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The electric form factor of the pseudo-Goldstone meson (the generic pion) is calculated in

quenched lattice quantum chromodynamics with SUQ) color. Charge radii are calculated for dif-
ferent values of the bare-quark mass. The results are in agreement arith the physically reasonable
expectation that heavier quarks have distributions of smaller radius.

I. INTRODUCTION meson structure.
Conclusions are given in Sec. V.

Recently there has been considerable interest in deter-
mining lattice hadron sizes and internal structure. ' The
study of electromagnetic properties can be very useful for
this purpose. In Ref. 1 the feasibility of a lattice calcula-
tion of the meson electric form factor was demonstrated.
In Ref. 5 a detailed derivation of the lattice three-point
function was given and it was shown how the form factor
could be extracted from a combination of two- and three-
point functions. In this paper we use the results of Ref. 5
in a numerical survey of the pseudoscalar-meson electric
form factor as a function of quark mass.

The staggered scheme' for putting fermions on the
lattice is used. The interpretation of the staggered fer-
mion degrees of freedom is usually made in terms of fia-
vored uark fields defined on hypercubes in the lat-
tice.' ' The two-point function, needed for mass calcu-
lations, can be cast in a form that is constructed using
only local combinations of staggered fermion fields.
In Ref. 5 it was shown that the electric form factor can be
extracted from a three-point function which involves only
local staggered-fermion-field bilinear operators as interpo-
lating fields. The relevant formulas are reviewed in Sec.
II.

Section III contains details of the numerical work and
the results are given in Se:. IV. The calculations are done
in a model with SU(2) color (at P=2.3) for five values of
the bare-quark mass from ma =0.025 to tria =0.4. The
meson masses we obtain agree very well with previous cal-
culations. The electric form factor is calculated for a 0
meson (pseudo-Goldstone boson) with an equal-mass
quark-antiquark pair. The results show clearly that the
charge radius decreases as the quark mass increases.

Pseudoscalar mesons with unequal-mass quarks and an-
tiquarks are also considered. AHowing the charge-density
operator to act either on the light or on the heavy quark
gives information on their relative distribution. We ob-
tain the physically reasonable result that, when the quarks
have very different masses, the heavy quark has a much
smaller charge radius than the light quark. This provides
good evidence that our measurement is indeed probing the

II. FORMALISM

In this paper we consider a charged pseudo-Goldstone
meson (a generic pion) associated with the remnant con-
tinuous axial global symmetry present in the staggered
scheme of lattice fermions. ' The usual flavor structure
associated with the staggered fermions is not useful for
constructing charged states since an "electric charge" de-
fined within these flavors is not conserved '2 W. e there-
fore introduce two sets of flavors, labeled by u and d,
with charges q" and q . The action takes the form
(suppressing color indices)

&F( U) =XMX

a„(x)[X (x)U„(x)X (x+a„)
&,p,f= Iu, dI

—X (x+ap)Up(x)X (x)]

where

+ ma+I f(x)Xf(x),
x,f

(lb)

a„(x) = ( —1) ", g„=g x„.

A conserved vector current can be derived using the
Noether procedure 'The .result is (for each species,

f=u, d)

jf(x)= ~„(x)[Xf(x)U„'(x)Xf(x +a„)P

+Xf(x+a„)U„(x)Xf(x)]. (2)

The usual way to expose the particle content of the
staggered-fermion theory is to construct nonlocal quark
fields defined on hypercubes in the lattice. This is dis-
cussed in detail in many papers. " The end result is
that the two-point function [which is essentially the corre-
lation function of the local interpolating field
a4(x )( —1)'X"(x,t )X"(x,t )]
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G (p t)= ge -'t' *T'rM -'(x, t;0)[~ '(x, t;0)],
C

(3)

where the trace implies a sum over appropriate color and

flavor indices, describes the propagator of a 0 pseudo-
Goldstone meson. The sum c is over Monte Carlo lattice
gauge field configurations (N, in number). We also use
the correlation function in the J= 1 channel

Gi(p;t) —= ge '~'*[(—1) '+( —1) '+( —1) ']TrM '(x, t;0)[M '(x, t;0)]t .1

~ x,c

This describes the propagation of vector and axial-vector mesons.
In Ref. 5 it was shown that the matrix element of the charge-density operator between pion states could be extracted

from the lattice three-point function

A(p, q;t2ti)=pe 'tz4(x2)( —1) '(X (x2, ti)X"(x2,ti)ge 'p(xi, ti)X "(0)X (0)), (5)

where

p(x, t)=yq j ~4(x, t) .
f

Eq+Mo
F(q)

O(«, «&q 2(EqMO)
(6)

where the electric form factor'i is defined by

(~+(p)
~
p(0)

~

n+(p')) =(E~+&~ )F(q) .

Notice that this three-point function just involves local interpolating fields.
The most convenient way to determine the electric form factor from the Monte Carlo data is to take the combination

'
], /23 (O,q;t„t, )A(q, q;t2, t i )

Go(0;ti)GO(q, t )

III. COMPUTATIONAL DETAILS

Numerical calculations were done in a model for QCD
using only SU(2) color. The lattice size was 102&(20&(16
with the current-carrying momentum in the 3 direction.
Twenty gauge-field configurations, prepared with the
heat-bath Monte Carlo method' in quenched approxima-
tion, were used. The gauge fields were constructed using
the Wilson gauge-field action's at p=2. 3 on a 10 X16
lattice and then doubled in the 3 direction.

Fermion propagators were calculated using the conju-
gate gradient algorithm. ' Iterations were carried out un-

til the maximum change in the correlation function
Go(0;t) at any time point was less than 0.05% in four
iterations. The absolute value squared of the residual vec-
tors was less than 10 " to 10 '0. These calculations re-
quired about 5 CPU hours on a two-pipe Cyber 205 using
full-precision arithmetic.

Antiperiodic boundaries were used on fermion fields in
the spatial directions. However, the fermion coupling was
put equal to zero across the time boundary of the lattice.
The advantage of this choice is that correlation functions
have a simple exponential falloff at large time separation.
Furthermore, charge conservation takes a very simple
form. The disadvantage of our boundary condition is that
nonvacuum contributions can contaxninate matrix ele-
ments when operators are placed near the time edges. '

Fortunately the combination 9P of Eq. (6) removes all the
time dependence and the factors that refer to the time
boundary. We expect the form factor extracted using Eq.
(6) to be free of time-boundary effects.

The three-point function was calculated as the deriva-
tive of a two-point function with the charge operator act-
ing as a source. ' A check of this procedure was made
at q =0 where the three- and two-point functions are re-
lated. ' It indicates that, at the lightest quark mass, our
derivative is accurate to within 2—3 % and becomes better
when the quark mass is increased.

The standard statistical error was calculated at each
time value of the two-point functions using the whole
sample of 20 configurations. Meson masses were deter-
mined by fitting G(0;t) with ae b' for times three
through ten steps removed from the hadron creation
operator. The uncertainty in the mass was determined
from the error matrix of the least-squares fit. Statistical
errors in the combination of three- and two-point func-
tions 9F were calculated including covariances between
the different factors. Again all 20 configurations were
included in a single sum. The form factor was obtained
from an average (weighted by statistical errors) of 9P for
times five through nine steps from the initial-hadron
creation operator. The charge-density operator is placed
at time step four; i.e., it acts between times steps four and
five.

IV. RESULTS

The pseudoscalar-meson masses Moa for an equal-mass
quark and antiquark are shown in Fig. 1 as a function of
bare-quark mass ma. The mass in the J=1 channel is
also shown. This was obtained by fitting the two-point
function Gi(O, t) with a single exponential, essentially ig-
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FIG. 3. The combination A of three- and two-point func-
tions [Eq. (6)J versus the time coordinate of the meson annihila-
tion operator. The charge-density operator acts between time
step 4 and 5.

FIG. 1. Pseudoscalar- () and vector- (0) meson masses

versus the bare-quark mass.

noring a small admixture of 1+ state. Although this is an
approximation it should be adequate for our purposes.
Where we can make a direct comparison (at ma =0.1,
0.2) our pseudoscalar and vector masses agree very well
with those of Billoire, Lacaze, Marinari, and Morel. "

In Fig. 2 me plot Mo a versus the bare-quark mass
ma. If PCAC (partial conservation of axial-vector
current) holds this relation should be linear with Mc a
extrapolating to zero at zero quark mass. ' Indeed, me
find that these conditions are satisfied at the smaller
values of quark mass. The line is not a fit but is a guide
for the eye.

Figure 3 shows a typical result for the combination of
three- and two-point functions A of Eq. (6) versus the

time t2 at which the hadron annihilation operator acts.
The charge-density operator acts at time t~ ——4. When
t2 &ti, A' is zero to within a few percent. This refiects
current conservation and the fact that with our time-
boundary conditions there is a net charge present only for
times between the action of the meson creation (t =0) and
annihilation operators (r =t2).

The electric form factor of the pseudoscalar meson was
calculated at two values of momentum transfer, for
q =m/10, the lowest-momentum value on our lattice, and
for q=n/5 The . res. ults plotted as a function of Min-
kowskian four-momentum transfer squared Q =2Mo(q
+Me )'~ (in lattice units) are shown in Fig. 4. We see
clearly that large quark masses lead to a more slowly de-
creasing form factor. This can be seen again in Fig. 5(a)
where the form-factor values at q =n /10 are plotted as a
function of quark mass. To extract a root-mean-square
radius R, the form-factor values at q=n. /10 are first
parametrized using E(Q )=(1+Q a /A, )

' then the re-
lation R, = 6dF/dQ is—used on the monopole fit.
The resulting charge radii are shown in Fig. 5(b). The pa-
rameters A. themselves sho~ an interesting behavior.
They are plotted in Fig. 6 as a function of quark mass.
Also shown are the values of A, /M, a, which within er-
rors are constant, although not equal to one. The idea

A 0.4
0.2

V O. I

~ 0.05
0.025

0.95—

0.90--

O. I 0.2

Q a2 2
0.3

FIG. 2. Square of the pseudoscalar-meson mass versus the
bare-quark mass.

FIG. 4. The pseudoscalar-meson electric form factor versus
Minkowskian four-momentum transfer squared Qia for dif-
ferent values of the quark mass from ma =0.025 to ma =0.4.
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FIG. 7. The electric form factor for the light () and heavy
{8) quark at q=m/10 of a pseudoscalar meson with an
unequal-mass quark-antiquark pair versus the light-quark mass.
The heavy-quark mass is fixed at ma =0.4. For comparison
the meson form factor in a meson with an equal-mass quark-
antiquark pair (0 ) is also shown.

FlG. 5. (a) The pseudoscalar-meson electric form factor at

q =z/&0 versus the quark mass. (b) The meson root-mean-

square radius 8 versus the bare-quark mass.

that the low-momentum-transfer falloff of farm factors is
intimately related to vector mesans is an old one23 and it
is amusing that, to some extent, we observe a connection
in our calculations.

The above calculations were done keeping quarks with
different flavors degenerate in mass. It is also interesting
to consider the situation where one quark has a mass very
different from the other. We have done a calculation for
pseudoscalar mesons in which one of the quark masses is

I

o )

X/M, a

fixed at ma =0.4 and the other is allowed to decrease to
ma =0.025. Form factors are calculated with the
charge-density operator acting either on the light or on
the heavy quark. The results at one unit of momentum
transfer (q =n/10) are shown in Fig. 7. The form factor
of the lighter quark essentially tracks the form factor of a
meson with a light quark-antiquark pair. The form factor
of the (fixed-mass) heavy quark approaches unity as the
light-quark mass decreases. Parametrizing these form
factors with monopoles and extracting the root-mean-
square radius yields the results of Fig. 8. We observe the
physically reasonable result that in a meson with
unequal-mass quarks the distribution of the heavy quark
has a smaller radius than the distribution of the light
quark. This is good evidence that our form factor is real-
ly reflecting the meson structure and is not, for example,
an artifact of the finite lattice.

Ld

2.0-

AJ P

it ll

I.Q

I

O. I

I

0 2
I

0.5 0.4

O. I 0.2 0.5
I

0.4

FIG. 6. The A,
~ parameter from a monopole parametrization

of the electric form factor versus the quark mass. The quantity
A,

2 is shown both in lattice units (0 ) and divided by the vector-
meson Glass squared (0).

FIG. 8. The root-mean-square radius R, for the light (0}
and heavy (0) quark in a pseudoscalar meson with an unequal-
mass quark-antiquark pair versus the light-quark mass. The
heavy-quark mass is fixed at ma =0.4. For comparison the
root-mean-square radius of a meson with an equal-mass quark-
antiquark pair (0 ) is also shown.
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V. CONCLUSION

In this paper we have done a survey of the 0 lattice
meson (pseudo-Goldstone boson) electric form factor as a
function of quark mass. The staggered scheme for lattice
fermions was used and calculations were done in a model
for quenched lattice QCD with SU(2) color.

The results clearly show that the meson charge radius
decreases as the quark mass increases. Parametrizing the
form factor at low momentum transfer with a monopole
(I+Q az/I, ) ' we find that the parameters l(, are pro-
portional to the vector-meson mass squared, reminiscent
of vector-dominance ideas. The constant of proportionali-
ty is not however equal to one.

The form factor for pseudoscalar mesons with an
unequal-mass quark-antiquark pair has also been calculat-

ed. Allowing the charge-density operator to act either on
the light or on the heavy quark shows that the distribu-
tion of the heavy quark has a smaller radius than that of
the light quark. This result gives us considerable confi-
dence that the form factor we calculate is reflecting the
meson structure correctly.

The extension of the form-factor calculations to SU(3)
color and the baryon sector would be very interesting and,
ultimately, could provide one of the best quantitative tests
of QCD.
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