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Pseudoclassical description for a nonrelativistic spimnng particle. I.
The Levy-Leblond equation
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A pseudoclassical model for a spinning nonrelativistic particle is presented. The model contains
two first-class constraints which after quantization give rise to the Levy-Leblond equation for a

spin- 2 particle.

I. INTRODUCTION

Recent interest in Grassmann variables in particle phys-
ics comes from dual models. ' Later their use in super-
gravity theories2 has proven to be very useful. In systems
with a finite number of degrees of freedom, Grassmann
variables have been useful in order to describe particle at-
tributes such as spin, isospin, color, etc. The pseu-
domechanics that arise from these models can be con-
sidered as a quasiclassical limit of a general quantum sys-
tem. " The classical content of these pseudoclassical
models was given by Berezin and Marinov, via the intro-
duction of a distribution function over these Grassmann
variables.

As an example, consider supergravity in one dimen-
sion; this model after quantization5 s yields the Dirac
equation. A pure classical interpretation of this model
has also been given.

In this work we want to study the Galilean counterpart
of the relativistic model mentioned above. We seek a
pseudoclassical model which after quantization yields the
Levy-Leblond equation. ' To this end we introduce a La-
grangian for a free nonrelativistic particle invariant under
reparametrization; this Lagrangian has one constraint
which after quantization yields the Schrodinger equation.
We then generalize this Lagrangian by introducing
Grassmann variables in such a way that the new Lagrang-
ian has two first-class constraints, which after quantiza-
tion yields the Levy-Leblond equation. We also consider
interactions with an external electromagnetic field. If,
furthermore, we introduce additional internal degrees of
freedom we can consider the interaction with an external
Yang-Mills field.

In this paper the physical meaning of the Grassmann
variables is understood via quantization. The classical
content will be discussed in a separate paper. "

The paper is organized as follows: In the second sec-
tion, we introduce the free-particle model. In Sec. III we
study the global and gauge symmetries of the model. Sec-
tion IV is devoted to the study of the interaction with an
external electromagnetic field. In Sec. V we consider the
interaction with an external Yang-Mills field. Section VI
is devoted to quantization.

X
L, =—'m

2 ~
(2.1)

where (x,t) are coordinates of an event and x, t are the
"velocities" with respect to an arbitrary parameter v.

The conjugate momenta are

(2.2a)

t)L 1 xE= — . =—m.
dt

from which we can construct the constraint

(2.2b)

S=p —2mE=O . (2.3)

If we introduce the symplectic structure

I x;,p; }=5,J, [(t,E }= —1 (2.4)

we can immediately see the first-class character of the
constraint S.

Now if we want to quantize this model we must impose
the constraint (2.3) over the physical states:

(p —2mE)
i P) =0, (2.5)

where p and E are the quantum operators for momentum
and energy. Note that this condition is nothing but the
Schrodinger equation.

As we are interested in the description of a free spin-
rung, nonrelativistic particle, it is necessary to generalize
the above model. %e will take as a guide the formulation
of a relativistic spinning particle, where a singular La-
grangian was introduced such that quantization of the
model yields the Dirac equation. Therefore, we seek a
singular Lagrangian model which after quantization
yields the Levy-Leblond equation. '

The Lagrangian is

II. THE FREE PARTICLE

The Lagrangian for a free nonrelativistic particle in-
variant under reparametrization is
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(2.6)L =—m . —mXri — (—rishi+ rishi)+ —E E .1 (x+XE)'

&+Xi'

This Lagrangian contains, apart from the space-time vari-

ables (x, t), Grassmann variables whose dimensions are
chosen to ensure correct dimensionality of the action. If
we denote by [i)I] and [u] the dimensions of the action
and velocity, respectively, we make the following assump-

tions:

class constraints, by introducing the Dirac brackets
(DB's) explicitly:

{A,B}'={A,B}+i({A,+„}{%,aj+{g,g j{g„,gj
—5J {A,%'g j {VJ,B}). (2.13)

From now on we will work in the reduced phase space de-
fined by x,p, E,t, Eg, ri&,II, with the DB's among these
variables:

(2.7a) {Xg&Pj }
'

=5&j& {Eg, EJ j
' = —l'5gJ.

{l,E}'=—1, { ri, rij'=i, {X,II}'=1 .
(2.14)

The canonical momenta are

BI. x+XEp= =m .
Bx t+X'g

BL, 1 (x+XE)'
Bt 2 (t+X'ri)

BL iH= = ——e,
BE';

(2.8a)

(2.8b)

(2.8c)

4 =X—A(p, x,E,ri, g, t,E)=0,
where A, is an arbitrary function. Now we have

{II,C' j'= —1

(2.15)

(2.16)

X plays the role of a supplementary variable, which can be
easily eliminated by means of a gauge constraint 4,
which reduces the constraint 11=0 to second class. We
choose

I.
H~ ——

Bri

and we construct the new DB's
2.8d

{A,Bj'= {A,Bj'+ {A,II}*{4,8 j'
(2.8e) +{A,C }'{II,B}'. (2.17)

L. =0.

The primary constraints are

S=p —2mE =0,
l

%, =II, +—e, =O,I

l
% =H ——g=0

2

rr=o .

If we introduce the graded symplectic structure

(2.8f)

(2.9a)

(2.9b)

(2.9c)

, ={ „H,j'=2~, —X, ,

Eg = {Eg)Hp j = —EXP; &

v)= {Q&Hp j = —ljiiA, )

ri= {ri, Hp }
'= —iAE,

(2.18a)

(2.18b)

(2.18c)

(2.18d)
{2.9d)

in the surface defined by 5 and XLi .

(2.9e)

III. SYMMETRIES

These brackets are the fundamental object in the super
phase space spanned by x,p, t,E,E,ri, ri. In this space the
evolution is generated by Dirac s Hamiltonian Hp, which
is a linear combination of the first-class constraints.

The equations of motion are

{x;,Pj. j =5,J., {E;,lij j ——5;J,

{l,E}= —1, {g,II„}=1,
{X,II}= —1, {g,li~}=1,

(2.10)

we can see that the constraints S and II defined in (2.9a)
and (2.9e) are first class while the others are second class.

The canonical Hamiltonian is

Hc =X{Eri pE+mri)+XII . — (2.11)

gz j =E'g —P E+Ptl'g 0, (2.12)

which is also first class.
The Dirac formahsm enables us to omit the second-

The stability of the primary constraints yields one secon-
dary constraint,

In this section we study the transformation properties
of the Lagrangian (2.6) under Galilean transformations
and the gauge symmetries of the Lagrangian.

The Galilean transformations for the position x,
momentum p, time t, and energy E are known but the
transformation properties of the Grassmann variables are
not known a priori. In order to deduce these Galilean
transformation properties we require the first-class con-
straints to be Galilean scalars. This implies the following
transformation properties for the Grassman variables:

E =R Je+U7/)

ri '=U;Rj'Ej+g+gv2,
I

We also require that the variable 7 be a Galilean scalar.
At this point we are in a position to verify the Galilean
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invariance of the Lagrangian (2.8). Consider the infini-
tesimal Galilean transformation:

5xg —RgJxJ +Ug t +ag

Note that the reparametrization invariance is not obvious
because the Lagrangian (2.6) is not homogeneous of de-
gree one in the velocities. %%en a =0

5L = (p e m—rJ+Eg)
l 0!

dr 2
(3.9)

5e; =gugJeJ+Ugri g

5ri=v e,
5' =0,

(3.2) where p and E are given by (2.8a) and (2.8b).
The generators of these transformations are, respective-
12

where to;J, u;, a;, and a are infinitesimal parameters under
these variations; the Lagrangian transforms as

G =a (p 2mE—)+X(mri —p e+Eri)
2m

+ (aX)II,d

(mu;x;) . (3.3) (3.10)

Therefore, the Galilean group is a global symmetry of the
Lagrangian. The generator in super phase space is

G»z ia——(rJE pe+—mri)+ai II .

1G= ——gu "I"—u Bi+a P aE—lJ lJ l l (3.4) IV. ELECTROMAGNETIC INTERACTIONS

which reproduces the transformation laws (3.10) by means
of the DB's in (2.14). The explicit form of the generators
1S

Rotations: E."=xp —x~p —ie;e,

Pure Galilean transformation: 8& ——mx; tpt+iri—e;,
(3.5)

Spatial translations: P; =p;,

Temporal translations: E=E .

These form a realization of the extended Galilean group
with neutral element m under the DB's in (2.14).

We now analyze the local gauge symmetries of this
model. The existence of such symmetries is suggested by
the appearance of first-class constraints. ' There are two
types of gauge transformation: reparametrizations and
supergauge. They are parametrized, respectively, with a
and a, which are infinitesimal arbitrary functions of r,
even and odd, respectively. These transformations are

p~p —eA,
E~E—eA

(4 1)

where (A, A) are, respectively, the scalar and vector elec-
tromagnetic potentials. If we make this substitution in
first-class constraints (2.8a) and (2.12), they become

S=(p—eA) —2m(E —eA ),
XiE~ =(E eA0)rJ —(p eA—) e+—mri .

(4.2)

(4.3)

In this section we construct the action of a nonrelativis-
tic spinning particle interacting with an external elec-
tromagnetic field. In order to construct this action, we
first introduce the interaction through the constraints in
such a way that the new constraints remain first class.
We impose this requirement in order to recover the free-
particle model of the previous section when we turn off
the interaction.

The standard way to introduce the electromagnetic in-

teraction is through minimal substitution

5,=x; =ax; —&ce;,

I+g5
5e; =as;+am .

t+gg
5t =at iari, —

5X=aX+aX+ai;

5' =art+am,

(x+Xe)'
5g =aTI+ am

(t+Xq)'

(3.6)

(3.7)

—ie (2F 'qe" F'Je'e') ]J, —(4.4)

BA B3'
Bx

Making use of the DB's in (2.17) we can verify whether
those constraints are first class. We begin with XLELM:

IXLi. ,XLi. j'= —i[(p —eA) —2m(E —eA )

The variation of the Lagrangian (2.6) is a total derivative
with respect to the evolution parameter in both cases, i.e.,
when a=o

5L = (aL) .
d

are the electromagnetic fields. The right-hand side of
(4.4) is not exactly the constraint S, because of the addi-
tional term involving the interaction between the
Grassmann variables and the electromagnetic field. This
suggests a Pauli-type modification of the Schrodinger
constraint. Consider the new constraint
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SEM= (p —e A)2 —2m (E—eA )

ie—(2Fqe' F—"e"e')=0

and therefore (4.4) is written as

IXEM Xa5 = —S'"
and we have

I X
EM SEM

) (}

(4.5)

(4.6)

(4.7}

The evolution of Sk is given by

S =2~@'"S'B+e'J fAe'(p~ eA—J)

+2i~&F"n~l . (4.15)

The first term of Eq. (4.15) is the nonrelativistic limit of
the Bargmann-Michel- Telegdi equation. ' The other
terms disappear at a purely classical level. "

The acceleration is

X+X'
2

(F'Je'e'+2FO'rid') Xrt-
t +X'

——(rtrt+rtit)+ e e—+e.(xA tA —),
2 2

(4.8)

the Lagrangian consists of the two parts

LEM =Lo+L .~
EM

where

(4.9}

0

LEM= (Ftje'e'+F rid')+e(x'A'+tA ), (4.10)

which differs from minimal coupling by the appearance
of the Pauli-type term.

The Dirac Hamiltonian is

gXEM+~EM (4.11)

and with DB's in (2.17) Hamilton's equation of motion is

x '= —Ae'+A02(p' —eA'),

t = —A,r/+~m,
p'=u(A't F"q)—+eA'

+2e Q[mF —(pJ—eA J)F'J

i(F &;viet+-,'Fk—j;e e')j,

E= AeFO'&+2+(p' ——eA')F 'e+eA

e'=i A,(p' eA') 2A,ge(—F'Je' —F'g), —

'g =lN2A, ,

rt=A, (E eA )i+2' 's'—,

in the surface defined by S™and XLi. where

FOJ, =aWV ax', F"J,=aF'+ax'.
7

(4.12a)

(4.12b)

(4.12c)

(4.12d)

(4.12e)

(4.12f)

(4.12g)

Prom the Galilean realization (3.13), we can see that at
the superspace level there is a nonorbital part of the angu-
lar momentum that we can identify with the spin, i.e.,

S- = —~e.e.lJ E J (4.13}

This means that X~~,"and S~„"are first class.
We can now construct the Lagrangian which gives us

first-class constraints S™and XP. Making use of the
inverse Legendre transformation we obtain

x "=~"x'B'+4eg F—"'—e' i+(—F ' i)e
2

+ 'F'J „e-'e')

(4.16)

which shows the usual precessional velocity about the
magnetic field and other terms depending on arbitrary
functions and spatial derivatives of magnetic and electric
field.

It is worth mentioning the global symmetries. If A" is
an object which transforms as a four-vector under the
Poincare group, it is clear that Galilean symmetry will be
broken. Nevertheless, it is possible to maintain this sym-
metry by requiring that A and A transform as the po-
tentials of Galilean electromagnetism, ' There exist two
different kinds of Galilean electromagnetism: "magnetic"
and "electric." In each, the respective potentials behave
differently under Galilean transformations. If we study
the variation of Lagrangian (4.8) under these two possible
kinds of Galilean transformations we will see that the
Gahlean group is a symmetry only when the electromag-
netic fields are of the magnetic type, which is not a
surprising result. It is due to the fact that we have intro-
duced the interaction through minimal coupling.

V. YANG-MILLS INTERACTIONS

In this section we study the interaction of a nonrela-
tivistic spinning particle with an external Yang-Mills
field. ' We assume that in addition to the degrees of free-
dom corresponding to spin the particle also has internal
degrees of freedom which are described by Grassmann
variables. '7' In this way we will automatically have a
finite-dimensional representation of the internal-
symmetry group.

The free Lagrangian is assumed to depend on the same
space-time, and Grassmann spin variables, as before, and
a new set of Grassmann variables 8~ (a= 1, . . . , n) asso-
ciated with the internal degrees of freedom. These new
variables belong to a representation R of a given symme-
try group. %'e consider 8 =8&+R&. In this case, the
Lagrangian has a term I.o depending on the old variables
and another depending on the new ones

m

LF Lo+ —g (8~8~ 8~——8~) . —
2 a=1

from which we can define the three-vector

1Sk= 2&IJI~i~ . (4.14)

The canonical moments of this Lagrangian are the old
momenta (2.8) and the new momenta conjugate to the new
variables
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i= ——8
a8:
BL ig,
BO

(5.2)

As a consequence, we have as primary constraints the old
constraints (2.9) plus 2n new ones:

58= —ia, (x, t)H8,

58'=i8a, (x, t)H, (5.12)

5LF 8'—(—a„;x'+a„,t)v 8 (5.13)

where a'(x, t) are arbitrary functions. Under these
transformations the variation of the Lagrangian is given
by

0

a a 2 a
and from (5.9) we can write

5L~ (a„;x——'+a„,t)I' . (5.14}

e.= rr. +—'e.'=o .a a 2 a
(5.3)

If we enlarge the graded symplectic structure' intro-
duced previously with a new set of Poisson brackets (PB's)

In order to compensate for this term, we could add
another term to the Lagrangian, which depends on the
Yang-Mills fields A,' and A, with the correct transforma-
tion law under the action of group G:

I8., IIpj= 5,—I8.', IIpj= 5, —

(8., lip} = I8.', lip} =0,
(5.4)

(5.5}
5A,' = —— . +f~+ab A,',

Bx
(5.15)

and these new variables have vanishing PB's with all other
variables. We can see the character of all the constraints.
In particular (2.9b), (2.9c), (2.9d), and (5.3) are second
class. If we want to eliminate them, we should introduce
new Dirac brackets:

+ I A, e.' j
'

I 4'.,8 }'), (5.6)

where the starred DB's are given by (2.12). In the super
phase space (x',p', t,E,e', ri, ri, 8,8') the DB's structure is
the old one (2.14) with I }+ in the place of t j" plus the
new DB's:

This term appears in L as a proper interaction term:

L;„,=g(Aax ' A, t)I—' .

With this term the total Lagrangian becomes

L =Le+Lint

5L =5LF+5L;„,=0 .

We can rewrite the Lagrangian (5.17) as

L=Lo ——8' 8— g(A,'x ' A—, t)v 8—

(5.16)

(5.17)

I8,8p} = I8', 8pj =0,
I8,8pjt= —i5 p.

(5.7) 8'+ g8'(A'x A—otb' 8. —
2 2

(5.18)

Let us now study the symmetry properties of the La-
grangian (5.1} under global transformations of the
internal-symmetry group given by

This Lagrangian is the same as LF but with

8~8——g(A,'x ' A, t )~,8 . — (5.19)
58= ia, P, 58'=i8'a—,H, (5.8)

where v, a =1, . . . , n are the generators of the internal-
symmetry group in the representation R and a are the in-
finitesimal parameters. This transformation can be ob-
tained through the DB's in (5.6) by means of the generator

aLp=
ax

aLo
+gI'A, =po+gI'A, ,

Bx
(5.20)

The new canonical moments conjugate to the space-time
variables are

I'= 8'v"8

which verifies

(5.9) BLo
+gI'A, =Eo+gI'Ao,

dt
(5.21)

I
Ia Ibjf fabI (5.10)

where the f; are the structure of constants of G. If we
calculate the corresponding variation of the Lagrangian,
M.~, we have

(5.11)

Therefore, as expected, the transformation (5.8) is a syrn-
metry transformation of our Lagrangian, (5.1).

Let us now consider the local transformations

S=(p gI'A, ) —2m(E —g—I'A, )=0, (5.22)

which is nothing but (2.9a) with the usual "minimal cou-
pling. "

Following the usual procedure, we can calculate the
canonical Hamiltonian:

and the momenta conjugate to the Grassmann variables
are not affected by the Yang-Mills interaction, so that the
primary constraints are the same as in the free case, ex-
cept the constraint (2.9a) which is now given by
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H, =X[(E g—I,A, )g (—p g—I'A, ).e+mi)]+XH . notation of a semicolon for the covariant derivative:

(5.23)

If we require the stability of the primary constraints, we
obtain a secondary constraint

yOja;i =

IJ+ ak=—

gFoJ
+gA lf cb FOJ

(jF'j
c a b .+gA kf cb FlJ

XiL ——(E—gI'A, )q —(p —gI'A, ) e+mrj=0. (5.24)

IXYM XYM]~= i[S—ig(2FOi Iu~y Fij —Illy)]
where

(5.25)

and

BA,'piJ =
i3xj

aA,'poI
Bx

aAj
gA'A)f-',

x

0 i cb
gAc Ab—ft

(5.26)

Equation (5.25) shows us that as in the electromagnetic
case, it is necessary to add Lagrangian (5.18), another
term expressing the interaction between the spin and
Yang-Mills fields. Therefore, if we want to describe a
particle with spin and internal degrees of freedom in-
teracting with an external Yang-Mills field minimal cou-
pling is not efficient. A possible modification would be to
add an interaction term such as

Following the same reasoning as in the electromagnetic
case, these constraints S and Xi i must be a first class.
The DB's in (5.6) of Xi i with itself is

VI. QUANTIZATION

In this section we study the quantization of the pseu-
doclassical models introduced in the preceding sections.
We will follow the usual procedure which associates self-
adjoint operators with dynamical variables, acting on a
suitable Hilbert space, i.e., if A,B are dynamical variables,
which after quantization become observables. Further-
more,

i fi( A,B I
t = [A,B]+, (6.1)

where the DB's become commutators or anticommutators
depending on the character of the variablesi and the first
class are restrictions upon the states of the Hilbert space.

For the space-time and spin variables we must find a
set of self-adjoint operators such that

As in the electromagnetic case, these equations will ac-
quire a clear physical meaning only when we introduce a
suitable distribution function. It is possible to maintain
the global Galilean symmetry by using the nonrelativistic
Yang-Mills fields introduced by Palumbo. 's

I.;„,ii ——— igI'(2Fo', rid' F",e'el)—
2m

(5.27) [x ',P ]=i A5ij, [t,E]= i fi, — (6.2)

which is gauge invariant under the gauge group G. The
final Lagrangian is

[~~]+=&;~ N~]+= —~

[e', i)]+——[&',T)]+0 .
(6.3)

I- =LE+I ntf+I-. to

which gives us two first-class constraints S

S = ( p —gI'A') 2m (E gI'A—,)—
ig (2Fo', I'rid'+—F",I'e'el) =0

(5.28)

(5.29)

For the operators appearing in (6.2) there is no problem;
they are the usual energy, momentum, position, and time
operators with respect to others, (6.3), a possible realiza-
tion is

' 1/2

andXiL givenby (5.24).
Now we can calculate the equations of motion for the

relevant variables with the Dirac Hamiltonian:

~Y~M+~YM

%e obtain

x '= A,e'+ 2k,o(p' eI'—A,'), —

t = —A,g+2mk, o,

p '=eIcA,' Ag(F ', g F'J,e')I'— —

(5.30)

+2k,ogI'(F'J pj+mF ' +gF J e' — e"eJFkj ), —
(5.31)

e = 'jl ogI'2(F ', g F'~, e') +i A,,(p' eI'—A,' ), —

3 57

1

2 r (r —1),

and

'g =Q
2 2

' 1/2

r5(ro+1),

where r&,r5 are the Dirac matrices, satisfying

[rl r.]+=2g„.,

[r5 r5]+=2I [r5 r„]+=o
and u is a constant having the dimensions of velocity.

(6.4)

rj=i LE+2k,ogI'Fo', e',

'Q =lltl A, ,

in the surface defined by S and XLi where we used the

A. Free case

We impose the constraints S in (2.9a), and XLi in
(2.12), over the states
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(2mE —p ) i%'}=0,
]/g

2
ys(yo —1)E ——p ysy

Q

(6.5)

+u (yo+1)m
~
4) =0 . (6 6)

2

Equation (6.5) is the Schrodinger equation. Equation (6.6)
is equivalent to the Levy-Leblond equation.

Equation (6.6) has the following advantage over the
original equation of Levy-Leblond' because of the first
character of Xt t, and S. We have, after quantization,

(E-.~')+ '" a" " X=O,2' 2' (6.14)

which is the Pauli equation, with the gyromagnetic ratio
equal to 2. Further, if we use (6.15) to obtain the equation
for @we obtain

2(p-e A) - 0 eh(E —e& )—+ B cr P ie2—ho'F 'X=O.
2@i 2kB

(6.15)

Equations (6.14) and (6.15) are not but the direct quanti-
zation of the constraint SaM in (4.5).

[XLL~XLL]+ (6.7)

which guarantees that the square of
Schrodinger operator whereas the Levy-Leblond equation
does not share this property. 4 is a four-component ob-

ject which can be written as two bispinors P,X:
T

(6.8)

Making the substitution (6.9) in (6.6) we obtain

C. Yang-Mills interaction

2(E g—I'Ao)—X+cr (p gI'A, —)P =0,
cr (p I'A—, )X+—m/=0,

which reduces for the variable to X.

(6.16)

Quantizing the variables describing the internal degrees
of freedom, we obtain, for the quantization XLi,

2EX+cr"Q=O,
Q

(6.9}

2EX+cr p—/=0
cr pX+m$=—0. (6.10}

Under a Galilean transformation the wave function
transforms as

P'(x', t') . D' (R) a vD'~ (R) P(x, t)
X'(x' t') 0 D'~'(R) X(x,t)

(6.11)

where D'~ (R) is the two-dimensional representation of
the rotation group and F(x,t) is the phase factor:

f(x,t)= , mv t+m—v Rx. (6.12)

B. Electromagnetic interaction

In this case, when we quantize the constraints Xz L and
S in (4.5) we obtain'

2(E eA )X+o"(p eA)—/=O- —,
cr (p eA)X+mP=—O, — (6.13)

by making use of the same redefinition of wave function
as in the free case. If we express P in terms of @ we ob-
tain

cr pX+—

urn/

=0
where the o are the Pauli matrices. It is possible to elim-
inate the dependence on the dimensional parameter u by
redefining the wave-function components if we define
P=uP; we obtain

o gIo(Fi'+gA Aj f &~) X 0 (617)

which is the Pauli equation for the Yang-Mills case.

VI. CONCLUSIONS

In this paper we have studied a pseudoclassical model
for a nonrelativistic particle. The model is presented
through a singular Lagrangian. Apart from second-class
constrN'nts, related to kinetic terms in Grassmann vari-
ables, we have two first-class constraints.

By supposing definite transformation properties for
Grassmann variables, the action becomes Galilean invari-
ant. Furthermore, we have two local gauge symmetries
associated with the first-class constraints: reparametriza-
tion and supergauge invariance.

From the Dirac Hamiltonian, given as a linear com-
bination of two first-class constraints, we obtain the equa-
tions of motion at the pseudoclassical level. The graded
symplectic structure is given by (2.17).

At this level, the Grassmann variables do not have a de-
finite physical meaning. A possible interpretation of these
variables is obtained after quantization, which we have
done in Sec. V; there we have seen that a quantized
Grassmann variable corresponds to an element of a Clif-
ford algebra.

The Hilbert space of physical states is obtained by re-
quiring the following conditions:

XLLiq)=0, Sie)=0.
These conditions are nothing but the Levy-Leblond wave
equation for a nonrelativistic particle with spin one-half.
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Therefore, our dynamical system defined by the Lagrang-
ian (2.7) is nothing but the pseudoclassical model of the
Levy-Leblond wave equation.

We have also studied the interactions of this particle
with external electromagnetic and Yang-Mills fields. The
results are in good agreement with what is expected at the
quantum level. As a final comment, we want to point out
that a pure classical interpretation of this model is avail-
able" by using a suitable distribution function.
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