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Recent works have studied the classical cosmology of the early Universe in Kaluza-Klein models
considered as product spaces. In this paper, the growth of cosmological perturbations is examined

as a natural extension of established works concerning three-dimensional cases. Appropriate gauge-
invariant quantities are defined, and the perturbed field equations are expressed in terms of these.
Leading-order solutions are derived for the region in which most of the growth occurs. Difficulties
with the models and the sensitivity to model 'variations are discussed.

I. INTRODUCTION

This paper may be viewed as serving two purposes.
First, it is a generalization of Bardeen's work, ' which es-
tablished a framework in which cosmological perturba-
tions can be studied in a gauge-invariant manner. Here
we consider Kaluza-Klein models, in which the back-
ground space naturally decomposes into a direct product
Mg XMD. M~ (with d =3) is the three-dimensional space
with which we are familiar, and MD is a D-dimensional
compact space which currently has a very small charac-
teristic size RKit (of order similar to the Planck length)
and is essentially static. At early times, of course, the
"extra" space is expected to play an important dynamical
role. Second, the paper is a sequel to earlier work '

studying the background classical behavior of this
scenario. In the earlier papers, and in many other recent
works studying Kaluza-Klein cosmology, ~ it has been
found that there is a period during which the characteris-
tic scale size of the extra dimensions collapses to its final
value, forcing a substantial amount of inflation of our di-
mensions as it does so. The amount of inflation may be
made arbitrarily large, thus solving the so-called flatness
problem. The question as to whether the entropy problem
(why the total entropy in the comoving volume of the
currently observable Universe is so large, viz. , —10ss) has
also been resolved is more a matter of taste. In Ref. 2 it
was shown that this large number may be understood as a
moderate excitation in each of a large (-40) number of
dimensions; on the other hand, the total entropy is indeed
an input parameter.

The paper is basically divided into two parts. First we
derive differential equations for the linearized metric per-
turbations in general, i.e., without assuming any specific
behavior of the background geometry. To do this we fol-
low the methods of Ref. 1 in splitting a general perturba-
tion into several pieces according to the spatial depen-
dence. The problem is more complicated here because the
background space is a direct product. Vfe write

dsz= dt +r (t) "gJ(x )d—x'dxj

+R 2(t) Dg~(X')dX'dX

where g,& and g~ are the metrics for Md and MD,

respectively, assumed to describe spaces of constant cur-
vature K„Ez. In later applications we will take M~ to be
flat and Mn to be a D-sphere with K, =O,Ea ——1.0, but as
yet we work in full generality. In the second part of the
paper we find solutions to these equations assuming that
the behavior of r, R is as described in Refs. 2 and 3. The
dominant feature of this scenario is the extremely rapid
inflation of r as R collapses to RitK. This inflation is
given by a negative power of r =tp —t where to is the
time at which R would reach zero were unknown
(presumably quuitum) effects not to halt its collapse.
Thus, the inflation is different in character from the usual
exponential growth, or even the power-law Ansatze of Ref.
5 where growth is as a positive power of t.

For reasons discussed later, this extremely rapid infla-
tion of r leads to a reversal of the normal roles of the
"growing" and "decaying" modes discussed in Ref. 1 and
other papers, and the singular behavior of the usual "de-
caying" mode results in extremely rapid growth of the
perturbation amplitudes. Indeed, for scalar- and vector-
type perturbations (defined more precisely later) the
growth rate is such that for plausibly sized initial ampli-
tudes, the perturbations will enter the nonlinear regime
before the expansion terminates. This is, of course, a seri-
ous problem as the final amplitude of such perturbations
when they reenter the horizon is generally expected to be-10, and it seems unduly optimistic to hope that non-
linearities could act in such a way as to keep the ampli-
tudes small.

It is important to note, however, that the details of the
singular behavior during collapse are probably the least
reliable feature of the classical analysis. As discussed in
Ref. 3, one might reasonably expect that quantum gravity
effects will moderate this singular behavior, effectively
slowing the expansion rate. %Phile this issue is not essen-
tial to the overall evolution of the Universe, which is ef-
fectively controlled by global conservation considerations
as discussed in Ref. 3, it is important for the present dis-
cussion. As a partial (if ad hoc) treatment of this prob-
lem, we will briefly consider the perturbation amplitudes,
assuming that inflation behaves in an exponential rather
than singular power fashion.

The organization of the paper is as follows. In Secs. II
and III we define the problem to be solved and derive the
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relevant equations, paying particular attention to the per-
turbations of the metric rather than those of the energy-
momentum tensor. In Sec. IV we solve the problem in the
special case of Refs. 2 and 3 and discuss the results in Sec.
V. Concluding remarks are presented in Sec. VI and the
Appendix contains technical material necessary for a full
understanding of the text. While the most technical de-
tails are reserved for the Appendix, Secs. II and III still
contain considerable formalism. The reader who is pri-
marily interested in the specific Kaluza-Klein model ap-
plication may wish to first go directly to Sec. IV.

II. THE METRIC AND ENERGY-MOMENTUM
TENSORS

We begin by defining the spatial dependence of the per-
turbations, as this will be used to split the calculations
into several disjoint parts. In Ref. 1 this was done by
classifying perturbations as scalar (S), vector ( V), or ten-
sor (T) according to whether the spatial dependence was
defined in terms of solutions to a scalar, vector, or tensor
Helmholtz equation. It should be noted that while, e.g.,
tensors may be constructed from a solution to a scalar
Helmholtz equation, the reverse is not true —vector or
tensor perturbations are intrinsically one- or two-index ob-
jects, and by construction, nontrivial tensorial objects with
fewer indices cannot be derived from them. This section
follows closely the treatment given in Ref. 1, so familiari-
ty with that approach would be helpful. There are, how-
ever, certain notational differences.

The complication here is, of course, the fact that the
background space is a direct product of the two spaces
M~ and MD, possibly with different curvatures and so
without necessarily any overall (d +D)-dimensional rota-
tional symmetry. Hence, within our framework there are
no (d+D)-dimensional tensors, only D-dimensional or
d-dimensional ones. Thus, a given perturbation has spa-
tial dependence S, V, or T in each space separately, and
an overall spatial dependence given by the product of
these, so that there are more than three possible overall
dependences. Some possibilities are excluded as we wish
only to construct perturbations to the metric and energy-
momentum tensor, both symmetrical two-index objects.
Let us begin with intrinsically scalar quantities. These are
derived from a scalar Helmholtz equation

{0)~i +k{0)2 {0) 0)i r
(2.1)

g(0) iu +k(0)2g(0)
~a R

where q =q (x'), Q' '=Q' '(X'), 1 =1, . . . , d, '(2 =d
+ j, , d+D. The bar denotes a covariant derivative
with respect to indices in only one or the other space; co-
variant derivatives in the full space-time will be denoted
by a semicolon. We may construct vector and tensor
quantities from q' ' and Q' ', where the tensorial charac-
ter refers to rotations within just one of the spaces. Note
that indices are raised and lowered on q (Q) by g;J ( g,b)
and not

2d 2Dgij(gab=~ gab) .

So, following Ref. 1 we have

(1) (1) (1)+qj
r

Qub (1) Qa ~b+Qb)a
(1) 1

(
(1) (1)

)

(2.4)

Intrinsically tensor quantities are solutions of
{2)ij

~
k +k{2)2 {2)ij

~k r

g(2)ab (c, k(2)2m(2)ab~c+

which are again divergenceless and are also traceless.
We are now in a position to see which types of pertur-

bation can contribute to an arbitrary symmetric two-index
tensor A&„. We have

Hop Apj Apb

A„„= A; Aj (2.6a)

~aO ~ai ~a&

md lt is Msy to sm that, for example, q,(J2) can contribute
only to A,j. We may illustrate which spatial dependences
contribute where in the following way. Denote by, for ex-
ample, SV a quantity which derives from q' ' for its x
dependence and Q"" for its X dependence (regardless of
what indices the quantity actually carries). Then possible
contributions are

SS SS,VS SS,SV
SS,VS SS, VS, TS SS,VS,SV, VV

SS,SV SS,VS,SV, VV SS,SV,ST
(2.6b)

where the blocks in the matrix are the same as those in
Eq. (2.6a).

Thus, we have six separate problems to solve
(SS,SV,ST, VS, VV, TS), but for convenience will group
them into three (SS,SV+ VS+ VV,ST+TS) and refer to
these loosely as scalar, vector, and tensor problems.

The physical interpretation of the various components
is basically determined by the nature of the d-dimensional
part of the spatial dependence, since that is where future
observers of the perturbations will reside. Thus the TS
part, with spatial dependence q' 'jg' ' represents gravita-
tional waves in the ordinary space. The ST part,
representing gravitational waves in the extra space, will be
interpreted as matter perturbations in the ordinary dimen-

{0) l {0) {0) I {0) 1 d {0)
qi {0)9 ~i & eij k{pg V ~ij +

d gija
r r

(2.2)
{0) & {o~ {0) & {0) & D {0)

()) Q
~

Qub (())2Q( b+
R R

which do not inherently solve a Helmholtz equation and
may be reduced to scalar q' 's or Q' 's.

Intrinsically vector quantities are derived from solu-
tions of

(1)i
~ j +k(1)2 (1)i 0

(2.3)
g(1)a )

b +k(1)2~(l)u
ib R

where q"' and Q"' are divergenceless and so cannot be
reduced to scalars. From these we may construct tensors
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sions. So the physical classification will be TS for gravi-
tational waves, VS, VV for vector matter perturbations,
and SS,SV,ST for scalar matter perturbations. It will be
observed that this classification differs from the way in
which the problem naturally splits from the purely
mathematical point of view.

We may now parametrize the perturbations to the
metric and energy-momentum tensors. The spatial depen-
dence of the perturbations is given by one or other of the
above possibilities, while the amplitudes will be time-
dependent functions. We consider each of the scalar, vec-
tor, and tensor problems in turn.

and henceforth we set 8m G =1. This generalization of the
perfect-fiuid form is sufficient for illustrative purposes;
we do not wish to make detailed assumptions about the
matter content of such models. One obvious further gen-
eralization would be to use different pressures p and P in
the ordinary and extra dimensions. Here we restrict atten-
tion to the case of a common background pressure in all
dimensions, and where necessary assume a background
equation of state p =pin. We do, however, allow dif-
ferent pressure perturbations in the different spaces, as
wBl be seen below. The background equation of motion
for the matter is

..=2d. .gij =r gij s

(2.7a)

A. The scalar problem

The background space-time metric is [from Eq. (1.1)]

goo = —&

goi =gOo=gia =O s

p r R+ d +D— =—0.
p+p r R

(2.8c)

In Sec. IV we shall see that considerations of the matter
content are unimportant in determining the dominant
behavior of the perturbations.

The perturbed fluid velocity is given by

u'=1 —aq("g")
2D

gab =R gob

This gives a background Ricci tensor
T

0R o=— Rd +D—
r R

r r R +r+—d—+D—+(d —1)
r r R r2

T

R R r R+—d—+D—+(D —1)
R R r R

where an overdot denotes a time derivative. The per-
turbed metric may be parametrized as

U(0)
Q

i (0)ig (Ol

r
y(0)

(0)g(0)a
R

so thai

where

U
(0) (0)ig (0) 'dt '

V(0) {{))~(0)a R
dX

v

uo ———(1+Aq(0)Q(o))

u r(v(0) b(0))q(0)g(0)

R( V(0) g(0)) (0)g(o)

(2.9a)

(2.9b)

(2.9c)

( 1+2gq (0)g(0) )

rb(0) (0)m(0)
go; ———r

g Rg(0)q(0)g(0)
(2.7c)

gr2[(1+2' q(0)g(0))dg+2it(0)q(0)g(0)]

g, =R [(1+2H q'0'g' ') g, +2H'0)q{ 'g,' '],

T"„=p8'„+(p+p)u "u„, (2.8a)

where u" is the fluid velocity, p the energy density, and p
the pressure. The Einstein equations are then given by

$G&„=bR &„—
2 P'PR ~2 =—8n'G5T"„, (2.8b)

where G is the (d+D)-dimensional Newton's constant

where A, . . . , G{ ' are (assumed small for 1inearizmi
theory to be valid) functions of t. Note that in contrast
with Ref. 1 we do not use conformal time.

Now consider the energy-momentum tensor. In the
background we take this to be given by

So we have

To p(1+g.q(0)g(0))

Tor(p+p)(U(0)b(0))q(0)g{0)

To R (p +p }(V(0) g (0)
)q (0)g(0)

Ti p(1+~ q(0)g(0))8i +p~(0)q(0)i g(0)

T+ p( 1 +11 q(0)g(0))()u +plI(0)q(0)g(0)a

(2.10)

S. The vector problem

Since we cannot construct a scalar from solutions to
Eq. (2.3), we have the following perturbed metric:

T~ p ~(o)q(0)ig (0)
r

For a perfect fluid we can expect the various transverse
pressure terms m'T ', lI'To', and ~z ' to vanish, while
mL ——IIL ——5. The transverse pressure contrasts also van-
ish in the vector and tensor cases.
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goo= —l

g();
— r—b q; Q

(1) (1) (0)

g0, = R—B q Q,(1) (0} (1)

(2.11)

ever, it may readily be checked that our expressions
reduce to the correct ones on taking d =3 and D =0.

III. GAUGE DEPENDENCE
AND GAUGE-INVARIANT QUANTITIES

gij=r ( g,i+2hz' qj Q )
2 d (1) (1) (0)

R 2(D +2~()) (0)Q(1) )

2rR(G(01) (0)Q(1)+G(10) (1)Q(0)+G(11) (1)Q(l))gia —~ u a a

The fluid velocity is

u =1
U(1)

u i (1)iQ (0) (2.12a)

thus giving the energy-momentum tensor

T 0= —p
0

T0 r(p+p)(0(1) b( ll)q(1)Q(0)

T0 R(p+p)( P()) B(l))q(0)Q(1)

T
~ ~p5 J+p7rT q JQ
i i (1) (1)i (0}

Ta pea +p 11(1 )q (0)
Q

(1)

(2.12b)

Ti (~(01) (0)i~(1}+~(10) (1)i~(o) 1 ~(11) (1)i~(1))t

T

C. The tensor problem

For the tensor problem there are still fewer nontrivial
terms in the metric tensor, as we cannot construct scalars
or vectors from the solutions of Eq. (2.5). Here we have

Before approaching the solutions to these problems, the
matter of choice of coordinate gauge must be addressed.
It is by now well understood that such a choice of gauge
can lead to difficulties of interpretation and spurious non-
physical effects. Therefore, the relevant differential equa-
tions will be derived without making a particular choice
of gauge, as in Ref. 1. We will shortly combine the metric
perturbations to define sets of gauge-invariant quantities
for the various cases, based again on Ref. 1, but appropri-
ately generalized. These quantities are then related to
gauge-invariant combinations of the Ricci curvature ten-
sor components. Complications arise here for the scalar
case, as the gauge-invariant quantities which naturally ap-
pear in the equations are not simply related to those
which seem more fundamental from the point of view of
the metric. However, in the next section we will show
that in the region of interest, the differential equations
simplify sufficiently to allow easy solution. These results
may be confirmed by working in a particular gauge and
using answers obtained there to determine the time depen-
dence of the gauge-invariant quantities from the expres-
sions given below. The vector and tensor cases do not
suffer from the same problems, as the Einstein equations
are readily expressed in terms of the relevant gauge-
invariant quantities.

Consider first the question of gauge transformations for
each of the three cases.

A. The scalar problem. Coordinate transformations
here are parametrized in terms of three arbitrary func-
tions of time:

goo= —& ~

goi =goo =gia =0 s

g;J =r ( g;J. +2))iT q;J Q ),2 d (2) (2) (0)

R 2(Dg +2~(2)q(0)Q(2))

Also

u'= l,
u'=u'=0,

and so finally

T 0= —p
0

(2.13)

(2.14a)

t =t+ T (0'Q(0)

x i & i+ I(0) (0)iri(0)

g o ~a+I (0) (0)~(0)a

(3.1)

where T, I,L are functions of t. Using these we readily
find (see Ref. I for details)

A=A —T,
k (0)

b (0) b(0)+ " T+rt (0)

T i gi + (2) (2)i ~(o)

Ta ga + II(2) (0)~(2)ae=P b

(2.14b)

(0)kg
HL ——HL — L ——T,

D

(3.2)

We are now in a position to be able to work out the per-
turbations in the Ricci tensor M Expressions for the
various pieces of this tensor for the different problems
may be found in the Appendix. It should be noted again
that our conventions regarding choice of time coordinate,
overall sign of R" etc., differ from those of Ref. 1; how-

p (0) I (0)+k(0)I(o)

~ (o) ~(0}+k(o)1 (o)
T T

k(0) k(o)
(0) G(o) R I I(0) P

L (0)
2 8 2 r
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Regarding the energy-momentum tensor perturbations, we
similarly find that

U
(0) U(0)+rI (0)

V("=V("+RI."',
(3.3)

such combinations as we start with eight independent
pieces but have three arbitrary coordinate transforma-
tions}:

56') ——5'~56 b,

56'b —5'—b56', ,

FL —'FL T

lii ——IIL — T .

56', ,

5gO 5g(0) )i 5go ~a
k(0)2 i k(0)2 gr R

56 2, ~

(3.7)

The other quantities in T „are gauge invariant. The last
three of the above could be rewritten in terms of r and 8
using the equations of motion and the equation of state
for the matter, if desired.

B. The vector problem. For the vectors we have two
possible arbitrary coordinate transformations,

x i &i+ f(l) (1)i~(0)

g a ~a+I (1) (0)~(1)a
t

and similarly to the above we use these to find

b ()) b(()+pl(()

g (1) g(1)+RI (1)

1) h (1)+ k
(1)I(1)

g (1) ~(1)+k(1)L ())

k(0)
g (10) g (10)+ f())

2 R
k(0)

g (01) g(01)+ ~ ~
L (1)

2 r

G (11) G(11)

(3.4)

(3.5}

The energy-momentum tensor perturbations are simpler
than in the scalar case:

The first three of these pick out the various transverse
parts of the Ricci tensor, and generalize one of Bardeen's
choices. ' The fourth generalizes the other combination
used in Ref. 1, and the fifth is simply a convenient choice.

We now turn to choosing gauge-invariant combinations
of the metric perturbations, which we wish to relate to the
quantities in Eq. (3.7). Clearly, many such combinations
are possible, but the ones defined below again use Ref. 1

as a starting point, and seem to us to be suitable. The
first two come directly from Ref. 1:

(0)

Cb=hL+ + b — ——h T
r r (o) r r ~

(o)

k (0) p k (0)2

(3.8)
(0) 2HT R R (0) R R (o)

H L g)
+ (0) R (Q)2

ki( kx

These are taken' to physically represent curvature pertur-
bations in the ordinary and extra dimensions, respectively.
Note that on reduction to three dimensions, 4zz vanishes
and 4~ is precisely Bardeen's 4H.

The next three choices are not quite so straightforward,
and are chosen in order that the first two gauge-invariant
combinations of the Ricci tensor pieces of Eq. (3.7) as-
sume particularly simple forms. The first two are expli-
citly given by

0 (1) U(1)+Pj (1)

p( ) y( )+gL ( )
(3.6)

@(r) g+ "
b (0)+ r " +D b(0)

k(0) k(0)
T

with all other quantities gauge invariant.
C. The tensor problem. All associated quantities are

gauge invariant for this case, so the problem does not
arise.

We now turn to the issue of choosing appropriate
gauge-invariant quantities to study for each case. This
choice of gauge-invariant quantities (especially for the
scalar problem) goes hand in hand with choosing gauge-
invariant combinations of the various pieces of the Ein-
stein equations, so we will consider those first.

r
e

h' '+ 2—+D h' '—
k(0)2 T R

T'

H(0)
T+D HL+

(3.9)

e(„")=~+ i "'+ d "+ ~")——
(0) k(o) r R

r

R

A. The scalar problem

The following combinations are found to be gauge in-
variant, using the background Einstein equations [Eq.
(2.8b)] where necessary (note that we expect to find five

I, (0)
T+d hL+

Note that on reduction to D =0, 4z' becomes Bardeen's
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4z. 4z"' is not gauge invariant if one naively sets D =0,
but this does not matter since it is always multiplied by a
coefficient which vanishes in this limit. The final gauge-
invariant combination is based on 6' ', which does not
appear in the ones defined so far:

k(0) R 2 k(0) (3.10)

which vanishes on reduction to D =0. In terms of these
4's, then, we readily find that

(0)2 k (0)

1 g56'b ——5'b56' =
D i.'

k(0)2 k(0) R
4(g '+(D —2)48+2 (0)

—46 q' 'Q' 'b
R k(0) r

(3.11)

which should be compared with Eq. (4.2) of Ref. 1.

Before turning to the other parts of Eq. (3.7) it is convenient to define an auxiliary gauge-invariant quantity which will
be used in these expressions. We set

r R 'R "P——46———hl +r R R d
r HT(0)

HL+r D (3.12a)

We may express this in terms of the earlier variables:

0 r R
d —+D

r R
r R (r)
r R

R —@"H-
R

—d——@H '+@~
r' R

R r R
(3.12b)

Consider next the fourth quantity in Eq. (3.7), which is a direct generalization from Ref. 1. Using the expressions
given above and in the Appendix, we find that

(0)2 r
T

—560. )'= (d —1)
'

k ) RR

dE,
1 —

(0)2 4I,
k,

k' '

R 2 k(0)2
(3.13a)

where

k (0)2 '
k (0)2r R

d DR
r'

1r 1R
. +h+ . @H

2 r 2
rR

I (0)I (0)
r R

k(0)2k (0)2 ~ k (0)2 '
k (0)2

rR r R r R R r

kr ka I "R r. R R. r

k(0)2r R+—4 'd—
r R2

' k(0)2 rDR +2d-
R r2 r

(3.13b)

Note that =i vanishes on reduction to D =0, so that in this limit we reproduce Eq. (4.1) of Ref. 1.
A representation for the third expression in Eq. (3.7) is given by the combination

k(0)k(0)
6', =—— [C'~'+4 ~"'+(d —2)4 b+(D —2)C rr —2:-2]q' "Q,' ',2r rR

where we have introduced a second auxiliary gauge-invariant quantity:

(3.14a)
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rR - r R

r+ r
R
R

+(d —1) — (D —d +2)—— (D +—1)
r R

r r R
R j'R—2(D —1) 4GR R

r' R
r R

r R
—.C'I ——.C'8 —C'6
r R

(3.14b)

Thjs like @t&a~, is not gauge invariant after reduction to D =0, but again always appears with vanishing coefficient under
these condjtjons. Note that we may use the background equations of motion to rewrite the quantity in square brackets
above in the simpler, manifestly symmetric r~R form:

2

— (d —1) +(D —1) + ———r'

r2 R2 r R
(3.14c)

We will, in the future, make similar simplifications.
The final equation, coming from the trace, is by far the most complicated in the general situation. We will see in the

next section that in the region of primary interest it simplifies greatly. Explicitly in terms of the various gauge-invariant
quantities defined above we have

5G"i={n—1)q' 'g' ' d es+ (d+1)—+2D—e$ ——
r R r'

+(d +1)—r r
r r

'2

D(d +1)——r r' R
r r R

—D-2r
r

R
R

'2
r—D—
r

R d —1 r'kr
d

(0)2

+(d +1) — +D——+r r R r

r r R dry

~ 1

+DIl.c.~u. c. I+-,' e, d —"

r

r

R n+1—D ——pR n

r' R
d—D—

r
(3.15)

where tl. c.~u.c. I signifies r~R, d~D, etc., froin the
preceding curly brackets.

Defining gauge-invariant combinations for the matter
degrees of freedom is rather easier. We have for the fiuid
velocity

(o) U(o) r
I, (o)

k(0)
P

y(0) y(0) R H (0)
k(o)

R

(3.16a)

For the energy density there are various choices analogous
to those of Ref. 1:

0

5+ n + d
r

(
(0) b {0))

J8
k (0)

+D ( y(0) g(0))
k(0)

R

r

n+l
d

r ~(o) r j (0)
n k(0) k(0)

P

g(0) ~ (0)
k(0) k(o)

R R

(3.16b)
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(0)

4g'+(d —2)@s+2 —@G =p&T
r k(0) g

k(0)2
r

k(0)2 k(0)
C(x)+(D —2)+H+2 „'„,—+G =pIIF'

(0) (0)

[4„"+4)„+(d —2)@s+ (D —2)@H—2:2l
1 kp ka

( ) (g)
2 rR

=pg(0), (3.17a)

The physical interpretations of these are that they mea-
sure energy-density perturbations relative to spacelike hy-
persurfaces (respectively) at rest with respect to the matter
or whose normal unit vectors have zero shear.

$o we may now write down the Einstein equations for
the scalar case, in the order given in Eq. (3.7},but omit-
ting the spatial dependence which simply gives an overall
factor

k"' k'" ~R r r

k(0) g k(0)

56 2
——0.

B. The vector problem

Here all of the pieces of the Ricci tensor are separately
gauge invariant so some of the problems encountered in
the scalar case do not arise. As explained in $ec. II, the
spatial dependence of the various perturbation amplitudes
allows us to separate the vector problem into the three
picees VS, SV, and VV, which we shall consider in turn.

The nonzero Ricci tensor pieces contributing to the VS
case are (see the Appendix) 5R i, 5R'J, and part of M',
which we shall denote by M', (~). We define the follow-
ing gauge-invariant combinations of the metric perturba-
tion amplitudes:

k(0)2
(d —1)

j:r
1 —d (0)2 C'h

k,
k(0)2

R+(D —1) 1 D—@H+=1=—pe
R k(0)2 m

R

(1) r '
(1)

k, '

k(0)
J„=G —— —hr .(1()) 1 R P (1)

2 k(') a

(3.18a)

5G )„(p5——dpmL—
,

—DpIIL, )=p 5— nL ———IIL,
d B
7k 71

Compare the first of the above to Eq. (4.4) and the fourth
to Eq. (4.3) of Ref. 1. In a perfect fluid, we can apply the
remarks that followed Eq. (2.10) to find that

(0)

4g +(d —2)(I)s ———2 —4G,(r) r
k(0) g

(0)

(pg + (D —2)(I)i)( ———2 —4G,(R) k,
(0) r (3.17b)

The first of these is precisely Bardeen's )Ii; the second van-
ishes on reduction to D =0.

Gauge-invariant versions of the matter velocity pertur-
bation are easily derived. There are two basic choices:
namely,

V(l) V(1) "
h (1)

T
I'

U, =u ' —b =u,(1) (1) (1)
(3.181)

All other quantities in the energy-momentum tensor are
gauge invariant. $o, in terms of these quantities the Ein-
stein equations 5G"„=5T"„maybe written as

P

5g0 rq ())g(0),
( l)2

'

g
'

k(0)2

1

(0)
kit . „' RJ ————J
R ' r R

=p(p+p)V g(1)g(0)

(0)
5gi ~(1)i g(0)

J

(0)
)Ii„+ (d —1}—+D 4'„+2 J, —r

~(1) (1)i ~(0)—PAT g (3.19)

k (0)
5gi ( vs) ~ (()i~(0)

V

0

1 r' R-q +—(d+1)—+(D —2)—qr r R

r R
k„"' ' r

' J,+ d—+D—J,+
k(1)2

(D —1)—
r2 R~ r R

p~()0)q ( 1 )ig (0)
r
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Note that the first of these corresponds to Eq (.4.12) of Ref. 1.
We may repeat a similar process for the SV case. Here we have

k (0)

Vg ——8 — H T, Jg ——6 —— —Hp(1) r ' (1) (01) 1 kr 8
k() ' 2 k(1)

(3.20)

which lead to the Einstein equations

k(0}2 k(1)2

r2 g2

k(0)
~it+ ———&itr r

=a 1)o+p) V,q(0)g.(i),

(1) ~ k(0)
5G b=q( )Q( b 4'j((+ d—+(D —1)—}p +2 J„r r

g(1) (0)~(1)a
TQ m b~ (3.21)

k (0)

5g i (srj (0)ir}(l)
r r

~
~ 1 r'

T@'ll+ —(d —2)—+(D+ 1)—
2 r

r - r R kit
(1)2

k,'"
' Ja+ d—+D Ja+ ——(d —1)

71,2

t

r
r E.

~(01) (0)i~ (1)
r

Regarding the VV case all of the relevant amplitudes are already gauge invariant, so we simply have the one equation

(1)2 (1)2
ggi ( VV) q( j}ig()} g (11)+ d" +D g (ii)+ ~ + ii " g(ll}

r r R 7'2 g 2 r

(11) (1)i~(1)
r

(3.22)

C. The tensor problem

As before, problems of gauge invariance do not arise, so we have the two following differential equations to consider:

0

5gi q(2)i g(0) g (2)+ d
r +D I (2)+ k,"" X k""

+2, +, h
r r

(2) (2)i.~(0)—p~z' g J'~ s

0

gga (0)g(2)u ~ (2)+ d
r +D ~ H (2)+
r

scr R
~

8 H(2),2+~2+ ~2,

(3.23)

g(2) (0)m(2)a

The first of these corresponds to Eq. (4.14) of Ref. 1.
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IV. KALUZA-KLEIN INFLATION
AND THE GROWTH OF PERTURBATIONS

' 1/2

1— D(n —1)
(4.1)

where b and 8 are constants, r =to t and to is t—he time
at which R would reach zero were the collapse not to
stop. For d =3 and D =40, y =0.0645 and i? = —0.5271.
There are serious conceptual problems with assuming that
a classical approximation remains valid in this period, and
we shall return to discuss this later.

(4) Rapid inflation of r continues even after R =R~K
during an interval in which the temperature drops suffi-
ciently for the radiation to "freeze-out" of the extra di-
mensions. Once this has happened, normal Robertson-
Walker behavior with r-(t —t)' ensures (t is an arbi-
trary constant of integration) and asymptotically the only
relics of the earlier multi-dimensional era are the conse-
quences of inflation.

Particularly relevant to solving the perturbation equa-
tions are the following considerations. First, the fact that
r and R vary as powers of r in period (3), where r—+0 as
R~O, reverses the conventional ideas concerning the
growth of perturbations. The usual result' is that there
are two modes (considered as powers of r} a "decaying—"
mode typically going as t ', and a "growing" mode
which is constant or grows as a positive power of t.
Clearly, in the "time-reversed" scenario here a mode
which behaves as, say, ~ ' will dominate over a mode
which is constant or goes as a positive power of ~, thus
leading to the reversal of roles. It will be nec4msary to find
those solutions of the equations which are most singular

In this section we find solutions to the above equations
assuming that the behavior of r and R is as described in
earlier work. The main features of this scenario are the
following.

(1) After an initial big bang with r =R =0, we have
r-R t-i~'"+", where n =d+D. For illustrative pur-
poses ' we will from time to time in this section choose
d =3,D =40.

(2) Both r and R then remain roughly constant for
some time —this will be referred to as the "resting phase. "
During this epoch the horizon length grows to be larger
than r, so that causal processes can homogenize matter in
our dimensions.

(3) R then collapses to its final value RK~ and is
presumed constant thereafter. This drives an extremely
rapid inflation of r. We presume that the value of R&K is
given by the same unknown processes (quantum gravity'?)
which halt the collapse, and regard it simply as an input
parameter to the classical model described here. For sim-
plicity we will set RKK ——1 (all lengths and time intervals
are expressed in Planck units}, but this is not essential.
During this epoch we have

" 1/2

1+ d(n —1)

R -Br~, y=

as r—+0. With R~~ —1, r =50 characterizes the middle
of the resting phase, and the collapse halts around

10—31

Also important is the fact that the inflation is driven by
the terms in Einstein's equations which represent the
geometric coupling between the two spaces. Thus, the
general form of the inflation is already contained in
Einstein s equations once we have included our basic as-
sumptions concerning the geometry of space, in particu-
lar, that MD has positive curvature. The explicit factori-
zation between M~ and Mn ensures that the evolution of
the two spaces is spatially uniform in this approximation.
All details of the microphysics which may be responsible
for the dynamics of the compactification of the D extra
dimensions is hidden in the effective curvature Ea. This
situation is to be contrasted with the more standard
scenarios7 of infiation where the responsible microphysics
is more explicit. In the present approximation it can be
shown ' that during inflation the matter or curvature
terms in Eqs. (2.7b) and (2.8b} are less singular than the
derivative terms. Thus, to leading order it is sufficient to
solve the simpler equations 56&„=0 and completely ig-
nore the matter terms. This is, of course, only possible be-
cause of the first point, that most of the growth of the
perturbations happens in epoch (3). Computer calcula-
tions are currently in progress confirming the belief that
this epoch is the one in which most of the growth occurs.
During the resting phase, the matter terms presumably
play an important physical role. We can, in fact, use the
equations of the previous section to relate the perturba-
tions of interest to the statistical fluctuations presumed to
be present during the resting phase in, for example, the
"matter" energy density of Eq. (3.16). This connection
can then yield an estimate of the initial conditions for the
perturbations at the onset of the inflationary phase. The
details of this connection are not relevant for the present
discussion. We will need only that the statistical fluctua-
tions and the perturbations are of about the same order (to
within a factor of 10 ). We treat the "matter" as a relativ-
istic gas of temperature 10 (in Planck units). Hence, if
we consider a volume containing enough energy to subse-
quently condense into a galaxy, —10 Planck masses, and
thus —10 "particles, " we might expect energy density
contrasts of order liv N —10 5. This is clearly only a
crude estimate but, as will be seen shortly, our general
conclusions will be unchanged whether this number is
10 or 10

r ~ R
r ~' R

dq+Dy=dq +Dy =1,
1 1 1

r R

(4.2)

A. The scalar prablem

We wish to solve for the time dependence of 4i„etc., as
~~0. To do this, we take the expressions given in the
previous section and use the following approximations
which are valid in this limit:
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Note that with the last approximation, a leading-order re-
sult wiB not give the spectrum of k„and kR. Thus, in
this approximation, the dominant contribution to the
growth of the perturbations is independent of the wave-

length characterizing the perturbation. The inflation pro-

cess will preserve the initial spectrum in k, . Then the five
parts of Eq. (3.17) give the following equations in this re-
gion (note that derivatives are still with respect to t, not
r}

{a)

4g +(d —2)As+2 —4G ——0,(r) r
k(0) g

(0)
4'g")+(D —2)CD+2 —4g ——0,k„"' r

k (0)k (0) k (0)2 k (0)2
r R R r

~2+ 46 ——0,R2 r2 (4.3)

k(0)2
(d —1)

dK„ k( ) DK„
1 — C)s +(D —1) 1 — hatt +=)——0,k(0)2 g 2 k(0)2

r

2+y —Dy @ (2—Dy}(1—y}q ++@(R)+y(1 y} @(R)

dg(1 —rl ) Dy(1 —y) =0.

4(g) ———(d —2)@s-~ + ",
C(,")= (D 2)e -~—'+2—&, -

(4.4)

It is straightforward to show that the most singular
solutions of the above equations are (recall that d/dt
= —d /dr)

Thus, as noted in the Introduction and above, the growth
in the perturbation ampHtudes for any reasonable initial
conditions (such as those discussed above) is such that the
linearized perturbation theory developed here will likely
have become invalid. The growth of the other amplitudes
is not so extreme, e.g.,

@A(final)

@h(initial)

—2+2fl
+(final)

+(initial)

In a similar manner one can determine the asymptotic v.

dependence of the auxiliary qiuuitities 4&, "i, and:-2 by
using the expressions given above and in the previous sec-
tion.

All of the above results, including those concerning the
auxiliary quantities, may be confirmed by working within
a specific gauge (b' ) =8( '=6' '=0 is particularly con-
venient}. One may then determine the behavior of the
various 4's from that of the original metric perturbations
A, etc., and ming the expressions given in Sec. III.

It remains to consider the consequences of this growth
rate. %'e have

~(final)

' —2+2/
1061

nitial)

0—y
&(final)

&{initial)

-2X 10" .
(4.6)

B. The vector problem

The above analysis ignores the fact that the inflation
of r continues after the collapse has stopped and while
the extra dimensions are decoupling from the radiation.
In this e) h the scale factor behaves like
r-(t t) "A("+" and—it would be possible to perform
similar calculations to the above arith this behavior. In
view of the results obtained, however, we do not consider
this worthwhile.

—3.Q54
10

50
1099 (4.5) Consider first the VS part. Near the collapse time, Eq.

(3.19}becomes [J,=(d/dt) Jete.]
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q —y R
Jr + Jr (p)2k'(

k(i)2

k {0)2

%,=0,
R

2

6 (ii) 16 (i() (~ —y) 6(ii) 0
'r

with a most singular solution

6{11) g —y

(4.11a)

(4.11b)

Jr + (0) +r
2kR

(d —1)q+Dy @r (4.7a)

1+q—2y @
7

The third of these may, in fact, be derived from the oth-
ers, so we need only consider the first two. These may be
manipulated in such a way as to get separate equations for
J, and%„

1 —2(i) —y) J (r) —y)' Jr r

(4.7b)
1 —2(i) —y) (1—r))(1+q —2y) %„=0,

Thus we find

G(11)
( final )

~(11)~ (initial)

(4.11c)

C. The tensor problem

Note that, of all the vector amplitudes, only %„and )pa
are likely to cause problems for initial conditions such as
those discussed above, J„Ja,and 6""all stay sufficient-
ly small not to cause difficulties. However, the different
amplitudes are only decoupled by the spatial dependence
to leading order. Hence, if one of the amplitudes cannot
be treated by linearized theory, useful conclusions regard-
ing the other amplitudes cannot be drawn either.

which have most singular solutions

J, -~~-~, %,-~~-'.
So for the VS case we have

(4.8)

As for the VV part of the vector problem, finding the
solution here is straightforward. Equation (3.23) gives us,
near collapse,

Jr (fInal)

Jr(initial)

r (final)
9 1049

+r (initial)

(4.9)
HT ——HT ——0

7

with most singular solutions

(4.12a)

(4.12b)

1 (i) —y) 2

7.
(4.10a)

1+2(il —y) (1—y)(1+y —2i)) %„=0,

which have most singular solutions

This gives an overall growth of

JR (final)

JR (initial }

R (fmal) 4 1030
+R(initial}

(4.10b)

(4.10c)

The VV part has only the one equation for 6' "' and so
is simpler than the above cases. Near collapse we have

Once again it is likely that at least one of the ampli-
tudes will have grown to the extent that linearized theory
will no longer be valid. Note that the overall tendency is
for the vector amplitudes to be less singular than the sca-
lar ones; this trend will continue so that the tensor ampli-
tudes are least singular.

Next consider the SV part of the vector problem. In a
similar way to the above we may manipulate Eq. (3.21) to
give the following differential equations in the limit v~0:

Thus, there is negligible growth during the inflationary
period. One may similarly show that during the decou-
pling epoch (and indeed during the subsequent
Robertson-Walker phase) these amplitudes remain con-
stant. Hence the tensor amplitudes never create difficul-
ties regarding nonlinearities; on the other hand, they never
grow large enough to play a useful role in galaxy forma-
tion.

V. DISCUSSION

The most outstanding feature of these calculations is
the continued (indeed, phenomenal) growth of perturba-
tions outside the particle horizon. This is in direct con-
tradiction with conventional inflationary models, where
physical effects are forbidden to be coherent over scales
larger than the horizon. This contrast exemplifies the
fundamentally different nature of our model, or at least
our approximation, and requires some explanation.

As we noted earlier the Kaluza-IGein —type inflation is
quite different from the more usual picture where the in-
flation is typically "driven" by a scalar field. The explicit
dependence on the microphysics of this field, especially its
propagation, guarantees that no process can be coherent
on scales larger than the horizon. Hence, physical pertur-
bations cannot grow while outside of the horizon. In the
present Kaluza-Klein model the inflation is "driven" in-
stead by the geometric coupling between the compactify-
ing D-dimensional space and the usual d-dimensional flat
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p, tr-be ', R-RxK+Be (5.1}

where b,B,p„pt( are constants and the dimensionful scale
is presumably supphed by the Planck length. The motiva-
tion for this comes from the considerations mentioned last
paragraph. There the problem was that the r/r terms in
the curvature tensor became too large", it is not unreason-
able to suppose that quantum gravity effects limit their
size, and this is the effect of Eq. (5.1). We may now sub-
stitute these into the various equations for the perturba-
tion amplitudes. We again assume (this time with rather
less justification} that we may neglect the matter terms
and simply solve 56&„=0. %e also work in the long-
wavelength limit in which we may neglect terms like
kz /R or k, /r in comparison with constants. Note, in
particular, that, whereas the original singular power

space. By assumption the collapse of the D dimensions
and the inflation of the d dimensions occurs uniformly in
all space at the same time. Questions of coherence of the
underlying microphysics which might possibly produce
the compactification simply cannot arise. This assumed
spatial uniformity of the inflation carries over directly to
the uniform inflation of the perturbation amplitudes.
Moreover, the most singular part of this inflation is expli-
citly independent of the wave numbers k, and k~ and
nothing prevents the perturbations from continuing to
grow outside of the horizon. A more realistic description
of this process employing an explicit dynamical compacti-
flcation mechanism would presumably display features
more similar ta the usual inflation scenario. Without
such an explicit model we can say little more about this
issue but turn instead to another question.

We have earlier alluded to the fact that the classical
framework described here cannot reasonably be expected
to remain valid throughout the callapse. This is for the
following reason:2 the Ricci curvature tensor includes
derivative terms like r'/r which as ~~0 are of order I/~.
By the time the collapse stops, i-10 ' and so we are ex-

citing frequencies of order 10 '. Recall that throughout
we work in units of the Planck length, so one might ex-

pect quantum effects to become importiint when the cur-
vature components become of order 1 and certainly before
it is of order 10 '. Thus, the classical results can at best
be suggestive. Had these results been promising as re-
gards final size of the perturbation amplitudes, then one
would still have to verify that quantum effects did not
disrupt the general picture. However, the classical results
are disappointing in the sense that the scheme as described
appe irs to be ruled out.

We can, however, ask the following question. How sen-
sitive are the results obtained to different assumptions
about the behavior of the scale factors r and R? If the re-
sults from using different growth rates are invariably too
large, then Kaluza-Klein inflation must be ruled out as a
viable scheme. If, on the other hand, the perturbation
amplitudes need not grow so large (with different
behavior but the same total amount of inflation of r) then
the scheme retains viability. It then, however, becomes a
rather more delicate problem to handle correctly. As an
illustrative example consider

~{final)

~{initial)
(5.2)

Now, within the framework described in Refs. 2 and 3,
r(; „,))-100 and r(r, i) —103'. This latter figure is the
order of magnitude by the time the radiation has decou-
pled from the extra dimensions and ordinary evolution
has commenced. So we have

Jr {final)
1O29

Jr {initial)
(5.3)

Thus, although the amplitude grows by a large factor, it
may remain sufficiently small that linearized theory is
still reliable.

C. The tensor problem. Here consideration of Eq.
(3.23) shows that both hP) and Hr(i) have one decaying
and one constant solution.

So we see that results using Eq. (5.1) as possible
behavior of r and R are rather more encauraging than the
earlier ones with power-law behavior given by Eq. (4.1).
The perturbation amplitudes may never become so large
as to render linea)rized theory invalid and for initial per-
turbatians of order 10 the growth rate of at least one
of them gives final amplitudes of a magnitude compatible
with current requirements. On the other hand, we do not
wish to overemphasize these results. We regard them only
as an illustration that the various amplitudes need not
grow as much as the earlier ones indicated, and that in
particular their final magnitudes can be of a useful size.
Evidently the results are sensitive to the detailed behavior
of r and R during inflation, and not just to the overall
change of scale.

VI. CONCLUSIONS

In this paper we have described a general framework in
which to analyze cosmological perturbations in Kaluza-
Klein models. The scheme does not assume any particu-
lar behavior of the background geometry, other than that

behavior (r'/r and R/R —1/~ as v —+0) led to differential
equations with singular coefficients (I/r or I/r ) and
hence singular power solutions, this "moderated" scenario
(r'/r, R/R -canst) leads to constant coefficients and ex-
ponential behavior (growing, damped, or oscillating).

A. The scalar problem. Once again, we have the five
parts of Eq. (3.17a) to consider, this time in a different re-
gime. We find that all of the fundamental gauge-
invariant quantities 4~, 4&, 4q', 4z"', and 46 have solu-
tions which either oscillate or decay with time. Thus the
solution here is entirely different from that found earlier,
where the scalar amplitudes were extremely singular. The
initial statistical amphtudes assumed in this paper will nat
grow to the size currently required for galaxy formation.

B. The vectar problem. For this case we need to con-
sider Eqs. (4.7a}, (4.10a), and (3.22) in the appropriate lim-
it. It is straightforward ta find that the most singular
solution grows as e ' [ignoring (k/R) terms], i.e., no
faster than the scale r itself. Thus, for example,

~r {fmal)
=explp (t(fnal) (i 'tia)))I

~r {initial )
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it may be described classically by the two scale factors r
and R. The method uses and generalizes Bardeen's
gauge-invariant formalism which was originally
developed for an ordinary Friedmann-Robertson-Walker
(FRW) geometry. Within linearized perturbation theory
one may split a general perturbation into several distinct
pieces according to their spatial dependence and then
solve for each piece separately. Just as in Ref. 1, various
differential equations may be derived for gauge-invariant
combinations of the perturbation amplitudes here, how-
ever, both the equation and the expressions for the gauge-
invariant quantities in terms of the metric perturbations
are more complicated than in the original work.

Having derived the equations, we have substituted in
the behavior of r and R found in earlier work. During
an epoch in which R collapses to its final value RitK and
r inflates very rapidly, the perturbation amplitudes also
grow extremely rapidly. We find that some of the ampli-
tudes grow sufficiently that for any reasonable initial size
of perturbation the linearized theory developed here will
have broken down. Not all of the amplitudes are so
singular, and indeed most will remain very much less than
of order 1 throughout. The decoupling of modes is only
valid to leading order, however, and so the entire analysis
must be called into question. It is extremely doubtful that
nonlinear effects could keep all of the amplitudes as small
as the size currently favored for galaxy formation
(-10 ) and so the scheme as described must be ruled
out.

However, there are additional poorly understood effects
in operation in this epoch, and we have argued that quan-

turn gravity cannot be ignored. In particular, it is the re-

gime when r/r,
~
R /R

~
&&1 which accounts for the large

perturbations and which is most suspect in the classical
analysis. As a preliminary investigation into how sensi-
tive the results for the perturbations are to different
behavior of the background space, we have considered
what would happen if the inflation were of exponential
(r'/r, R/R -const) rather than singular power form. We
find that the overall growth of the perturbations is much
less, and in fact can give answers which are not unreason-
ably far from the desired result. We therefore conclude
that results are very sensitive to the detailed behavior of
the scale factors. This is fortunate in that the basic idea
of Kaluza-Klein inflation need not be discarded, but it
makes it very difficult to draw broad conclusions. One
interesting fact to emerge is that initial statistical fluctua-
tions can grow in these models to become important; in
the standard I'RW model this is not the case. Clearly, the
problem demands a careful analysis of behavior during
the collapse and decouphng periods.
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tions, particularly S. M. Barr for continued interest and
L. S. Brown for initially raising the relevant question.
This research was supported in part by the U.S. Depart-
ment of Energy under Contract No. DE-AC06-81ER-
40048.

APPENDIX

Here we give the expressions for the perturbed Ricci tensor pieces for each of the scalar, vector, and tensor problems.
The background expressions are given in Eq. (2.7b).

A. The scalar problem

In this case we have the following components, expressed in a general gauge:

5R 0
q

(0)Q(0),
(0)2 (0)2 " " . ' (0)k, kR r ji r ~ k. 0) r 0+ —2 d —+D— ~ —d—+D—~+ b' + —b' '

g2 r 8 r R r r

B"'+ B'" +d b —+2 b+D H—+2 H-
R R r

4 (0}2 k (0)

5R;= —k, q; Q (d —1)—+D &+—0 (o) (o) (0) " R " a " ~0)b — 8 —(d —1)hi
k,'" 2Z' r'

4 (0) (0)

1— r 0 r 8 ' R r r 8 (0} R r (0)~ 'T'+D ———~L —D~L+k(p)2 T „g k(0) g r g k(0) gr
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SR0 = —k(0)q(0)g") d—"+(D—1)—a — ' b"'+ ' — 8'"—d ———h,o R a r R 2r k(0) r R
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S. The vector problem

Here the problem naturally splits into the three parts VS, SV, and VV. The only Ricci tensor component which con-
tains a mixture of all three parts is 5R „which we write as the three pieces separately. It will be noticed that the expres-
sions are simpler than in the scalar case:
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C. The tensor problem

As usual, this is the easiest of the problems, with most components of the curvature tensor vanishing:

5R0() 5R0i =——5R, =5R', =0,
I' '~ T

5Ri (2)i g(0) k (2)+ d +D k (2)+ + + k(2)
2 {A3)

5R u q(0)g(2)u H' (2)+ d" +D H (2)+
r R

k„"" k„"" 2K„r R R
2 R2 R2

&J. M. Bardeen, Phys. Rev. D 22, 1882 {1980).
R. B.Abbott, S. M. Barr, and S. D. Ellis, Phys. Rev. D 30, 720

{1984).
3R. B.Abbott, S. D. Ellis, and S. M. Barr, Phys. Rev. D 31, 673

(1985).
4The references here are not intended to be exhaustive, but only

to provide a brief guide to the range of papers available.
P. G. O. Freund, Nucl. Phys. 8399, 146 (19S2};T. Appel-
quist and A. Chodos, Phys. Lett. 50, 141 (1983); D. Sahdev,
ibid. 1378, 155 (1984); Y. Okada, ibid. 1508, 103 {1985);M.
Kaku and J. Lykken, Report No. CCNY-HEP-21/83, 1983
(unpubhshed); Report No. CCNY-HEP-84-4, 1984 (unpub-
lished); E. %'. Kolb, D. Lindley, and D. Seckel, Phys. Rev. D
30, 1205 (19S4). For a different approach, including the per-
turbation issue, see Q. Shafi and C. Wetterich, Phys. Lett.
152$, 51 {1985).

5L. F. Abbott and M. B.%ise, Nucl. Phys. 8244, 541 (1984).
~%. H. Press and E. T. Vishniac, Astrophys. J. 239, 1 (19SO);

J. M. Bardeen, P. J. Steinhardt, and M. S. Turner, Phys. Rev.
D 28, 679 (1983};R. Brandenberger, R. Kahn, and %. H.
Press, ibid. 28, 1809 (1983); L. F. Abbott and M. B. %'ise,
Nucl. Phys. 8237, 226 {1984);B. Bednarz, Phys. Rev. D 31,
2674 (19S5).

7See, for example, R. Brandenberger, Rev. Mod. Phys. 57, 1

(1985).
SB. L. Hu and L. Parker, Phys. Lett. 63A, 217 (1977};Phys.

Rev. D 17, 933 (1978); B. L. Hu, Phys. Lett. 90A, 375 (1982);
97A, 368 (1983); in Advanced Series in Astrophysics, edited by
L. Z. Fang and R. Ruffini (%'orld Scientific, Singapore,
1983), Vol. 1. See also T. Koikawa and K-I. Maeda, Phys.
Lett. 1498, 82 (1984).


