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The evolution of density perturbations around cosmic strings in the matter-dominated era is dis-

cussed with attention to the specific nature of string perturbations. The parameter Gp, is calculated

in two completely independent ways —from the requirements that Abell clusters are formed and that

the galaxy-galaxy correlation function matches the observed one. Both values are consistent, lending

support to the cosmic string theory.

I. INTRODUCTION

There has been much interest recently in the idea that
topologically stable strings formed at a phase transition in
the very early Universe' ("cosmic strings") could later
provide the density perturbations needed to give rise to
galaxies and clusters of galaxies. It has recently been
shown that the cosmic string theory predicts a correlation
function for Abell's clusters of galaxies which closely
matches the observed one. s

Qne of the appealing features of the cosmic string
theory is that it possesses only one free parameter: the
mass per unit length ls of the string (ultimately of course
this is to be determined by the unified theory in question).
Some af the predictions of the cosmic string theory, such
as the correlations of clusters mentioned above, do not in-
volve gravitational coupling and are thus independent of
p, . Many predictions however do depend on the gravita-
tional coupling and in particular on the dimensionless pa-
rameter Gp, -(maUT/mpi, i, ) .

In this paper we shall determine Gp by demanding that
the gravitational clustering around cosmic string loops
matches that observed today. In particular we shall
demand that the loops identified with Abell clusters be
sufficiently massive to have collapsed objects with the
overdesmity of Abell clusters about them. We shall also
determine GIs by the independent requirement that the
galaxy-galaxy correlation function matches that observed.
The fact that these two calculations give consistent
answers for Gls lends further credibility to the cosmic
string theory.

Previous calculations ' of Gp, have used methods
which are appropriate for models with initial linear densi-

ty fiuctuations and are thus not obviously applicable to
the cosmic string theory of galaxy formation. In this pa-
per we shall show that in many ways the nonlinear evolu-
tion of perturbations is simpler to calculate in the cosmic
string theory than in other theories.

We shall discuss the accretion of matter onto loops in
two scenarios: a baryon-dominated universe with 0=0.1

(Qb,„(0.1 is required from nucleosynthesis and

Q~~) 0. 1 from dynamical mass measurements ) and a
cold-dark-matter-dominated universe with Q = 1.

In a future paper we discuss the microwave anisotropies
produced by cosmic strings far the value of Gp deter-
mined here. '

II. DENSITY PERTURBATIONS
PROM COSMIC STRINGS

The evolution of a network of cosmic strings in a
radiation-dominated universe has been discussed by Al-
brecht and ane of us (N.T.) (Refs. 9 and 10). At any time
t, the network consists of lengths af string larger than the
horizon and closed loops smaller than the horizon. The
long strings are straightened out on the horizon scale -t,
and continually produce loops with radius tby i-nter-

secting themselves. These "parent" loops then chop
themselves up into several smaller "child" loops which os-
cillate with fixed physical size and energy until they even-

tually disappear by gravitational radiation. At any time t,
a fixed number of child loops of radius R =et with e a
small number @=0.2 (Ref. 10) are produced per expansion
time per harizon volume. Thereafter their number density
decreases as the cube of the scale factor. In a radiation-
dominated universe the number of loops per unit volume
with radii between R and R +dR is

n (R)dR =, i dR

p&x =a(ls/t )(t/R)' (2)

with v-0.01 (Ref. 10).
Loops emit gravitational radiation at a rate

M- —50Gp (Refs. 5 and 11). Since their mass' is given
by M =ppR -91sR, we find their lifetime
~= ~M/M

~
= —,(Gls) 'R. At the time t there is there-

fore a cutoff in the distribution of loops at a radius
R -56pt.

The density of string in loops with radii greater than R
is given by
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with9 a =2Pv-0. 2.
From (1) and (2), the smallest loops dominate both the

number density and energy density. They have a mean
separation

d =(3/2v)'i R (t/R)'i »R for R &r (3)

and the long-range time-averaged field of a loop is simply
that of a point mass with mass equal to that of the loop. '

Thus there is a large region around any loop where a
spherical-collapse model (see below) should be valid. Of
course larger loops will collect smaller loops as well as
matter about them.

In more conventional units, the radius R of loops
formed in the radiation-dominated period with mean
separation dh ' Mpc today is given by

=(2/») ~'(d~/r~)'

=(2/3v)2 3(d/2000) (2.SX10 )(Qh) (4a}

using

R/r~=S. SX10 '(Qh}',

while for Abell clusters, '~ d =55h ' Mpc,

R/t~ =0.67(Qh)

(4b)

For h =0.5 these loops are formed at t~/e&t, z
Matter starts to accrete on loops at red-shift Z; -Z,~ in

the cold-dark-matter-dominated universe, and at Z; -Zs
(decoupling) in the baryon-dominated universe. The
loops we are interested in were formed in the radiation-
dominated era so we shall use (1) for their distribution up
to the time of equal matter and radiation density. In the
baryon-dominated universe, for Q=O. l, h & 1 (nucleosyn-
thesis demands Qh~~,„&0.1 and dynamical mass mea-

surements demand Q&0.1), Z~=2. 5X10 Qh =Zz so
again we may use (1) and (2) at the time when perturba-
tions start to grow.

The fraction of mass at the time of equal matter and ra-
diation density t~ in loops of radii greater than R is given

by
' 1/2

teq=6~aop
gR

using p= 1/6n. or~ for the density of matter at t~.
According to the spherical model (discussed below) the

mass collapsed and virialized around a seed mass 5M is

given at time t by

1+z~ '

z~=2.5X10 Qh, P» ' ——3000h ' Mpc.

t~ is the time of equal matter and radiation, d~ is the
separation at that time, and z~ the red-shift. For galax-
ies, for example, ' d =Sh ' Mpc and, using v=0.01,

M» ——5M(t/r;)'~'(3n/4) '", r; &r&rf

=const, t ~ tf, (6)

with t; the time perturbations start to grow, and tf the
time they stop growing (see below). From (1) and (6) the
smaller loops together accrete most matter but the more
massive mass concentrations are formed around larger
loops. Rare, more massive objects accrete around larger
loops. The distribution of collapsed masses is predicted
from (1) and (6), in the regime where loops have collapsed
only a small fraction of the total mass, so competition be-
tween neighboring loops is unimportant. Large loops col-
lect smaller loops as well as matter, so if loops of a certain
size form galaxies, larger loops form clusters of galaxies.

From (5) and (6), the fraction of all matter collapsed
onto loops of size -R is

~coll
M

' 1/2
tg 1+z;

=6maGIM, (3m/4)
R I+zf

(7)

where Z; is the red-shift at which perturbations start to
grow and 1+sf——Q ' —1 gives the red-shift at which
perturbations stop growing.

So far we have ignored the spatial correlations of loops
which were determined in Ref. 3. In fact as we shall see
these play a crucial role in the gravitational clustering of
galaxies. Loops with mean separation 1 are correlated on
scales &1 because their "parent" loops were chopped off
a network of Brownian walks. On scales &d, they are
correlated because they are produced in clumps as
"parent" loops intersect themselves. In Ref. 3 it was
shown that, for loops well inside the horizon,

g'I~~,~»(r/d)-0. 2(&/r)', r (d .

J d rg~ (r)p

f"a'rp

where M is the average mass inside a radius r, p the back-
ground density, p&», the density in loops of radius Ro,
and gx their correlation function. Here we have ignored

the correlation of loops with widely differing radii. Using

The fact that loops are correlated with loops of similar
size means that the perturbations produced by strings are
highly "non-Gaussian" and have nonrandom phases. '5

For Gaussian density perturbations, there is only one in-
dependent correlation function: the Fourier transform of
the power spectrum (51,5 k). Given an object or any
point in space, the average density at a distance r is sim-

ply given by pf 1+/(r)]. However in the case of strings,
things are different. Given a random point in space, the
above is still true. Given a loop, however, the average
density at a distance r is very different. The former case,
rms fiuctuations in density around randomly chosen
points, is relevant for the microwave background calcula-
tions but the latter case is relevant for answering how the
loops give rise to galaxies and clusters. In fact if one sits
on a loop of radius R», the excess mass 5M &, within a ra-
dius r from the center due to these correlations is given by
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(8) we find
T 2 P)ao=0.6
r p

=0.6 — 6n.gpo;

' 1/2

model in more detail in Ref. 7, along with the question of
the initial peculiar velocities of loops, which we show
there one can effectively ignore. Here we merely list the
formulas we shall need.

In a matter-dominated universe with initial density

p; =Q~p„a shell at initial proper radius r;, within which
the mass perturbation is 5M/M =5;, evolves in
parametrized form as

This provides a picture of the typical density profile of a
clump of loops.

The excess mass in (10) may be compared to the excess
mass inside r due to random fluctuations from uncorrelat-
ed loops. The number of loops of radius R inside r is
from (1}

3f;
r = (1—cos8), t = (8—sin8) .

2ht 4g 3/2

r is the proper radius and

6,t ——Si —(Qi ' —1) . (15)

N-(4v /3)2/3vr R ~t

and these give a rms mass fluctuation

3Pp,R

4rrpr 3

= —,
'

PGp, v
9

' 1/2

5/4P -3/2R 1/4

1/2 5/4
Sm

9
& —,PGp, v

r

M

typical

(12)

which is actually not very different from (11) for r not
much smaller than t, the ratio varying as ( t/r)'/4. Com-
paring this with (10}we find

which is dominated by the largest loops in r, with R-r
In fact, such fluctuations are atypical and a better idea of
the typical fluctuation is given by considering loops of
number density n such that n 4tr/3r s -1. These give

' —1/3

After this time very little matter accretes onto loops.
Q, is related to Q today in a matter-dominated universe

by

Q,
-' —1=

1 +ZI'

Thus, mass stops accreting at

1+zf-0 ' —1 . (18)

This will be important in the baryon-dominated universe.

III. FORMATION OF ASELL CLUSTERS

The shell initially at r; stops expanding at 8=rr, yielding
(for Q; = 1) Eq. (6) far the collapsed mass at any time. As
one moves out from the seed mass, the fractional mass
perturbation 5; gets smaller and smaller —the above solu-

tion is only valid for St &Q; —1. Outside the radius,
where 5t ——Q; ' —1, matter shells are not bound and keep
expanding forever. From (6) one sees that the last shells

to collapse do sa at

(16)

correlation =0. 4m

3

1/3
d d

(13}

typical

So for scales r &d (the scales we shall be most interested
in), the mass fluctuations given by (10) are most impor-
tant with regard to the density profile around a given

loop.
Wakes which are formed. behind moving strings also

contribute to mass fluctuations. '6 A segment of string of
length t moving at velocity produces a wake of mass

M„~, ', 8(ut) tpb ————,'u—pt, —

where 8=8@Gp is the opening angle of the wake. Nu-

merical simulations have shown that u-0. 2 or so' for
long strings, so the mass in the wake is less than the mass
in the string. Since loops provide even larger mass pertur-
bations than long strings we see that the effects of wakes
are smaller than those of loops.

Now let us turn to the question of exactly how the
matter collects around loops. %e discuss the spherical

In this section we will calculate Gp from the require-
ment that loops with the mean separation of Abell clus-
ters be massive enough to collapse an object with the over-
density of an Abell cluster. This gives a inuch cleaner
determination of Gp than previous calculations. 4 s

The calculation proceeds in two steps. We first deter-
mine the red-shift 1+z,„ far which Abell clusters start
to collapse by comparing the observed overdensity with
the averdensity calculated from the spherical collapse
model. The shell radius which begins to collapse at red-
shift 1+z~ depends on Gp. Demanding it be the Abell
radius fixes Gp, .

Abell clusters' are defined as regions containing more
than 50 bright galaxies inside an Abell radius rz ——1.5Ii
Mpc. Their mean separation is dz ——55h ' Mpc (Ref.
14). Their exact overdensity is uncertain, but may be es-
timated in two ways. First, S%%uo of all bright galaxies are
thought to be in Abell clusters. ' If the fractian of all
matter in Abell clusters is 0.05fs, then their overdensity is

O.OSfs
——590fs (19}

I'
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Second, observations of the velocities of galaxies in Abell
clusters' indicate the density at a distance r from the
center is given by

p(r)=2. 4&(10 h gem r (20)

where r is in h ' Mpc. Thus the overdensity inside an
Abell radius is

M
170Q —1 (21)

M p
using P=1.9X10 Qh g cm . For an Q=1 universe,
(19) and (21) agree if we take f5 -0.3, interpreting this as
the fact that bright galaxies form preferentially in over-
dense regions. A baryon-dominated universe with Q=0. 1

has trouble explaining the existence of Abell clusters at
all, as we shall see.

In the spherical model, the overdensity inside a shell
which is at its maximum radius r is given by
(3ir/4)2=5. 6. Thereafter the shell collapses and accord-
ing to numerical simulations, virializes at a time
t„11-1e8t and a radius ——,r,„. At this time, its
overdensity is

'2
t u

8 =150 (22)
4 tmax

(the last factor being due to the background density de-
creasing like r during the collapse process). Thereafter
the overdensity grows as the cube of the scale factor. For
the Q = 1 universe, we conclude that Abell clusters formed
very recently, and that the mass inside an Abell radius is
virialized. From the spherical model it follows that the
Abell radius turned around at 1+z —1.5 and the ra-
dius just turning around now is

(1+z,„) / 3h ' Mpc-5h ' Mpc .

In the 0=0.1 universe, shells stop collapsing at
1+zf-0 '-10. Thus one should not see many objects
with an overdensity less than

Q; ' —1 —5;

In order to get an overdensity much less than 4X10~
therefore one has to fine-tune the radius r; around any
particular loop. This would make Abell clusters very rare
objects. The baryon-dominated universe only works if we
take

M(,
&4X10'.

M

Gp, is determined by equating the collapse radius from
the spherical model with the Abell radius. For bound
shells, 5; p Q; —1 and from (6) the initial perturbation
5; inside the shell collapsing at Z,„ is given by

2/31+Z,q
1+Zmax

3m

4
(24)

We also know the initial radius r, of this shell since its
maximum radius is r =2r„=3h ' Mpc. By (4)

Pi 5lrmax

=5;,~ t~z, q Q3/2 1/2 (25)

and

l 3
teqpp, R

err; r;

6+Gt~2

which with (25) and (4c) gives Gp in terms of 5; deter-
mined from (24). Thus

9PG
(26)

(3n /4)28(1+zf )'-4 && 10' .

To be more precise, one can show in this case that the fi-
nal overdensity inside an unbounded shell is a constant,
given by

3

5 4Z 9/2Q3/2

9P 0.67 2000 '
(Qh)

2 1 3

9P 0.67 2000

3 g3/2
Z„'"(1+Z .„)'

(Qh)

2 1 3

9P 0.67 2000

3 r i g/3
jm.

(2.5 X 10'}'"(1+Z „)'h -'=1.10-'h -', (27}

using (1+.Z ~)=1.5 and p=9. For Q=l one must6
take h -0.5. Thus

For Q=0. 1, we must have 1+Z ~ —10, so

Gi I cold dark matter —2 && 10
0=1
h =0.5

(28) GlM
I b -2.10
0=0.1

A=1

(29)
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although as stated earlier, in this case Abell clusters would
have an overdensity far larger than the observations indi-
cate.

IV. CLUSTERING OF GALAXIES

We shall now calculate Gp from a completely indepen-
dent requirement —that the correlation function for galax-
ies matches that observed. As mentioned in Ref. 3, the
primordial correlations of loops (i.e., those before gravita-
tional clustering has occurred) are four times smaller than
the observed correlations of galaxies.

In this section we shall construct a simple model for the
gravitational enhancement of correlations. This involves
several extra assumptions about the gravitational cluster-
ing of loops which make it a less clear determination of
Gp, one that will certainly need to be checked by N-body
simulations before it can be reliably believed. Our picture
of the distribution of loops is that they occur in clumps,
and that around any given loop the excess mass is given
(for scales r & d, the mean separation of the loops) by (10).
We will model the evolution of a clump by a spherical
model. Since the number of loops in a clump is —10 this
assumption is dubious but nevertheless should give a
rough idea at least of what happens.

Now in the spherical model, one assumes each shell
evolves separately, without crossing other shells. Since
the number of loops in a given shell is constant, we should
have, in some average sense,

n[1+g(r))r dr =n;[1+(;(ri)]rP dr&,

a(r;/d;)3
1+/{rid)=

3
1+)'

B(r/d)3 d,
(31)

where d is the mean separation of the loops.
From (4) and (5) it follows that for collapsed shells

' 2/3
teqrid =—', r;Id;5,
t (32)

From the spherical model it follows that once a shell has
collapsed

r r;—&0.2—.
d di

(33)

Thus, (32) is applicable only provided (33) is satisfied.
Using (10}for the initial mass excess 5; we obtain

ir/d =
1.2 d;

3

&naos
teq

'1/2 —1
' '2/3

~eq
(34)

Hence with (31)

where n is the mean number density of loops, g(r) the
correlation function, and r the radius. The subscript i
refers to the initial time.

We shall follow the evolution of a shell with initial ra-
dius r, using (10) for the overdensity inside the shell at
t~, when perturbations start to grow. Equation (30)
yields

1+( — =1.2X6naGp
r 1 d

3 p

r&1+(
d;

(35)

which produces the correct power law for the galaxy-
galaxy correlation function if gi can be neglected. The ob-
served galaxy-galaxy correlation function is '

ass( r /d ) = 1.1(d Ir), 0.02 & r Id & 1,
and comparing this with (35) we find, using (4b),

Gp= '
(5.5X10 ')' Qh

1+z
1.26 a 1+z~

(36)

=2X10 h ' for Q=l

=2.5X10 h ' for Q=0. 1, (37)

where the range of r/d for which (35) reproduces (36) is
determined by the condition from (12) that r; Id; & 1 and
from ignoring g; which requires r;/d; & 0.4. r/d is relat-

ed to ( r; Id; ) by (34). Hence the range is
'I

3

I
(38)

On larger scales the fluctuations due to uncorrelated
loops are important. In fact the spectrum 5M/M 0-. 1/r
from (11)also predicts $ ~ 1/r

The value of Gp, found here is entirely consistent with
the previous value (27} for the Q=1 universe. The
baryon-dominated universe has problems forming Abell
clusters and the two values are not consistent.

We can perform a further test by asking when a certain
region around a "galaxy" loop virialized. Using the over-
density 5M/M-1. 5 X 10 Q 'h for the central parts of
a galaxy (r &30h ' kpc} derived from rotation curves,
one finds 1+z ~-10 for the red-shift when this radius
turned around. Just as in {25)—(27), using (4b) instead of
(4c), we find



NEIL TUROK AND ROBERT H. BRANDENBERGER 33

' 8/3
2 1 60X10-' 3m

9P 5.5X10 3 2000 4

X(2.5X 10')'"(1+z )'Ii -'

which is again consistent vnth our previous values.
Galaxies are far in the nonlinear regime and thus this cri-
terion is not as reliable as the previous two.

Using these values of Gp, , we can now determine which
loops have collapsed all the matter upon them —from (7),
their radius is given by

' 1/2 ' —2/3

=6maep''1+" 4

-3X10-' (40)

for Q = 1, h =0.5 and from (4a) their separation today is

d-3.5It ' Mpc .

For Q=0. 1, h =1, (R/t, )'~ —10 and

d-10h ' Mpc.

(41)

(42)

V. CONCLUSION

We have determined the parameter Gp, from two com-
pletely independent requirements —that the cosmic string

Thus all matter has accreted on galaxies in the Q=1
universe, almost all in the Q=0. 1 universe. In this pic-
ture, the galaxy scale emerges as the scale below which
loops have accreted all the matter and so competition be-
tween the loops is important. For this reason the distribu-
tion of loop masses (1) cannot be naively applied to give a
distribution of masses of objects smaller than galaxies.

loops are massive enough to form Abell clusters, and that
they cluster strongly enough to fit the galaxy-galaxy
correlation function (the correct power law emerges natu-
rally from our simplified model). For an Q=1 cold-
dark-matter-dominated universe, we find consistent values
for Gp, for which the microwave background anisotropy
(discussed in Refs. 7 and 8) is well below the observational
limits. For the 0=0.1 baryon-dominated universe, it is
difficult to form Abell clusters at all. If we ignore this,
the value for Gp obtained from galaxy clustering is also
(but not so far) below the observational bounds. We will
discuss the bounds on Gp from gravitational radiation
elsewhere. ~2

Our determinations of Gp give consistent results, but
nevertheless, because of the approximations in the analy-
ses, should only be viewed as order-of-magnitude deter-
minations. The spherical model is certainly not exact, and
our calculations involve average quantities like P, v, and
the overdensity of Abell clusters, so at this stage one can
hardly do better than an order-of-magnitude estimate.¹teadded. We have also considered the case of an
Q=l neutrino-dominated universe with cosmic strings.
Remarkably enough, the two main calculations of this pa-
per go through unchanged The. formation of Abell clus-
ters is unaltered since the cluster mass M, i is in fact very
similar to the neutrino Jeans mass M„-2X 10' Mo. The
clustering of "galaxy" loops is also unaffected since the
motion of loops is not affected by the matter around
them.

Note added in proof. We recently received a paper from
H. Sato reporting similar calculations.
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