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We propose a Yang-Mi11s field theory of gravity based on a unitary phase gauge invariance of the

Lagrangian where the gauge transformations are those of the SUQ) &(U(1) symmetry of the two spi-

nors. In a classical limit this microscopic theory results in Einstein s metrical theory of gravity,
where we restrict ourselves in a first step to its linearized version. Furthermore, only the case of
massless particles is treated explicitly.

I. INTRODUCTION

In Einstein s general relativity the gravitational interac-
tion is described by the metric field of space-time based
on the equivalence of inertial and (passive) gravitational
mass (equivalence principle). According to Einstein's
field equations the source of the metric field (gravitational
field) is the energy momentum stress tensor of matter,
which is given ultimately because of the quantum struc-
ture of matter by the expectation values of the energy-
momentum stress operators. Thus Einstein's description
of gravity is a purely macroscopic one and on this level in
best accordance with the known experimental data at least
within the first-order approximation. Accordingly, the
classical metrical gravitational field represents the back-
ground of space-time, on which all other physics happens,
which reacts back on the metrical field according to
Einstein's field equations.

But just here the first problem arises: The back reac-
tion of a single quantum process of matter on the classical
metrical field cannot be considered consistently in
Einstein's theory. Furthermore, on the purely micro-
scopic level neither a theory nor experiments of gravita-
tional interactions exist today. However, there is some
evidence that, for the gravitational interaction of elemen-

tary particles, the metrical description of gravity may not
be the suitable one.

First of all, all attempts of quantization of the metric
field have been without success. Second, only in the case
of a classica/ particle does the mass drop out of the equa-
tion of motion of gravitation as a consequence of the
equivalence principle, so that all masses are moved in the
same way by gravity and the gravitational field can be
described by a geometrical "guiding field. " But in con-
trast with this, the motion of a quantum particle state is
not independent of the particle mass even in the case of
the presence of a classical gravitational field: In spite of
the validity of the equivalence principle the particle mass
does not drop out of the Schrodinger equation. Thus no
universal guidance of the quantum processes by gravity
exists and consequently there is no hint of the necessity
for geometrization of the gravitational interaction on the
quantum level.

Finally, Einstein's metrical theory of gravitation has a
completely different structure than the successful gauge
theories of electroweak and strong interactions. Therefore

a unification of all interactions needs a modification of
the standard description of gravity. The possibilities dis-
cussed until now mainly consist of supergravity and
modern Kaluza-Klein theories, where the metric is still
retained as a fundamental structure of gravitation on the
microscopic level in both cases. But these models have
other problems, especially, for instance, the necessity of
the existence of too many exotic elementary particles.

For this reason we want to point in this paper to the
possibility of the construction of a unitary gauge theory of
gravity on the microscopic level in accordance with the
gauge theories of electroweak and strong interactions.
Then also the gravitational interaction would be produced
by the exchange of usual vo:tor gauge bosons on the back-
ground of the Minkowski space-time of special relativity.
According to this, on the quantum level, gravitation
would not be described by a metric tensor field, but by
gauge vector fields. Only in a certain classical limit, i.e.,
by cooperation of many vector bosons, must Einstein's
metrical description of classical gravity result at least in
its tested linearized version. According to this line the
non-Euclidean metric of space-time is not a fundamental,
but more an effective field produced by a combination of
gauge vector fields like a condensation phenomenon, and
has only a classical meaning describing the classical gravi-
tational field alone. We emphasize that we pursue here
the idea that the quantum or microscopic physics
possesses the priority and that all macroscopic physics
must be deduced as its classical limit, whereas the micro-
physics itself follows directly from few very general first
principles.

II. THE GROUP- THEORETICAL CONCEPT

Following the mentioned line, the first aim of this pa-
per is a quantum-theoretical description of the gravita-
tional interaction between elementary particles by a usual
gauge field thtxiry based on a phase gauge invariance of
the Lagrangian, where with respect to the interpretation
of the quantum theory —as is well known —only unitary
gauge transformations are allowed. Furthermore, because
gravity couples to ail particles, a gauge transformation is
needed, which arises as the transformation of the intrinsic
spinor structure of each particle and not as a transforma-
tion between different particles of any rnultiplet. Finally,
gravity is connected with the concept of "mass. " Howev-
er this concept is still a classical one and should therefore
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be avoided in a quantum approach of gravity. In accor-
dance with the modern gauge-theoretical treatment of in-
teractions one has to start with massless particles and the
mass appears subsequently by a dynamical process, narne-
ly, as a consequence of spontaneous symmetry breaking.
As we shall see in Sec. IV, this is also the only passable
way for obtaining Einstein's tensor theory in a classical
limit starting from a microscopic vector gauge theory of
gravity. Doing so, it may even be expected that the
empirical fact of the equivalence between the inertial and
gravitational mass of particles, which is the basis of gen-
eral relativity, can be founded theoretically on the micro-
scopic level.

However, in the following, we do not want to discuss
the mass problem in detail because this would go beyond
the scope of this paper. We consider only the investiga-
tion of the gravitational interaction of massless particles
in a first step. Thus we start from the general transfor-
mation group GL(2, Q of the two-spinors as the most gen-
eral symmetry group. On the other hand, all generators
of this group can be constructed by complex linear com-
binations of the generators of SU(2)XU(1), i.e., of the
unit and Pauli matrices. s Thus instead of a gauge theory
of the complete group GL(2, Q we suppose that it is suffi-
cient to gauge only the SU(2) XU(1) symmetry by which
automatically the basic quantum-theoretical requirement
of the unitarity of the phase gauge transformations is ful-
filled. This idea is supported by the mathematical fact
that one can reduce the group GL(2, Q to its maximal
compact subgroup U(2) by contraction. 9

On the other hand, as is well known, the group SL(2,Q
is the covering group of the Lorentz group. From this
point of view we gauge indeed the Lorentz group in the
sense that we gauge its "basic" transformations, namely,
those of SU(2). However, we consider the gauge group
only as an internal group.

Although we start from the two-spinor calculus for
massless particles we perform our investigations mainly in
the four-spinor representation, that is, in the 4X4 repre-
sentation of SU(2) XU(1) with respect to a later considera-
tion of particle masses. Furthermore, we restrict our-
selves to a treatment of the theory on the level of the first
quantization. However, in the case of the compact gauge
group SU(2) XU(1), no problems exist with quantization:
The theory is renormalizable in the usual way and it gives
no ghost fields.

According to our gauge group there exist four gauge-
vector fields and it is possible to introduce two or, with
respect to the reducibility of the 4X4 representation of
SU(2)XU(1), even three different gauge coupling con-
stants. However, because all gauge bosons mediate the
same interaction between all spin- —,

'
particles, namely,

gravity, we give all these coupling constants the same
value. ' Under this presupposition, in the following we
first construct a gauge theory of the SU(2) XU(1} symme-
try for gravity on the background of the Minkowski
space-time and then we show that in a classical limit a
metrical description of gravity for the expectation values
results, where the metric satisfies Einstein's field equa-
tions; in this connection we restrict ourselves for simplici-
ty to the linearized theory.

III. THE LAGRANGIAN
OF MICROSCOPIC GRAVITY

We define the transformation matrices of the group
SU(2) XU(1) in their 4 X4 representation by"

Q,,~x~)HU=e

with

(3.1)

0
0 (3.1a)

(n is the unit matrix and e', cr, 0 are Pauli matrices).
The commutator relations for the generators v are

[H, H]=i@, (3.1b)

with the invariant relation

(3.2a}

[rf'"=rI&„——diag( —1,1,1,1) Minkowski metric] Acc.ord-
ingly the covariant spinor derivative reads

D~P= (dq+igcoq)Q (3.3)

(g is the uniform gauge coupling constant) with the
SU(2) XU(1) gauge fields co~ defined by

CO~ =CO~ T

which transform under gauge transformation as'i

(3.3a}

co~ ——Ua)~U '+ —U
~ p U (3.4)

Furthermore it follows from (3.2) that the y" are only co-
variantly constant, i.e.,

(3.5)

which is, together with the condition (3.2a), the deter-
mination equation for yi' in addition to the field equations
(3.11) and (3.12).

Now we define the gauge-field strength of microscopic
gravity in the usual way by the commutator of the covari-
ant derivative given in (3.3):

1
F~ =— . [D~,D ]=co i~ co~

i

+i—g[co~,co ] .
Eg

(3.6)

For the components of F„„ithwrespect to v" it follows
immediately with the use of (3.3a) and (3.1b) that

(3.7)

satisfying the Bianchi identities

be
+a[pe

~
A, j+f&o ~b[pcWA, jc =0

In the case of the pure gauge field

[o) —1Ul~+

(3.8)

(3.9a)

it holds that

Then the spinor state function P and the Dirac matrices
y" transform as

(3.2)
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Fq„——0, Fp~ =0 . (3.9b)

With the principle of minimal coupling the gauge-
invariant Lagrange density of gauge gravity for a massless
particle takes the very simple form

F„F/'' + i P—y"D„P+H.c. (3.10}

Here we have employed as group-space metric the Min-
kowski matrix, ri', because, with respect to the classical
limit of this microscopic theory, we need the U(1) gauge
potential as timelike and those of SU(2} as spacelike. '

Furthermore we have taken the opportunity to introduce,
aside from the gauge coupling constant g, a second cou-
pling constant k between the two gauge-invariant parts of
the Lagrange density. Both coupling constants must be
determined by experiment or by the transition to the mac-
roscopic classical limit, where k comes out to be propor-
tional to the Newtonian gravitational constant G, whereas

g does not possess a classical hmiting value and has only
the meaning of a microphysical "heavy charge. " But
both coupling constants are necessary in the foHowing and
cannot be substituted for one another.

The field equations following from the action principle
belonging to (3.10) are given by

d„F" +go'+Face„, =2mkggty", v Ig (3.11)

and, using (3.5), by

theory of gravitation results. For this it must be shown
first that according to Ehrenfest's theorem the expectation
values of the four-momentum of the particle field (g field}
satisfy the usual equations of motion for classical gravity.
This means in detail that from the equations of motion
the classical gravitational force is to be read off, which
must be reducible to geometrical connection coefficients
(macroscopic field strengths), because classical gravity is a
geometrical theory. Second, it must be shown that the
connection coefficients are metric and third, that they
satisfy Einstein s field equations with the energy-
momentum tensor of the f field (matter field) as a source.
In doing this we restrict ourselves for simplicity to the
linearized Einstein theory as the only empirically con-
firmed part of the complete theory.

A. The equation of motion

We start from the result (3.13a). Then we have'

T„ IO+ T„~J —0 . (4.1)

After insertion of (3.13) into (4.1) and integration over the
three-dimensional hypersurface t =const we obtain

a, J,' ieger'D„y D„—y} 'y)d'x
r

f (F~F~)(((d x ——, J (F,dF;(()(„d x

y"(8„+iga)q )g =0 . (3.12) (4.2)

Finally the gauge-invariant canonical energy-momentum
tensor of the whole system takes the form, with respect to
(3.12),

Tq" ,
' '4+"D„——f—Dq~"P)—

where boundary integrals concerning the pure 1() field are
dropped out with respect to the normalization condition
for the wave function f P fdix = l.

Considering (3.13) the usual canonical energy-
momentum tensor of the matter field is given by

(3.13)

It has the property with the use of the Geld equations

Tid"(g) = ,
' iA(A "f—~ld g(Id) "P—) .

Herewith Eq. (4.2) takes the form

(4.3)

j =LPIr" &IV.
2

(3.14)

With respect to the fact that the U(l) gauge current j& is
proportional to the timelike probability current density
and therefore correlated with the four-momentum density
of the particle field, it is expected that the field equations
(3.11) and (3.12) are indeed those for gravity. This suppo-
sition will be confirmed subsequently by investigation of
the classical hmit of this microscopic theory.

(3.13a)

Evidently in our microscopic theory of gravitation there
exist four gauge-vector fields co„„which couple to four
"heavy" gauge currents of matter (g field) as usual in
Yang-Mills field theories:

~0 f T„'(4} 2gP(r—'~, +~,r'}4 d'x

F~F p (4 4)

Here the large parentheses on the left-hand side represent
the gauge-invariant canonical four-momentum density of
the particle field following from (4.3) by replacing the or-
dinary derivatives through the covariant ones. However,
the second term on the left-hand side of (4.4) is of the or-
der of the coupling constant g compared with the first
term and therefore can be neglected within a first-order
approximation with respect to gravitational interaction.
Then one obtains with the help of the Bianchi identities
(3.8) and the field equations (3.11}the following equation
of motion for the expectation value of the four-
momentum of the P field:

IV. THE CLASSICAL LIMIT

%e can be sure that the theory proposed in Sec. III is a
theory of gravity, if in the classical limit Einstein's metric

Bo f T„(g)d x =Pi IF„~ de .

Here on the right-hand side

(4.5)
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Kq=iri f Fq~ d x

(4.6)

Eq —— Fq~b ~ y, X (4.6a)

and introduce as a "correspondence condition" between
the quantum and the classical theory of gravity the fol-
lowing normalization of the gauge-vector fields:

represents the classical gravitational four-force as a prod-
uct between the gauge-field strengths and the gauge
currents of matter.

In view of a classical geometrical interpretation the in-
tegrand in (4.6) must be reduced to a product between
classical nonalgebra-valued connection coefficients and
the energy-momentum tensor of the matter field. For this
reason we write

comparison with (4.3) shows that the right-hand side of
(4.9) is identical with the usual canonical energy-
momentum tensor T (f) of the matter field. We men-
tion explicitly, that this essential result, which connects
the gauge currents with the energy-momentum tensor and
which makes possible lastly the transition to Einstein's
theory, is valid only in the absence of the mass term in the
field equation (3.12).

Hence with the use of (4.9) Eq. (4.8) takes the form

K~ —— I~co'„T x, (4.10)

which has now the structure of the usual gravitational
force. We note that as a consequence of relation (4.9) the
gauge coupling constant g no longer appears explicitly in
(4.10).

For the full linearized classical limit of the equation of
motion one has to use in (4.10) the energy-momentum ten-
sor T""(g) in the lowest WKB approximation of the free
particle field. One finds from (4.3) (see the Appendix)

where we choose
T(w~l(y) 0 T v(q) 0 (4.11)

E~ = Ep~bd)~ f ~CO XPQ v (4.8)

By this procedure we have found that the product in
(4.6a) is separated into two factors, both of which are
(pseudo)scalars with respect to the gauge transformations
and therefore can be interpreted classically: The first sca-
lar in (4.8) corresponds to the connection coefficients, the
second one should be related with the energy-momentum
tensor of the matter field.

For investigation of this last relation we eliminate in
the anticommutator of (4.8) the co" field with the help of
the field equation (3.12). Then we get, using (3.2a)

(4.7a)

in view of a weak-field approximation of the theory. '

According to this, in the case of the pure gauge fields
(3.9a) where F&~—0, one h—as to take in (4.7) e,"=0
which is always possible. Then (small} deviations from
the pure gauge-field case produce (small) values for F„„,
and e, different from zero, so that the normalization
condition (4.7) has no restrictive meaning. Accordingly,
the U(1} gauge field ro„o is timelike, whereas the three
SU(2) gauge fields are spacelike with respect to the
group-space metric introduced in (3.10}. Only in this way
is the pseudo-Riemannian structure of the metric
guaranteed later.

Consequently, in the case of the linearized theory the
Kronecker symbol in (4.6a) can be substituted by the left-
hand side of (4.7). One obtains immediately with the use
of (3.3a):

according to which T""(g) is symmetric and traceless
The first property results from neglecting the spin of the
particles and the last one is a direct consequence of the
masslessness of the particles and valid only in that case.

Applying this result to relation (4.10) we find for the
equation of motion (4.5) (Ref. 16}

a, f T~'(yg'x = f r~,.co'„IT (P)d x, (4.12)

which we have now to compare with the corresponding
one according to general relativity:

a, f T&'(y)a'x= f r~.,T —(q)a'x

—f r"„.T~ (qg'x .

The last term on the right-hand side of (4.13) vanishes be-
cause of I "~=0 in the case of a traceless energy-
momentum tensor [see (4.11)] as a source of the classical
gravitational field [cf. Eq. (4.32}]. Then we find by com-
parison of (4.12) and (4.13) the following correlation be-
tween the general geometrical connection coefficients
I'& „and the microscopic gauge-field strengths I'„

(4.14)

Herewith we have arrived at a geometrical description of
the gravitational force in the classical limit of our micro-
scopic gauge theory without using any principle like the
equivalence principle.

B. The metric.

In order to find out the metrical structure of our con-
nection coefficients we reform the right-hand side of Eq.
(4.14}by inserting the definition (3.7) and obtain

2 WIr ~"14=2i&(kr 0'" 0'"r 4), —(4.9) I " „=—,'i)" [(co co'„)
~

+(co co') „

where the terms proportional to the spin operator W"
= —,

' [y",y"], interacting with the gauge-field strength [in
(4.8)], are neglected with regard to the classical limit. The

—(co++co„)ii) —
2 (co„i~+cd

i
)cP (4.15)

Herein the bracket has indeed the structure of a linearized

Christoffel symbol I "~„with the metric defined by
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0fPV:PaV ~ {4.16}

Then the connection (4.1S) is a metrical one after choosing
the "gauge-fixing condition"

CO(~
~

V) =0 (4.17)

as a constraint for the classical metrical limit of our
theory, which is realizable in the lowest WKB limit of Eq.
(3.11).

However, we are aware of the fact that the metrical
condition (4.17) is strong, because it cannot be fulfilled in
general by a gauging alone; in this way the following two
consequences of (4.17) are achievable: The generalized
Lorentz gauge

(4.17a)

and

N6)
(Pg

~

V)6Llg 0 o (4.17b)

Consequently the full condition (4.17) restricts the set of
admissible solutions for construction of the macroscopic
classical Einstein limit to those gauge fields, which are at
least in the WKB-limit Killing vector fields with respect
to the Minkowski metric. On the other hand, we
remember that our theory is still incomplete be:ause of
the masslessness of the particles, in consequence of which
the set of solutions is also restricted already on the micro-
scopic level. There are some hints that these two things
are correlated and that therefore a final judgment of the
condition (4.17) will be possible only in connection with
solving the mass problem, for instance, with the help of a
Higgs field. Thus in the present form of the theory even
an approximate fulfillment of the condition (4.17) satisfy-
ing (4.17a) and (4.17b) will be sufficient. Then
I & „=I'& „ is valid and the covariant derivative of the
metric (4.16) vanishes:

transformation of the metric field is induced. Here we re-
strict ourselves within the linearized theory to infini-
tesimal transformations. Then from (3.1), (3.3a), and (3.4)
the gauge-field transformation follows (

~

A,, ~
&& 1):

heyN~ =CO~g — n.g
~ ~

—6'g A,bCO~ (4.21)

Herewith we obtain according to (4.16) the "new" metric,

ig
V gPV +fl PV —CO+OCOV

where in view of (4.19)

1, 1
/l~v =A~» — NPa

~
v
— CO+a ~~

.

(4.22)

(4.22a)

On the other hand, in the case of a transition from g&„ to
g&„by the infinitesimal coordinate transformation
x'"=x"+P(x") (with

~ P I && (x" ~) there exists the
well-known transformation law for the deviations from
the Minkowski metric:

4i— (4.23)

The comparison of (4.22a) and (4.23) yields immediately
the following connection between infinitesimal gauge and
coordinate transformations:

P= —aP A,
1 g (4.24)

However, as gauge transformations are only those al-
lowed, which do not disturb the gauge-fixing condition
(4.17), see (4.17a) and (4.17b}. Accordingly, also the (in-
finitesimal) coordinate transformations are limited. As
we see later, the gauge-fixing condition (4.17) implies on
the level of the field equations the de Donder gauge for
the metric, to which obviously the coordinate transforma-
tions are bounded, see (4.28b) and (4.29).

a a
gpv~i. —I giga» —I vigpa=0. (4.1S)

gpv rJpv+ Ii @vs i Apv i « 1 (4.19)

one finds with the use of (4.7) the following relations
within the linearized theory:

b
~yv 6a QPPbQ)v &

b b v
Ea =CA COaA~» .

(4.20)

Herewith the normalization condition (4.7) takes the form
of the usual tetrad condition in general relativity

b P,v b~p~vuf =~ a ~ (4.20a)

where g""=g"" h""with g""g„i——&—'i, (Ref. 17).
Of course, the metric (4.16) is not a gauge-invariant

quantity (pseudoscalar). From this it follows that by a
gauge transformation of the gauge fields a coordinate

In the case of pure gauge fields (3.9a) with F&~ =0 the
connection coefficients (4.14) and (4.1S) vanish identically
and the metric (4.16) is reduced to the Minkowski metric
rl„„where in the normalization condition (4.7) e, —=0 is
valid. In general by deposition of the metric (4.16)
according to

C. The field equations

d~(F,"„cuba) =4m T„(g), —k
0V Cl' g O'V (4.26)

which is reduced with respect to (4.11) to its symmetric
and traceless part

After definition of the metric (4.16) through the gauge
potentials it remains to be shown that the metric or its
connection coefficients satisfy Einstein's linearized field
equations. These must follow as a classical limit of the
gauge-field equations (3.11). Therefore one has to remove
at first the algebra valuedness of them. For this we multi-
ply Eqs. (3.11) by the gauge fields co, and obtain, with
the use of (3.3a) and (3.7),

Bq(F,",co' ) F,"Q„' —F,"„coq
(

—2n kg Q I y cu I g——. (4.2S}

The right-hand side is with respect to the basic relation
{4.9) already proportional to the energy-momentum tensor
of the matter field, where terms containing the spin tensor
a"" are neglected with regard to the classical limit. On
the left-hand side of (4.2S) the second and the third terms
can be neglected in view of the linearization. Thus we get



H. DEHNEN AND F. GHABOUSSI

B»(F»(„co'))=4m. —T (f)av a ~ vo

with

d»(F»„co ) =0 . (4.28)

Obviously, also in the classical limit of the field
equations —as in the classical limit of the equations of
motion —the gauge coupling constant g no longer appears
explicitly, so that it cannot be determined by comparison
with the classical Einstein theory.

Using (3.7) Eq. (4.28) implies

(a)pa
(
v c0~1»)a) =0 ~ (4.2&a)

h»" („=0, h
~»

——0. (4.29)

Consequently the gauge-fixing conditions (4.17a) and
(4.17b) induce the special de Donder gauge (4.29) of the
metric for the case of traceless field equations. The
remaining equation (4.27) results, with the use of (4.14)
and remembering also (4.16) and (4.17), in

(4.30)

These results are now to be compared with Einstein's
field equation for a traceless energy-momentum tensor in
its linearized version (c = 1):

a„l » —a.l.»„„=—&~GT (4.31)

where with regard to (4.19)

(4.31a)

Taking into account explicitly the tracelessness of the Ric-
ci tensor R»„(as a consequence of the tracelessness of the
energy-momentum tensor) in the linearized form consider-
ing additionally the usual de Donder gauge (4.2&b) we ob-
tain, in view of (4.31a) and in agreement with (4.29),

hI'"}„I„——0, h ~"~„——0 =-h ~„=0
(4.32)

Then Eqs. (4.30) and (4.31) are identical by choosing the
coupling constant k as follows:

(4.33)

Herewith Einstein s linearized field equations are ar-
rived at as a classical limit of our microscopic gauge-field
equations. Finally we note that, if the gauge fields c0»,
would become massive as a consequence of spontaneous
symmetry breaking, the transition to Einstein's theory
performed above would lead immediately to a cosrnologi-

from which immediately with the help of (4.17a) the usual
de Donder gauge of the metric follows [cf. (4.19)]

h»" ~„——,h ~»
——0 (h =h»») . (4.2&b)

This relation will be finally reduced by the condition
(4.17b) to the special de Donder gauge:

cal constant A proportional to the square of the gauge-
field masses.

V. CONCI. USIGNS

As already mentioned in Sec. II the second quantization
of our theery in its presented form is straightforward.
However, there are some other points for discussion and
remarks concerning an extension of the theory.

At first we note that according to condition (4.7) and
the definition (4.16) the gauge fields co», are dimension-
less. Then in view of (3.3), the gauge coupling constant g,
which has the meaning of a microscopic heavy charge [see
(3.14)] and which disappears in the classical limit, has the
dimension of a reciprocal length. This one may be the
Planck length &A'6 and consequently g should be propor-
tional to the Planck mass &R/G in accordance with the
accepted strength of the gravitational interaction' (10'
GeV), rather than a new universal constant. However its
true value remains undetermined within our present
theoretical approach.

But here exists the difficulty of any microscopic theory
of gravity, namely, the impossibility of a direct confronta-
tion with experiments in the near future. Thus for con-
structing such theories there remains only a foundation on
most general and well-established first principles, such as
the postulate of unitary compact gauge symmetries, and
as indirect proof the transition to the tested macroscopic
limit. In this respect we want to point to the fact that the
transition from our microscopic vector field theory of
gravity to Einstein's macroscopic tensor field theory with
the energy-momentum tensor of matter as the source is
not trivial, because the energy momentum tensor must be
constructed from the currents of matter according to the
vector field theery. But this procedure is possible, as we
have seen in Eq. (4.9), only in the case of massless parti-
cles. Therefore, masslessness is a very essential presuppo-
sition of our model and mass can be introduced alone
dynamically by spontaneous symmetry breaking. It is
hoped that in this way —as already suggested in Sec. II—
the equivalence principle, which has not been used within
our approach, can be deduced. By all means, the classical
concept of the geometrization of gravity as a consequence
of the equivalence principle follows in our theory from
the microscopic "minimal gauge principle. "

In the present paper the gravitational interaction has
been investigated only between (massless) fermions. On
the other hand, as already stated in Sec. II, gravity cou-
pled to all fields, i.e., also to bosonic ones. The construc-
tion of the gravitational interaction concerning bosons
should be possible following the line of this paper by a
grand unification of all interactions using higher U(N)
symmetry groups acting on a high-dimensional spin-
isospin space.

Finally the question arises whether it is possible to
reach even Einstein's nonlinear theory. So far as we see,
the answer to this question can be given only by the appli-
cation of an iterative approximation method with all its
difficulties. However it cannot be excluded that the limit
in question can only be arrived at after a spontaneous
symmetry breaking solving the mass problem simultane-
ously.
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¹teadded in proof. In the static case the force (4.6)
has, on the Yang-Mills level with the use of (4.7), a
Coulomb form belonging to the U(1) part and a Yukawa-
type form with a range of g

' coming from the SU(2)
part. This result may be of interest in view of the paper
of E. Fischbach et al. , Phys. Rev. Lett. 56, 3 (1986).

T" (g) =—aoy"aoS '", (A2)

and for the field equation (3.12) in the case of free parti-
cles,

y&aoS )~
——0 . (A3)

The only nontrivial solution of (A3) is, disregarding an ir-
relevant factor,

APPENDIX aoy"ao-S~", S "S
&
——0, (A4)

With the WKB ansatz

u)( g)N (isa)s(x&) (A 1)

one gets in the limiting case A~O the leading expressions
for the canonical energy-momentum tensor (4.3), Tuv(1(, ) g i' Iv T u(l(, ) 0 (A5)

which means that the probability current is lightlike in
the lowest WKB limit, as it was to be expected in the case
of massless free particles. Then the energy-momentum
tensor (A2) for the free matter field reads, in its classical
limit,

'As long as the solar mass quadrupole moment is unknown, the
perihelion shift of Mercury is not a precise test with regard to
the second-order approximation.

Don N. Page and C. D. Geilker, Phys. Rev. Lett. 47, 979
(1981)~

A. W. Overhauser and R. Collela, Phys. Rev. Lett. 32, 1237
(1974); R. Collela, A. W. Overhauser, and S. A. Werner, ibid.
34, 1472 (1975).

~L. Rosenfeld, in Entstehung, Entwicklung und Perspektioen der
Einsteinsehen Graoitationstheorie, edited by J. Treder (Aka-
demie, Berlin, 1966); H. Honl, Phys. Bl, 37, 26 (1981).

5For a review, see P. Van Nieuwenhuizen, Phys. Rep. 68, 189
(1981).

For a review see A. Salam and J. Strathdee, Ann. Phys. (N.Y.)
141, 316 (1982); E. Witten, Nucl. Phys. 8186, 412 (1981).

7After preparing this paper we have been informed that another
attempt in this direction exists however with fully different
assumptions, e.g., a Euclidean metric and a non-Yang-Mills
Lagrangian: H. R. Pagels, Phys. Rev. D 29, 1960 (1984).

sB. G. Wybourne, Classical Groups for Physicists (Wiley, New

York, 1974); E. Merzbacher, Quantum Mechanics, 2nd ed

(Wiley, New York, 1970), p. 271.
sCh. Nash and S. Sen, Topology and Geometry for physicists

(Academic, London, 1983), Chap. 7.6.
A deeper understanding of this ansatz can be expected from a
later unification of all interactions.

~~In the following Einstein s sum convention is used. Latin in-

dices a, b, etc., run from 0 to 3 and are related to the basis of
the group algebra. Greek indices run from 0 to 3 and are re-
lated to the space-time coordinates.

itThe symbol
~
y, means the usual partial derivative with respect

to the coordinate x~.
3Evidently the action corresponding to (3.10) is bounded from

below after a Wick rotation of time, according to which not
only the space-time metric but also the group-space metric
goes over from a pseudo-Euclidean to a Euclidean structure.

' Latin indices j,k, etc., run from 1 to 3 and are related to the
spacelike coordinates only.

' If we avoid in (3.3) the explicit appearance of a gauge coupling
constant, this must be introduced at the latest in (4.7), see also
(4.16).

iaaf course, there exists also torsion represented by the antisym-
metric part F~,~„co j' of the connections. Then the antisym-
metric part of the field equations (4.25) and (4.26) is the field
equation for the torsion. However, we do not investigate it in
this paper explicitly.

~~Note, that in contrast with the remaining designation in this
paper here g""&rtl ring r, but gt'" is inverse to g„„.

'SSee, e.g., L. D. Landau and E. M. Lifshitz, Klassische
Feldtheorie (Akademie, Berlin, 1964), Sec. 101.

isNote that in this case the total coupling constant in (3.11)
would be, with respect to (4.37), the square root of the gravi-
tational constant, namely, kg =+RG, in accordance with the
situation in the electrodynamics.

~OIn this connection we point to the fact that our theory can be
already considered as a unified theory of gravity and elec-
tromagnetism on the microscopic level in the sense that the
U(1) part of the theory can be identified with the electro-
dynamics after choosing g = (e /fi)' /(2AG )

' and
kg =eV'2G.


