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Singularity-free cosmology: A simple model
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The nonminimal coupling of a self-interacting complex scalar field with gravity is studied. For a
Robertson-Walker open universe the stable solutions of the scalar-field equations are time depen-
dent. As a result of this, a novel spontaneous symmetry breaking occurs which leads to a varying
effective gravitational coupling coefficient. It is found that the coupling coefficient changes sign
below a critical “radius” of the Universe implying the appearance of repulsive gravity. The oc-
currence of the repulsive interaction at an early epoch facilitates singularity avoidance. The model

also provides a solution to the horizon problem.

I. INTRODUCTION

In spite of its successes the standard big-bang cosmolo-
gy suffers from many undesirable features. In recent
years there has been considerable effort to overcome a few
difficulties encountered in the standard model through the
works of Guth,! Linde,? and others.>* The most disturb-
ing consequences of the standard model are the initial
singularity and the concomitant horizon and flatness
problems. As is well known, the Hawking-Penrose
theorem® asserts that a singularity is a generic point in
general relativity. Hence, in any general-relativistic model
of the Universe a singularity cannot be avoided. It is be-
lieved that the singularity would disappear in a quantum
theory of gravity.® In the absence of a complete theory of
quantum gravity, it would be worthwhile to examine the
singularity problem in the classical framework. As men-
tioned earlier, in the classical framework a pure general
relativistic model would not give the desired results.
However, a nonminimal coupling of other fields with
gravity would lead to an adequate departure from
Einstein’s theory. In such theories one might hope to
avoid the singularity.

In a previous paper’ it was shown that when a scalar
field is nonminimally coupled to the gravitational field,
there is a phase transition at a critical temperature T.
This is due to the spontaneous symmetry breaking of the
scalar field. Associated with the phase transition is a
change in the sign of the effective gravitational coupling
coefficient (EGCC) which means that gravity becomes
repulsive above the critical temperature T,. The appear-
ance of repulsive gravity indicates that the implosion,
which would occur in the big-bang cosmology if one goes
backward in time, cannot proceed unabatedly. This does
not necessarily imply that the implosion would not be
strong enough to overcome the repulsive field and reach
the singularity. In this article we shall show that the
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Universe must have begun with a nonzero value of the
cosmic scale factor. As a consequence of the removal of
the singularity the horizon problem also disappears.

In the latter part of Ref. 7, a phase transition occurs
due to the temperature dependence of the cosmological
term. However, as we shall see, it is not necessary to start
with a temperature-dependent, or constant, cosmological
term to obtain repulsive gravity (or equivalently a change
in the sign of EGCC). It is interesting to note that the
quartic self-interaction of the scalar field and its non-
minimal coupling with the metric field would suffice to
bring about a change in the sign of EGCC.

In Sec. II the formalism is given and the field equations
are derived. Some general features are pointed out but the
analysis cannot be made complete without a choice of the
background metric or a form for the matter energy-
momentum tensor. By assuming that the background has
a Friedmann-Robertson-Walker metric a novel spontane-
ous symmetry breakdown is demonstrated in Sec. III.
This leads to a varying EGCC. Solution to the metric
field equations is obtained in Sec. IV, which clearly shows
that the singularity is avoided. A solution to the horizon
problem is suggested in Sec. V.

II. FORMALISM

We consider a system comprising a massless, complex,
self-interacting (quartic) scalar field ¢ nonminimally cou-
pled to gravity, a metric field g,,, and other matter fields.
The Lagrangian for the system is®

ZL=V—g[g"9,4*3,p—0($*¢)’—cR($*4)
+k 'R+ Z,,]. 2.1

Here R is the curvature scalar and « is the Einstein con-
stant. The coupling constant o is the only parameter in
the theory. V' —g .£,, is the Lagrangian corresponding to
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all matter fields and has no interaction with the scalar
field except through geometry.

The quartic self-interaction and the nonminimal cou-
pling together play a crucial role in bringing about a spon-
taneous symmetry breakdown, and a change in sign of
EGCC. The nonminimal coupling gives the required im-
provement over a general relativistic theory, as remarked
by Callan, Coleman, and Jackiw.” As mentioned in Ref. 9
the theory retains all the predictions of general relativity.

The Lagrangian (2.1) is invariant under a global U(1)
group and under the transformations ¢—¢* and ¢— —¢.

The scalar-field equations and the gravitational field
equations are obtained from the Lagrangian (2.1). They
are

O¢+20¢*¢*++R$=0 2.2)
and its complex conjugate and
Gpuy=—RO,,+T,) . 2.3)

Here G, is the Einstein tensor and & is the effective grav-
itational coupling coefficient, and 6,,,+ T, represents the
energy-momentum tensor corresponding to the scalar field
plus the rest of the matter fields, which together form the
source of geometry. Explicitly,

—1
K=« 1—%¢*¢ , 2.4)
5;4\1:% ap¢‘a\¢+av¢‘ap¢_gpv[ap¢.ap¢—a(¢‘¢)2]
+38.06%9) 46 | 2.5)
and
T, = O vZg.Z.)
#v—‘/_—g ag;w 4 m
WV _—gZL
I S £V | DEPPS
ax® agh

In the above expressions [0 denotes the wave operator in
curved space-time,

O0=(1/v —g)d,(g"*"v —¢gd,),

and a semicolon denotes the covariant derivative.
Identification of the expression (2.4) as EGCC is not
for convenience but it is very natural. This is justified by
the form of the Lagrangian. Notice that the coefficient of
R is exactly this expression and in the spirit of the stan-
dard Einstein-Hilbert Lagrangian it would be right to
recognize expression (2.4) as the coupling coefficient of
the gravitational field. As a result of this recognition, the
energy-momentum tensor for the scalar field is devoid of
the quantities R and R,,. In this sense the expression for
0,, differs from the standard ones found in the litera-
ture.!%~!2 Note that due to this modification, the scalar-
field energy-momentum tensor is not traceless anymore
though Eq. (2.2) are conformally invariant. Taking the
trace of Eq. (2.3) we get R =«T%. Using this in the
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scalar-field equations we get
O¢+20¢*¢*+ cxThé=0 . 2.7

Observe that though we had assumed the scalar field and
the rest of the matter to be noninteracting, the coupling
indeed shows up through geometry. This, as is well
known, is the reassurance of the fact that matter and
geometry are tied up.

In general T} is a space-time-dependent quantity.
Hence, apart from ¢ =0, Eq. (2.7) does not admit constant
solutions (unless when T% itself is a constant). If $=0
happens to be an unstable solution then the stable vacuum
solution (VS) has to be a space-time-dependent function
and a new type of symmetry breaking occurs. This im-
mediately implies that EGCC does not remain constant,
and can undergo a change in sign indicating the onset of
repulsive gravity. As our aim is to demonstrate this
feature we shall be interested in obtaining VS of Eq. (2.2)
with the help of a priori specified metric and consider par-
ticular forms for T, in Sec. IV.

III. SPONTANEOUS SYMMETRY BREAKDOWN
AND REPULSIVE GRAVITY

Let the space-time be described by a Friedmann-
Robertson-Walker metric. We consider, in what follows,
both the open and closed isotropic models. For the open
isotropic model (three-space of negative curvature) the
metric is given by

ds?=a?(t)[dt*—dX*—sinh*X(d6*+sin’0d$?)] , 3.1

where the function a(z) is the cosmic scale factor. The
scalar curvature corresponding to the above metric is

R="a-d). (3.2)
a

Let the vacuum state of the scalar field be denoted by &£.
In general, § can depend on space and time. But the
choice of the homogeneous and isotropic metric restricts
it to be at most time dependent. Using relation (3.2) in
Eq. (2.2) we get the following equation for &:

E+20E*E%a%*=0. 3.3

_a
a

. G-
E+2 6~

Here, a dot denotes differentiation with respect to t.
Solution to the above equation has been obtained by
several authors.'®~'2 Guided by the fact that the scalar-
field equations are conformally invariant we try
E=+yf(t)/a(t), where y=1/(20)'/? is a constant. Sub-
stituting this in Eq. (3.3) we get an equation in f(¢) only:

f=f+rr=o0. (3.4)

As can easily be seen the stable solutions of this equation
are f==1 and not f=0. Thus, the stable solutions of
Eq. (3.3) are

E=ty/al(t). (3.5)

Incidentally, these solutions are energetically more favor-
able than the £=0 solution. The spontaneous symmetry
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breakdown which occurs due to the nonvanishing VS has
the following novel features. Since £ depends inversely on
a(t), symmetry breakdown is more and more important
for the early Universe and symmetry is restored only in
the limit a(z)— oo. It is this feature, which is in contrast
with the usual grand unified theories where symmetry is
restored as a(t) decreases or T (temperature) increases,
that enables the singularity avoidance. A similar result
has been obtained in Ref. 7 for a slightly different model.
Note that there is no mass term in the Lagrangian whose
sign has to be properly chosen to facilitate the symmetry
breakdown. This is not surprising. The nonminimal
coupling in a sense behaves like a mass term. Indeed, one
can see by writing down the effective Lagrangian that the
physical field has a mass term which is time dependent.
For the VS (3.5), Eq. (2.4) implies

-1
acz

aZ

K=k |1—

) (3.6)

where a, =(k/120)!/? has the dimensions of length. Ob-
serve that a, is the “critical radius” at which EGCC un-
dergoes a change in sign, indicating that gravity becomes
repulsive below this value of a(z). This slows down the
implosion of the Universe towards the singularity and
might halt the collapse before the singular point is
reached. The critical radius depends inversely on ¢ and
therefore a weaker quartic self-coupling of the scalar field
would bring about a sign change of K at a larger value of
a(t). This does not mean that if o=0 gravity has to be
repulsive always as none of the above arguments regard-
ing symmetry breaking would then hold good. It is only a
nonzero, sufficiently small value of o that would give the
desired features. If repulsive gravity occurs at a suitable
value of a(t) then singularity can eventually be avoided.
When the Universe is dominated by radiation, a(t) and
temperature T are related by a(#)T =const. Using this,
expressions (3.5) and (3.6) can be written as §=y'T and
K=Kk(1—T?*/T,>)~!. The behavior of the vacuum state
and EGCC can now be equivalently given in terms of
temperature instead of a(#). EGCC undergoes a change
in sign at a critical temperature T, above which gravity
becomes repulsive. Symmetry breaking due to the
nonzero VS is more important at high temperatures and
symmetry is restored only as T—0.

Let us now consider the closed isotropic model for
which the metric is

ds’=aX(t)[dt*—dX?—sin’X(d6*+sin*0dé?)] (3.7

and the scalar curvature is
=—'—36—(a +d) . (3.8)
a

By following the steps of the previous case we get an
equation for f:

. 2
f==2p—r+11=0. (3.9)
Unfortunately, a solition to this equation could not be ob-

tained for a general T,,. When T, is traceless, Eq. (2.3)
implies R =0 and from expression (3.8) a= —a. Thus,

when the scalar field and a traceless 7, form the source
of geometry, Eq. (3.9) reduces to

f+f+rf*=0.

In this case the stable solutions are not f = +i, but the
solution f =0. Thus, for the closed-universe model, when
T,, is traceless the symmetry is unbroken, the repulsive
gravity cannot occur and the singularity is not removed.
In this case K=« is a constant.

(3.10)

IV. SINGULARITY AVOIDANCE

Our next task is to obtain solutions to the gravitational
field equations and demonstrate that singularity can be
avoided at least in the open isotropic model. In this sec-
tion we rewrite the gravitational field equations in the
form

G}lv=_K(0yv+ Tyv) ’ 4.1)

where 6, is now the total energy-momentum tensor of
the scalar field. Explicitly

6,y =0,—+6°8G,,, . 4.2)

Let us examine the solutions of the field equations (4.1)
for the metric of the open universe. For the scalar field
VS given by Eq. (3.5) 6,, has the following nonzero com-
ponents:

= —1/80a*, (4.3)
6l =(1/240a*)8} . 4.4)

Observe that 6, which represents the energy density of
the scalar field, is negative. Its dependence on a (¢) is the
same as that of radiation energy density. Identifying 6;
(no summation over i implied) as the pressure we find
that the equation of state is again the same as that of radi-
ation. Thus, for VS given by Eq. (3.5), 6,, has just the
same form as that of radiation energy-momentum tensor
but the opposite sign. It is this negative energy density 6)
which violates one of the assumptions of the singularity
theorem. Thus, when the only source of geometry is the
scalar field, singularity certainly does not occur. Howev-
er, if we have a nonzero T, whether or not the singulari-
ty is removed depends on the behavior of Tg. Suppose
TS«a~"(t). If n<4 singularity is surely avoided; if
n =4 the magnitude of the total energy corresponding to
the scalar field has to exceed that of T, to overcome the
singularity problem. This is the reason why as small a
value of o as is possible is needed. Since the experiments
set an upper limit on the present value of the cosmological
constant, a lower limit on o can be obtained if we inter-
pret the vacuum energy (4.3) of the scalar field as the
cosmological term.
Using expressions (4.3) and (4.4) in Eq. (4.1) we get

—«TY, (4.5)

+xT, . (4.6)
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Since we have assumed spatial isotropy the other space-
space component equations are the same as Eq. (4.6). We
consider a few simple cases to exhibit singularity
avoidance.

(i) The simplest case would be to assume that the only
source of curvature is the scalar field which means
T,,=0. This has been dealt with in Ref. 12, and we men-
tion the results below.

When T,,=0 Egs. (4.5) and (4.6) take the form

a
a’—d?= 2 @.7
and
.. . ac2
2aa—a2—a2=—i—- . (4.8)

Solving the above equations self-consistently (which
necessitates fixing one constant of integration) we get

ac

a(t)= ﬂcosh(t+l) . (4.9)

Here A is a constant of integration which can be used to
fix the origin of time. The choice A=0 renders a (¢) to be
minimum at ¢t =0 given by

% 4.10
amm" ‘/i . ( . )
Though very simple, the above example has given elegant
results. The minimum of a(¢) is less than the critical ra-
dius. This means that the implosion would not halt as
soon as EGCC changes sign but continues till the repul-
sive field becomes insurmountable. Incidentally, the
minimum of a(?) is inversely proportional to the coupling
constant 0. Thus the weaker the self-coupling of the sca-
lar field the larger would be the initial “radius” of the
Universe. As should be expected, the value of a;, de-
creases when we have a nonzero T,,. This we shall con-
sider in the next example.

(i) Let T, to be that of a perfect fluid:

T;.w=(P +P)up“v—Pg,w ’ (4.11)

where p, p, and u, are the energy density, pressure and
four-velocity of the fluid, respectively. Now Eq. (4.1)
takes the form

—32-(02—(12)=—;‘ 5 —Kpa? (4.12)
a a
and
2
—5(2ad —a*—a?)=—— —«pa®. (4.13)

With the help of these equations we arrive at the conser-
vation law

%(pa3)=—3pa2 . 4.14)

Note that the presence of the scalar field, whose VS is
nonzero, has not altered the conservation law in any way.
This is due to the fact that 6**,, is identically equal to
zero.

Since we are interested in the consequences of the field
equations for the early Universe we shall take T, to be
that of radiation, for which Eq. (4.14) implies p=e/a‘,
where € is a constant. Then Eqgs. (4.12) and (4.13) reduce
to the form

2
2_ 452

1)
—a‘=— 4.15
a‘—a ) (4.15)

and

2‘02

—a?=

2
Here w2=acz—-§-xe, is a constant. Note that the above
equations are of the same form as Egs. (4.7) and (4.8);
thus the solution is

2

2ad —a (4.16)

a(t)= —£_cosht .

V2

The essential features of T,,=0 case are retained here.
The minimum a (?) is given by

(4.17)

a;,,in=‘—/1.;(a£—%xe)“2 . (4.18)
Since ap,;, has to be greater than or equal to zero, we get
o < v€. As remarked earlier a i, <@mi,. Thus, the pres-
ence of matter other than the scalar field reduces the
minimum of a(¢) and the singularity can occur when o
and € are perfectly matched.

V. SOLUTION TO THE HORIZON PROBLEM

To show that the horizon problem disappears whenever
the singularity is removed, we consider the Friedmann-
Robertson-Walker metric for the open universe to be of
the form

2
ds*=dt*—aX(1) ar’ 3 +rX(d6*+sin’0d¢?) | . (5.1
14r

The above metric is completely equivalent to the metric
given by expression (3.1). Carrying out the analysis of
Sec. III for the above metric, we find that £ has the same
solution as in the case of metric (3.1). We assume that
solutions £=*y/a(t) are stable here also, as the metric
(3.1) and (5.1) are physically equivalent. The form of the
solutions for a (t) obtained using metric (5.1) differs from
those obtained using metric (3.1) and is given by

2

a
aXt)=1*+ —;— (5.2)
for T,,=0 and,
2
az(t)=t2+—(%— (5.3)

for the radiation case. Notice that the minimum of a (¢)
is the same as that obtained in Sec. IV.
The horizon distance is defined by

Hnto)=a(o) [, a='edr" . (5.4)

The horizon problem would not occur if /(¢,zy) diverges,
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as to—0 in singular cosmological models or as 15— —
in singularity-free models (see, for example, Weinberg!?).
Substituting for a(¢) in the integral (5.1) from Eq. (5.2) or
Eq. (5.3) and integrating we get

1+ +ami)'?

to+(to? +amin?)?

1(t,tg)=(t*+amin?)"%n (5.5)

Here ap;, could be either a./V2, in which case it is
nonzero, or @/V'2, which can be zero for a special choice
of o. Note that I(t,ty) diverges as tp— — oo and the
model is free of the horizon problem. Even if the singu-
larity occurs, the horizon distance blows up as t,—0, im-
plying that the horizon problem disappears whether or not
the singularity is removed.

VI. CONCLUSIONS

We have shown in this paper that a nonminimal cou-
pling of the scalar field with gravity leads to a spontane-
ous symmetry breaking which has many novel features.
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The most important characteristic is that the symmetry
breakdown is permanent and it is more relevant at the ear-
ly stages of the Universe. This is unlike the usual grand
unified theories where symmetry is restored at a high tem-
perature. As a result of the symmetry breakdown, gravity
becomes repulsive, (or equivalently the scalar-field energy
density has a negative value). This makes possible a
singularity-free cosmological model in which the horizon
problem also disappears. We believe that the nonminimal
coupling of the matter fields with gravity is the answer to
a lot of problems posed in the standard model. Work is in
progress to see whether a nonminimal coupling of other
matter fields to gravity leads to a singularity avoidance.
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