aq'
such that Eq. (l.la) imphes Eq. (1.1b}and vice versa:

(l.lb)

then the problem of s equivalence is the problem of find-
ing all Lagrangians L, (t,q, q) with

II. THE ORDER-REDUCTION APPROACH

Let L(t, q, q, . . . , q' ') be a Lagrangian function for
some system with M ~ 1 degrees of freedom. Here, and
throughout this paper, we use the notation

q =(q, . . . , q ), q =(q, . . . , q ); latin indices
ij,k, . . . , range from 0 to N while greek indices indicate
the values 1,2, . . . ,M. The Euler-Lagrange equations
which follow from Hamilton's principle are7

Ag ——0= --A;=0. (1.2)
(2.1)

One way of achieving this is to find all dynamical vari-
ables a&"(t,q, q), j,k =1, . . . , n, such that (summation
convention always understood)

(1.3)

where Dk dldt"——
With some dynamical variables A, t(t, q, . . . , q'~') of

which we require that

(2.2)

we define that following set of quantities:
(1.3a)a =J/aj. "/f, deta~0.

PN =A.~~Pp . (2.3)
Even this presents considerable difficulties. However, it
can be shown that From (2.2) it is found that (2.1) and (2.3} are equivalent
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sets in the sense that

Pp ——0== =Pp ——0 .

Thus, if we can find some L(t,q, . . . , q' ') such that

PP g——( —1) Dk =0,
aq(k)V

(2.4)

(2.5) (2.9)

Proof of theorem I. To prove theorem I we shall
proceed in a direct way. The equations of motion for the
system described by L are given by (2.1) and those corre-
sponding to I. are

N 1—
g ( —1)Dk,k,

——0,
k=0

)
I s()«()

(N —1)

L (t (N —i) (N) Q(N) ) (2.6)

we can say that I. and I. are s-equivalent I.agrangians in
generalized mechanics. Hence the problem of s
equivalence amounts to finding suitable l(,'s to guarantee
the existence of L.

Now, as it has been pointed out in Ref. 8, the higher-
order Lagrangian formalism has the peculiarity that it al-
lows a description of a mechanical system in configura-
tion spaces with less dimensions than the usual ones. We
shall exploit this feature, and we shall show that the
equivalence problem can be approached from a different
side where we need not worry about the I,'s: the s
equivalence remains defined by (2A) but we need not go
through (2.3). As a result some interesting questions will
arise. Therefore we shall postpone the search for suitable
A, 's to the next section.

For simplicity we shall specialize on the case M =1.
Our approach will be based on the following reduction
theorem.

Theorem I. Given a Lagrangian function
L (t,qi, q„.. . ,qp') for a system in one generalized coor-
dinate qi and N ~ 1, it is possible to construct another
Lagrangian function L(t,qi, . . . , qp ",q2, qi} involving
two generalized coordinates qi, q2 and a maximum order
of the time derivative equal to (X—1), such that L and L
are equivalent in the sense that both lead to the same or-
bits in the original configuration space. The new La-
grangian function is obtained from

aL aL

Bq2
(2.10)

Now, using definitions (2.6) and (2.8) it follows that (2.10)
is an identity. Hence, (2.9) is the effective equation of
motion and we only need to show that this equation is the
same as (2.1}. For this consider 0&k &(N —2). From
(2.1) and (2.8) we find

aL aL
(k) g (k)

For k =(N —1) a similar reasoning leads to

aL aL aL

(2.11)

(2.12)

(x) (sne —=Q

Using (2.11) and (2.12) it is easy to verify that (2.9)
reduces to (2.1) and this proves theorem I.

Now, theorem I can be applied successively until one
arrives at an L as prescribed in usual (nongeneralized)
mechanics. Hence we have the following generalization.

Theorem D. Given a Lagrangian function
L (t,qi, q i, . . . , qp') for a system in one generalized coor-
dinate q i and Ep 1, it is possible to construct
another Lagrangian function L(t,qi, q),Pz, PJ),
J=0, 1, . . . , N —2, involving N generalized coordinates
and velocities so that L and L are equivalent in the sense
that both lead to the same orbits in the original configura-
tion space. The new Lagrangian function L is obtained
from

(S) (N) (E—1)
Qi Ql (t«ql«ql««ql «q2) (2.7)

L(tq q q( ) Q( )) (2.13)

must be obtained from the following definition of the new
generalized coordinate q2.

where

Q' '—:Q' '(t, qi, q), Pg, Pg), I(: =2,3, . . . , N (2.13a}I
(w .

Bq)
(2.8) must be obtained from the following definitions of the

new generalized coordinates PJ ..

Comments on theorem I. Concerning the range of ap-
plicability of theorem I we emphasize that the existence of
L as given by (2.6) strongly depends on the possibility of
writing down (2.7). Thus, for instance, if L is linear in
q', ' it will not be possible to write (2.7). On the other
hand, in this case we do not have an effective N-order sys-
tem as it was shown by Ryan' ' (for the one-dimensional
case considered here), and another Lagrangian function
depending on (at most) qp " can be constructed to
describe the system. For this true higher-order Lagrang-
ian we may expect it to be possible to write (2.7). We will
not go into details here, but rather limit the applications
to systems for which (2.7) follows from (2.8).

P(} (~) p «I 0

(2.14)
BI.

PJ PJ i+( —1) (N
——q), J=1, . . . , (N —2) .

The proof of theorem II can be obtained by a straightfor-
ward generalization of the technique used in establishing
theorem I and so we shall omit it here. On the other
hand, some comments are in order. First, as before, we
note that the range of applicability of theorem II strongly
depends on the possibility of resolving the definitions
(2.14}for Q' '. Again we will not go into details limiting
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ourselves to nonexceptional cases, but now the situation is
somewhat different from the aforementioned one. In the
general case, definitions (2.14) can give rise to some rela-

tions involving Pq and Pq. These relations could then be
thought of as constraints (nonholonomics in general} and
this raises some interesting questions concerning the gen-
eralized Lagrangian formalism for the description of
nonholonomic systems. In a forthcoming paper we shall
discuss those questions in connection with a previous
work. ' Another aspect is the similarity between theorem
II and Ostrogradsky's method of obtaining canonical
equations for Lagrangians depending on higher-order
derivatives. " In fact these two approaches share the
peculiarity of allowing a description of a given higher-
order Lagrangian system in spaces of different dimen-
sions. The main difference resides in the fact that in the
Ostrogradsky method we change from configuration to
phase space, the resulting equations being in Hamiltonian
form, while in using theorem II we remain in configura-
tion space changing only the dimensionality of the space.
What we actually obtain by using theorem II are two
equivalent Lagrangian descriptions in configuration
spaces of different dimensions, and this is the main role of
theorem II in what follows.

With theorems I and II we have established a kind of
equivalence among usual Lagrangian functions (i.e., first
time derivative only) and the generalized ones. The
equivalence is obtained through the enlargement of the
original configuration space. To show how this works we

give some examples.
Consider first the Lagrangian function

as an equivalent Lagrangian depending on three-
generalized coordinates. Indeed, the Euler-Lagrange
equations associated with I. are

q2 —q3 —q2=0 ~

3
—q) =0,

(2.22a)

(2.22b)

(2.22c)

and from (2.22b) and (2.22c) we have

qz ——q'i ', qs
——q'i —ji which changes (2.22b) and (2.22c)

into identities and (2.22a) into (2.20).
Now, our objective is to find s-equivalent generalized

Lagrangians. For this aim we can look at theorem II as a
bridge from the generalized to the usual Lagrangian for-
malism in such a way that the known results for the last
case may be used to obtain s-equivalent Lagrangians in
the generalized case. To be explicit, let us consider a
given L(t,q ,i. . . ,qP'). From theorem II we pass to

L(t,qi, qi, Pz, Pq). The next step consists in finding a
family eLi of s-equivalent Lagrangians to L. Now, for
each member of this family we eliminate the extra coordi-
nates, so coming back to higher-order Lagrangians which
we could expect to be s equivalent to i.. Unfortunately,
as we shall see, this is not so. What we effectively obtain
is a weaker class of equivalence, which we call semi-

equivalence following a recent proposal in field theory. 'i
Indeed the Lagrangians so obtained are equivalent to L in
the sense that they lead to equations of motion P=0 in
such a way that

I = i(ei'+ii'+ii')
which leads to

P=—q, —q, +q',"=0.
From theorem I it follows that

(2.15)

(2.16)

P =O--=-P=O, (2.23)

but not vice versa, as required by (2.4).
As an example, consider I. given by (2.15). We found

L in (2.17) after using theorem I. An s-equivalent La-
grangian to L, is

I =
2 (e2 —a i i )+iii2—1 2 2 ~ 2 (2.17)

1 ~ 2 1 2L i =qiq2 —2q2 —Tqi +q'iq'2 (2.24)

is an equivalent Lagrangian (in usual mechanics). In fact
the Euler-Lagrange equations for I. are

Going back to higher-order dependence we arrive at

L2 l'Vl + z(ei ) +TIi +Ii ] (2.25)

qr —qr+q2=0 (2 18a) and the corresponding equation of motion is

q2 —qi =0 (2.18b)
P=P —P =0, (2.26)

for which the equation of motion is

(4) (6)
qi —qi+qt (2.20}

Applying theorem I twice or applying directly theorem II
we have

and it is easily seen, after eliminating the extra coordinate

q2, that (2.18) reduces to (2.16).
As another example, take

(2.19)

where P is given by (2.16). Thus we have (2.23) but not
(2.4), and for this reason we say that I.i and I. are semi-
equivalent.

We think that semiequivalence is a question that merits
deeper investigation. However, we sha11 leave this, as well
as the question of generalizing the previous results to
more than one degree of freedom, for another publication.

III. EQUIVALENT LAGRANGIANS
IN GENERALIZED MECHANICS: A THEOREM

(2.21)
Now consider the equivalence problem as defined by

Eqs. (2.1)—(2.5) in full generality, i.e., N and M ~ 1. Our
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task is to find suitable iL's in such a way as to guarantee
the existence of L given L. For this we shall make use of
the conditions for the existence of a higher-order formal-
ism corresponding to a given set of equations.

Let P (t,q, . . . ,q(~)) =0 be a set of differential equa-
tions. In order that there exists some function

L (t,q, . . . , q' ') such that

P = g( —1)"Dk— =0,aL,

k aq
(3.1)

the following set of Boehm conditions(2 must be satisfied:

aPa
(A)p

&+1 ap.
+( 1)2N —A

(8+1)p
aP „ aPp

(2N) (A)a
aq p aq

(3.2)

where A =0,1,2, . . . , 2N, a,P=1,2, . . . ,M.
Now, it is possible to rewrite (3.1) in the form

(2X)pPa =Qa+lapq (3.3)

is valid. Because of the existence of higher-order time
derivatives this is not a simple problem. Nevertheless it is
possible to handle it. Let us write the Boehm conditions
corresponding to A =2%,2N —1, for P . We have

(3.4)

is assumed to satisfy the following condition:

det[ll pi(%0. (3.5)

where Qa=Qa(t, q, . . . , q' ") is known from L and

a2L {N)1 p=, , (N) 1 p(——t,q, . . . ,q )
aq aq

aP. aPp
(2N)p (2N)a

aq q

aP. aPp aP.
(2N -1)p (2N —1)a (2N) p

+ =2nD
q

(3.6a)

(3.7a)

With (3.3) the Boehm conditions (3.2) become relations in-
volving Q and 1 p, but we shall not need the whole set.
We consider (3.2) for the cases A =2M and 2N —1. Then
we have

a Pa aPp
(2N) p (2N)

for A =2K and

aP. aPp aP.
{~+ ~~

+ (3.7)
aq p aq aq

for A =2% —1. These two subsets of conditions suffice
for our purpose and shall be exploited in the following.

We now consider the following set of equations

P a =7(.a Pp,P

where A,
P are some dynamical functions for which we re-

quire

Consider first the set (3.6a). From (3.12) it follows that

where we have also used (3.10) and (3.11). Until now we
{k)

have not specified the dependence of A, p on q . From
(3.8) one might expect to obtain this dependence up to the
2N-order time derivative. On the other hand, the effec-
tive dependence will be dictated by the conditions we must
satisfy for solving the equivalence problem. This requires

P =0 and P =0 give the same orbits in con-
figuration space, as follows from (2.4). For these orbits
(3.13) reduces to

1(. "l„p=k,p"1 (3.14)

a~a (2N)&

(~) (Q„+l~q ")+A, "l„p
aq

(~) (Q„+l~q ")+Ap"l~, (3.13)
a p

aq

(3.9)

in order that conditions (2.4) are met. The problem then
is to find A, p such that there exists some L(t,q, . . . , q' ')
which satisfies (2.5). Using (3.3) and with the identifica-
tions a'I.

(N) (N)p
aq

(3.15)
Qa=l(a Qp

P

Ip„,P

(3.10)

Thus two restrictions emerge quite naturally:
(3.11)

det[/T p//~0, (3.16)
we can write Eq. (3.8) as

Equation (3.14) tells us nothing more than the symmetry
of the 1 p term, as it is seen from the definitions (3.11).
Now, from the structure of Eq. (3.12) we expect lap to be
related to the unknown L as in (3.4):

(2%)P =Q+l„q (3.12)

The existence of L is assured if we impose the Boehm
conditions to P as given by (3.12). This will result in
conditions to be obeyed by the A, 's if we assume that (3.2)

1 p 1 p(t, q, . . . , q' ——') . (3.17)

Condition (3.16) expresses the nonsingular character of L,
and due to (3.5) and (3.14) leads to (3.9). From (3.17) and
(3.11) we have
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()l p BA,
"

(a) (p) (3.18)
Bq " Bq

for 8 =N +1,N +2, . . . , 2¹Multiplying these equa-
tions by the inverse matrix elements (1 ')p„and summing
over P we arrive at the effective maximum dependence of

fk)
X &onq

M, r

(B)p
=0 (3.19)

From the foregoing results condition (3.7a} can be written

Q, „ Q.+Ap (2N i) 2N(DA~ )l~p
Bq p Bq

+2%A,~"(Dl„p) . (3.20)

Condition (3.7) relates Q„and 1 p such that

+ (3.21)
Bq p Bq

Then, inserting (3.21) into (3.20), multiplying the resulting
equation by (1 ')pP, and summing over p we find

2N(DA, ~P}=1(,„P(l 'Y'"

Bq

(1-')P X "
P P (2N —1) P' + (2N-i)„

Bq Bq

=2%(DA~) . (3.22)

From (3.14) it is easily seen that A, P=l.p"1 (1 ')pP. Us-
ing this in Eq. (3.22) we have

equivalent problem in generalized mechanics. In fact this
result is a consequence of the analysis of only one subset,
namely, conditions (3.6a) and (3.7a), of the whole set of
Boehm's conditions to be imposed on P~ given by (3.12).
Thus, condition (3.25} is not enough to guarantee the ex-
istence of L. In the absence of the general solution we
still can treat each problem individually, with (3.25) as a
guide. For the simplest case, iV =2,M = 1, of an
acceleration-dependent Lagrangian function the 1(,~p
reduce to a single function A,(t,q, q, q') which must be such
that 1(,=0. However, one cannot conclude that 1(, is a con-
stant of motion in the usual sense. Indeed, we usually say
that some dynamical function 8 is a constant of motion if
8 =0 with the equations of motion being taken into ac-
count. Here A, =1(.( t, . . . , q ) is of second order while the
equation of motion is of fourth order. Thus A, =c, where
c is a number. This appears as a surprising result, charac-
teristic of the higher-order Lagrangian formalism for
M =1. In this case L and L will result, trivially related
by a constant [it being also permitted that L —L =D(g),
for a suitable function P].

We conclude this section by considering the Lagrangian
function

1 2 1L=—m X — X
CO

(3.26)

where X = (q),q2, q& ) in our notation. It is not difficult to
find

0 0 1

A= 0 1 0
1 0 0

as a suitable matrix. In this case the set P, corresponding
to the unknown L is seen from (3.8) to be Pi Pi, ——
P2 P2, Ps ———Pi, where—

—A, "(1 ')Pa {2N—i )„
Bq

(3.23)
P~ = —irlq~ — q~ =0, Q = 1,2, 3

N
(3.27)

Finally for a=p=y and summing over y we arrive at

(3.24)

This result can easily be generalized for the trace of in-
tegral powers of the matrix A=

) (X p) ~. In fact, using
(3.23) in the relation D[tr(A )]=in(A ')P~A P for any
integer m, and taking into account that
(A™ 1)P APP=(A ')„PAP, as can easily be established, it
is a straightforward matter to show that

—[tr(A )]=0, m = 1,2, . . . . (3.25)

Condition (3.25) is necessary in order to get equivalent
higher-order Lagrangians and it is worth noting the gen-
eral validity of this result in the various forms of the La-
grangian formalism. We have established it here for gen-
eralized mechanics. Its validity for usual mechanics was
already mentioned in Sec. I. For field theory it was
proved by Farias and Teixeira, ' and in Ref. 15 it was
proved for the first-order Lagrangian formalism.

With (3.25) we have not completely solved the

are the Euler-Lagrange equations associated with L.
Then L can be constructed from P~ using, for instance,
Ref. 16. It follows that

I =FFlg ~$3+
™

gg — gt,g3
™

co 2'
is s equivalent to I..

IV. CONCLUSIONS

We have considered the equivalence problem for gen-
eralized mechanics from two different approaches, in one
of which we were able to state a basic result, condition
(3.25), in the search for s-equivalent generalized Lagrang-
ians. ln the other approach we derived a theorem,
theorem II, that allows the setting up of s-equivalent La-
grangians in configuration spaces of different dimensions.
Then using this theorem in the search of s equivalence in
higher-order mechanics we found a weaker class of
equivalence which we have called semiequivalence.

Theorem II seems to be an interesting result for the
analysis of higher-order systems. We have also pointed
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out the possibility of discussing constrained systems with
the help of theorem II. Another interesting question is
the problem of finding constants of motion associated
with a generalized Lagrangian. Nowadays the extensions
of Noether's theorem for this case is well known, ' but
theorem II permits a new insight into this question. In
fact, given a Lagrangian function L(t,qi, . . . , qP') one

can find L(t,qi, qi, PJ,PJ) when applying theorem II.
Now Noether's theorem may be used to find constants of
motion associated with symmetries of I.. These constants
are written in terms of the new coordinates and momenta

Ps,Pq. Then, what we must do in order to come back to
the effective higher-order dependence is to eliminate the

p s with the help of their definitions, (2.14). After this is
done we obtain the constants of motion assigned to the
given I.. Now, there will result 2N independent constants
of motion corresponding to L„as it is known from ele-
mentary mechanics, and this will also be the number of
independent constants corresponding to I. as it is also
easily deduced from the fact that the corresponding
Euler-Lagrange equation is of order 2N.

We conclude presenting an example. The Lagrangian
function (3.26) was considered in a papers where
Noether's theorem was extended to generalized mechan-
ics. After using theorem II we find

1 N 2
2

L=Y X—— Y ——mX
2 m

where

(4.1)

Y=—(Qi, Q2, Q3)= — i X= — (qi, q2, q3) . (4.2)
N N

From (4.1) one sees that the X=(qi, qz, q&) are cyclic
coordinates. Hence the corresponding momenta are con-

stants of motion:
0

Pi =Y—mX=const . (4.3)

Using (4.2) we find the corresponding constant in higher-
order mechanics:

p~ ——— X —mX .m

N
(4.4)

m0=X P)+—X + X
2N

(4.6)

Again this is the same result as in Ref. 8 because (4.6) is,
except for the sign, the generator of the group of time
translations corresponding to (3.26).
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This result, except for the sign, corresponds to the same
constant as found in Ref. 8 associated with the invariance
under the groups of space translations. Another constant
which can easily be obtained from L is the "energy"

2

PY'PX+ Y + PF ~
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