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Quantum fluctuation-dissipation theorem for general relativity
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By applying linear-response methods long familiar in many-body theory to quantum fluctuations
in curved spacetime, the vacuum is shown to behave like a dissipative as well as a fluctuating medi-
um. The implications of this quantum vacuum "viscosity" for cosmology and the cosmological con-
stant are discussed. Since the de Sitter phase is unstabhe to particle creation processes, this vacuum
dissipative mechanism may be responsible for the approximate flatness of the observed Universe.

I. INTRODUCTION

Ever since Hawking first discovered that a black hole in
the presence of quantum matter fields radiates at a tem-
perature equal to 1 !SCAM (Ref. 1), it has become increas-
ingly clear that the methods of statistical mechanics may
be extended and fruitfully reapplied to general relativity.
Macroscopic thermodynamic concepts, such as tempera-
ture and entropy, make their appearance in the four laws
of black-hole thexxuodynamics. The microscopic quanti-
ties which underlie these concepts are the Green's func-
tions of finite-temperature field theory. In ordinary, non-
relativistic, statistical mechanics the real-time Green s
functions are used to study both the fluctuations of the
system about its equilibrium configuration and the dissi-
pative transport properties of the system under the influ-
ence of external fields. The response of a physical quanti-
ty (such as the electric current) to first order in a pertur-
bation (such as an applied electric field) describes the dis-
sipative effects of the medium (Ohm's law). The fluctua-
tions in equilibrium and the dissipation in an applied field
are closely related, being the symmetric and antisym-
metric parts, respectively, of an appropriate polarization
tensor. Because of the analytic properties of the Green's
functions, specifically their periodicity in imaginary time
the symmetric and antisymmetric parts of the polariza-
tion tensor are related in a simple way. This relation is
one form of the fiuctuation-dissipation theorem.

The primary purpose of this paper is to show that such
an analysis may be carried out in general relativity.
Specifically, quantum matter fields in curved spaces
which possess a timelike Killing field are considered (Sec.
II). The existence of the Killing field t}/t}t is necessary in
order that some concept of time independence and equili-
brium remains intact in the full general relativistic setting.
The thermal Green's functions are uniquely defined by
their regularity on the Euclidean section, t~it (see Fig.
1), and vanishing at spacelike infinity (if the space is not
compact}. Corresponding to this thermal Green's func-
tion is a state of the quantum field(s) or, more precisely, a
thermal density matrix. %e may now ask how the expec-
tation value of a physical quantity in this state, such as
the energy-momentum tensor T,&, changes as the back-
ground metric is changed. That is, we consider the
(linear) response of ( T~(x) ) to an external perturbation

5g,d(x'), to first order in the perturbation. The function
(of x and x') that relates the two is the polarization tensor
II,b' (x,x') Bec.ause of the analyticity properties of the
thermal Green's functions, this polarization tensor enjoys
all of the same properties as its nonrelativistic analogs.
The relation between the fluctuations about equilibrium in
the thermal state and the dissipation under the influence
of the external perturbation then follows immediately
(Sec. III}. Just as in nonrelativistic examples, of which the
prototype is Brownian motion, this means that the ran-
dom fiuctuations about equilibrium and the systematic
damping effect must derive from the same underlying
physics.

The dissipation is associated with the possibility of real
particle production by the background metric, when
time-asymmetric boundary conditions are imposed on the
matter field(s). Thus, the close connection between quan-
tum fiuctuations in the matter field (or thermal fluctua-
tions in the Hawking temperature of the horizon) on the
one hand, and black-hole radiance and decay on the other,
becomes manifest. These are general features of quantum
fields in curved space of which the black hole is only one
familiar prototype. The quantum vacuum in an external
field (gravitational or not) generally behaves as a dissipa
ti Ue as well as a fluctuating medium.

Furthermore, the spectral functions appearing in the
linear response analysis provide a very powerful tool for
analyzing the stability of the spacetime under the quan-
tum (thermal) matter fluctuations. In Sec. IV we consider
the fluctuation 5( T,b ) as a source for the linearized semi-

FIG. 1. The complex t-t' plane. The shaded strips of width
P are the regions in which the real-time thermal Green's func-
tions and polarization operator H are analytic.
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classical Einstein equations. Since this source is nonlocal,
i.e., 5( T,b(x) }depends on 5g~(x') for x&x', we obtain a
linear integro-differential equation for the dynamic metric
fluctuations. This equation automatically incorporates
the correct boundary conditions on the metric perturba-
tions away from the equilibrium state; so, we expect no
unphysical "runaway" modes. From the previous
fluctuation-dissipation theorem any unstable fluctuation
uncovered by the linear response analysis must be con-
nected with the possibihty of real particle creation. That
this is indeed the case is also shown in Sec. IV.

The second purpose of this paper is to apply this gen-
eral stabihty analysis to de Sitter space. In two previous
papers, 's two very different arguments were given
demonstrating that de Sitter space is unstable in the pres-
ence of quantized matter fields. In the first paper (I)

~
in)

and
~
out} states were defined, by which the Bogoliubov

transformation and associated particle creation effects
could be calculated. Just as in the case of black-hole radi-
ance, the effect of this process is to decrease the back-
ground curvature: the effective cosmological "constant"
(i.e., the scalar curvature) decreases monotonically as the
coherent vacuum energy is radiated into matter modes. In
paper 11, the Euclidean or thermal vacuum state was also
shown to be unstable. In this case the instability mani-
fests itself in the macroscopic fluctuations of the
Hawking —de Sitter temperature. This quantum-thermal
instability of de Sitter space was suggested as a physical
mo:hanism by which the cosmological constant could be
screened by quantum matter, i.e., by any positive vacuum
energy being dissipated into matter-field modes.

Detailed analysis of the vacuum polarization tensor
II',~(x,x'} in de Sitter space shows that the unstable
mode does indeed exist. (See Fig. 2.) The time scale for
the instability to develop is estimated and agrees with pa-
per I. This confirms and, together with the fluctuation-
dissipation theorem, clarifies the relationship between the
previous calculations in papers I and II: de Sitter space is
unstable to fluctuations which, as they grow, dissipate
more and more vacuum energy into matter-field modes.

If the very early Universe ever entered a de Sitter phase,
it would have exited from it by particle creation and en-

tropy generation on an enormous scale. This means that
an inflationary scenario is possible which suffers from
none of the usual objections: there are no gross inhomo-
geneities in the form of bubble walls, monopoles are pro-
duced in negligible numbers if at all and the vacuum ener-

gy relaxes to zero without any fine-tuning. These implica-
tions of the present work are discussed in the final section.

j2
7

FIG. 2. The one-loop vacuum polarization graph which
represents 0 in a noninteracting scalar field theory.

II. LINEAR RESFONSE
IN CURVED SPACETIME

In this section the necessary preliminaries of the linear-

response method are defined and discussed. Let g~ be
some solution to Einstein s equations, with or without a
cosmological constant. If all curvature and mass scales
are well below the Planck scale, then a semiclassical ap-
proximation should be possible. That is, the metric may
be treated as a classical variable responding to the quan-
tum fluctuations of all other fields through the semiclassi-
cal Einstein equation:

Ga+Ag~b =R~b & gaR+Ag~b =8m'( Tob ) . (2.1)

eoA+e~R +@28 +c3C,~C' (2.3)

The first two terms correspond to renormalization of
the cosmological constant and Newtonian constant [set
equal to unity in Eq. (1)]. The fourth-order terms, pro-
portional to the squares of the Ricci scalar and Weyl ten-
sor C~&, should also appear in the effective action for
the matter field with arbitrary dimensionless coefficients.
Taking Eq. (2.1) as the equation of motion with no
fourth-order kinetic terms amounts to setting the renor-
malized coefficients, c2 and c3, to zero. Equivalently, we
could restrict ourselves to configurations where the
higher-order kinetic terms vanish. As soon as time-
dependent dynamics is allowed to develop, matter excita-
tions are produced and the higher derivatives in these
fourth-order terms have the potential for totally changing

Actually, the spin-2 fluctuations of the metric itself
contribute just as much as any other matter field. Howev-

er, it is convenient to consider a scalar matter field as a
test field and source of the gravitational field. Formally,
this can be justified by taking the large-N limit of a
theory with E identical scalar flelds. This imposes no
essential restriction, as fields of any spin may also be con-
sidered.

The matter stress-energy operator appearing in (2.1) is
defined by

g fCS2
(2.2)

g ggob

where S is the fully renormalized quantum effective ac-
tion operator of the matter field(s) in the curved back-
ground under consideration. In addition to renormaliza-
tion of the masses and coupling constants, specifying p "
generally requires further subtractions to define the com-
posite operator insertions (such as 42 or 4" in a scalar-
field theory} which appear in T,b. Any convenient co-
variant scheme may be employed to isolate the diver-
gences. The dimensional regularization method has been
discussed by several authors. Because the divergences
have a purely local structure, they may be accounted for
by a finite set of terms involving the background metric
and its derivatives. The Schwinger-DeWitt short-distance
expansion is most useful for characterizing these local
divergences and bringing out the physical meaning of the
renormalization counterterms. Since T,b and S"" are
dimension-four operators, these counterterms will involve
up to four metric derivatives:
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the character of the evolution of the spacetime. As the
aim in this paper is to approach this radiation reaction ef-
fect in a systematic way, but without tackling the full
back-reaction problem in a quantum theory of gravity, we
will restrict our attention to static metric backgrounds,
g~. Specifically, we will assume that the background
spacetime possesses a timelike Killing field 8/Bt. Then
the notion of a time-independent, time-reversal-invariant
"vacuum" state can be defmed in a precise way. No par-
ticle production or decay in the usual sense can occur in
this state. ( T,b ) may be evaluated and the size of the or-
der R terms (with finite coefficients of order unity) in
(2.3) estimated. As long as the curvature is small com-
pared to the Planck scale, (T,b) contains on1y time-
independent vacuum polarization effects which are nu

tnerically small compared to the left-hand side of (2.1}. In
this special situation of a timelike Killing field, then, it
makes no essential difference whether one takes g,b to be
a solution to the full semiclassical equations (with c2 and

c& nonzero} or simply the vacuum Einstein equations with

( T,b ) =0. In the absence of a Killing time, this certainly
would not be the case.

Also, since the system is assumed static (in the mean)
with respect to the Killing-time coordinate, the possible
competing suggestions for defining a finite ( T,b ) satisfy-
ing Wald's axioms all yield the same result: the

~

in)
and

~

out) states are one and the same in static equilibri-
um, where no particle production is possible.

The only other point about the renormalization pro-
cedure that bears mentioning here is that the strictly
massless conformal limit of the field theory is delicate.
This is clear from the renormalization-group equations
and/or trace anomaly derived by means of dimensional
continuation methods and is even more obvious from the
Schwinger-DeWitt expansion which involves inverse
powers of the mass.

Consider now a small perturbation in the static metric:

gab =gus+5gab . (2.4)

= ——,
' M,b'"5g,g(x) (2.6)

for the purely local part of the variation, which records
the explicit dependence of T,b on the metric, and

II,b' (x,x') =i (MT~(x)T' (x') )„„ (2.7}

For the moment the perturbation (which need not be
static) may be taken to be one induced by an external
agency, i.e., a nondynamic source term in the Lagrangian.
Later, our interest will be in the dynamic fluctuations in-
duced by the matter itself. In either case, the variation in
the stress tensor may be expressed in the form

5(T, (x)) =——,'M, ' 5g,„(x)

+ —, f d x'( g')' II,b'"—(x,x')5g,q(x') .

(2.5)

The above notation has been used in writing

5T,b(x) 5g,q(x')
5T,b(x) = d x'

5gqg x 2

M~'"5g~(x) =2( g.bg"g'f—+5'bg 5.
+5bg'f5: ) ( ~ef )5gca(»

+R.e 'x' —g' '"O b'~ x x'

x5g,g(x') . (2.8)

Because of the assumption of a timelike Killing field
8/Bt, II~' (x,x') depends on the corresponding static
time coordinate only through the difference t t'-

The Killing-time coordinate also implies the existence
of a conserved Hermitian generator of time translations
on the fields, i.e., a Hamiltonian H For concre. teness a
free scalar field 4 may be considered, although our results
are easily generalized to fields of any spin. The Harnil-
tonian which satisfies

4=i [H, @—j
8

(2.9)

may be presented in the form

H= f dX K'T (2.10)

where E' is the timelike Killing field and X is a spacelike
surface, everywhere normal to E'. In the interesting case
of spacetimes with horizons, the integral in (2.10) extends
only over the region where E' is timelike and future
directed. Since this surface does not generally represent a
complete Cauchy surface for the fields, any state specified
on X alone must be a mixed state. If a complete set of
modes on X is introduced (with zero fiux through the hor-
izon), as in Ref. 11, operating on which H has a real
eigenspectrum, then a thermal density matrix e ~ may
be introduced and the thermal ensemble average of the bi-

for the nonlocal quantum polarization tensor. The defini-
tion of T,b in (2), in terms of the renormalized operator
insertion S"",is sufficient to define a renormalized polar-
ization tensor in (2.7} whose local divergences as x~x'
have been removed by precisely the same set of counter-
terms (2.3) needed to define S""itself. '

The time-ordered product of Il,b' deserves some com-
ment. Formally, it results from the definition of the
Schwinger variational principle, corresponding to the
boundary conditions of the Feynman propagator. That is,
it is an "in-out" matrix element which contains both ad-
vanced and retarded (particle and antiparticle) effects.
Since we have in mind a time-independent state,

~

in) is
the same as

~

out) (up to a trivial overall phase) and these
Feynman boundary conditions are precisely the correct
ones for describing the dynamical fluctuations about the
time-independent equilibrium state. As soon as we wish
to study dissipation, however, the time symmetry must be
broken by choosing, for example, retarded Green's func-
tions in place of the Feynman propagator. The
perturbation's effects are felt only in the past and

~
in) is

not necessarily the same as
~
out). This will be discussed

in detail in the next section.
The local term of (2.6) contains all of the local renor-

malization counterterm contributions from (2.3). It is
most conveniently dealt with by relating it to the real part
of the polarization tensor via'
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linear operator W4(x)4(x') defined in the usual way:

@( )@( /)) Tr[me(x)e(x')e ~+]

Tr(e @ )

Gibbons and Perry" show that the Green's functions
defined on the Euclidean section, t~it, correspond pre-
cisely to Eq. (11) provided that P is identified with the
periodicity of the Euclidean metric. Back in real
Lorentzian time, the Green's functions so defined are
equivalent to filling the stationary states of the field,
8

~
ai) =ai

~
ai ), with a Bose-Einstein (Fermi-Dirac) dis-

tribution at temperature P
1

~B(R p8 +1

(2.1 1)

(2.12)

II„'"(x,x )= e(t —r )rl„"(x,x )

if the fields have integral (half-integral) spin.
The analytic properties of these thermal Green's func-

tions have also been discussed in Ref. 11. They are ana-
lytic in the shaded strips of the complex t-t' plane illus-
trated in Fig. 1. Because of the (real) time-ordering opera-
tion in both Eqs. (2.7} and (2.11), these same analyticity
properties are shared by the polarization tensor
II~~{x,x'). We could prove this claim directly, by work-
ing with the definition of II~~(x,x'} through Eqs. (2.7)
and (2.11) in the thermal state, and then use the cyclic
property of the trace in the standard way. "~ This
analyticity of II,s~ in the complex r-t' plane is the single
most imporbsnt technical ingredient to our subsequent
analysis.

As in the nonrelativistic case' it is convenient to
sep~ate Ila, ~ into two pi~os, d&mdlng on the time or-
dering:

11g"(x,x') =rl"".,(x',x)

which in virtue (2.14) becomes

II, ''(x, x')= —ll ''(x,x')'.

(2.17)

(2.18)

where we have used r, r' for the spatial components of
x,x'. Properties (2.14)—(2.18) translate into the corre-
sponding statements for the Fourier transforms:

F~' '(r r'co)= F' —' (r'r'ro)'

—.F,~&' ~~(r, r', co) &0,1

(2.20)

(2.21)

F~~~(r, r', co) =F~'" (r', r; co)—= F, ' (r—,r'; —co)' .

(2.22)

Finally, the relation exhibiting the periodicity in imagi-
nary time, which follows from the trace structure of (2.16)
is

II, '~(r, r';t t') =ll,—'"(r,r', t t' iP)— — (2.23)

or

F~~~{r,r';ei)=e "~F~'~(r, r', co} . (2.24)

Another interesting quantity is the anticommutator
function

The Fourier transforms are now introduced in the usual

way:

ll,b'~' (x x')= f e '+t F~' '~(r, r';co},dco

2'F

(2.19)

+e(r' r)II„'"(x—,x ) . (2.13) ([T~(x),T (x')]+ )ti

Viewed as matrices in (ab,x) and (cd,x') these functions
are anti-Hermitian . e '+' ' '[F +(r,r', co)+F~~'~(r, r';a))] .- 2&l

II~~'~~(x,x') = —II~ ~~~(x',x)'
and pure imaginary positive definite

—.Il.", "(x,x') & 0
1

1

in the sense that

4~ g 1/2 4~~ g~ 1/2

(2.14)

(2.15)

Its Fourier transform S,b~(r, r';ei) obeys

S~ {r,r';a))=S~' (r', r; —co) &0

S~ (r, r';co }=—(1+e "~)F,b (r, r';co)

(2.25)

(2.26}

Xf~(x) —11~~' ~~(x,x') f,z(x') & 0

for any smooth normalizable function f,s{x). Since the
two functions 0 and II» are really the same function
evaluated at different arguments, i.e.,

II~~ (x,x') = Tr[e ~ T~(x)T'—(x')], r & t',

=—.(1+e ~)F~,s(r, r';co) .
1

(2.27)

D~'~(r, r', co) = [F~'"(r,r';co) —.F,~&'"(r,r';co)]—

The Fourier transform of the commutator is then given
by

Il~s'~(x, x')= Tr[e ~ T'~(x')T,b—{x)], t (t',
Z =Tr(e -~~),
we have

(2.16)
=tarih S~' (r, r';co) .

In terms of S~' the polarization tensor becomes

(2.28)
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II '"(x x') =— e
2 co 2%

e(t —t')tanh + 1
2

XS,b'"(r, r';co) . (2.29)

The e(& t'—) discontinuous function may be represented»

(2.30}

as F1~0, so that (29}yields the Fourier transform

X5(ei' —ai)

X tanh S,b'~(r, r';op') .

XD~'"(r, r';co') . (2.32)

This completes the development of the formal
machinery of linear response theory and the properties of
the polarization tensor along precisely the same lines of
nonrelativistic many-body theory.

(2.31)

lf instead of the Feynman time-ordered boundary con-
ditions we have considered purely retarded boundary con
ditions, then e(t —t'} is replaced by 28(t t') an—d there is
no purely symmetric piece in the polarizability tensor.
For example,

III. THE FLUCTUATION-DISSIPATION THEOREM

The thermal equilibrium state defined by continuation
from the Euclidean section of the metric is automatically
time symmetric. The fiuctuations in the energy-
momentum tensor in this state are given directly by the
symmetric product correlation function defined in Eqs.
(2.25)—(2.27). This function describes the lowest-order
deviations of T~ from its average value in the equilibri-
um state. Thus, it contains information about the fluctua-
tions away from the mean as given by Eqs. (1.1), in this
state.

In the general case this state of thermal equilibrium
may not be the one in which we are most interested. For
instance, initial plus spatial boundary conditions may be
specified instead, by which we would like to calculate the
real-time evolution of the system. In such cases the full

geometry cannot be truly static. Nevertheless, an approxi-
mate timelike Killing field may exist over a large part of
the spacetime. An example is that of a collapsing star
leaving behind the exterior Schwarzschild (or Kerr-
Newman) geometry. The gravitational background is
time independent to lowest order in fi but the quantum
fields obey certain time-reversal-noninvariant boundary
conditions. The effects of quantum fiuctuations can now
include dissipation as well, in the sense that real particle
creation can occur through Bogoliubov mixing of positive
and negative frequencies at late times, if no particles are
present at early times. It is this dissipative side of the
quantum fiuctuations we now wish to consider.

In nonrelativistic statistical mechanics it is the antisym-
metric or commutator function D,&'~ that describes the
dissipative effects. To show that this is the case here as
well requires that we relate the rate of increase of matter
entropy due to the particle production processes to this
function D,b . This is most easily accomplished by again
considering the linear response equation (2.5), this tiine
with time-asymmetric boundary conditions. Physically,
we wish to consider the situation in which the background
field g,b has be(m turned on adiabatically from fiat space
in the infinite past by a sequence of small perturbations
5g,b. It is only by introducing time asymmetry in this
way that particle production (i.e., instability of the adia-
batic vacuum to pair creation) and the accompanying gen-
eration of entropy is possible in quantum field theory.

With these retarded boundary conditions the response
of the energy-momentum tensor to a change in the metric
is again given by Eq. (2.5) with II(s'"d replacing II,&'d.

Introducing the Fourier transform (2.32) and differentiat-
ing with respect to the static time t gives

—5(Tg(x))= —,
' f d x'( —g')'~ f ( ice)e '"" '' f— , 5g,~(r', r') . (3.1)

The contact term —~M's'"5g~(x) in fact, will not con-
tribute to this variation if we consider adiabatic changes
in the background, for which 5g,~ is essentially indepen-
dent of t:

f d~'e'"'5g, g(r') =2ir5(co)5g,g(r') .

Then Eq. (3.1) simplifies enormously, since

(3.2)
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2m

f d~ f K dX+D (r~r;co )

receives a contribution only from the im5(to' oi—) term
and (3.1) becomes

5—(T't', (x))= —,
' lim f K"dX,'[AD'b'~(r, r', ~)]

quantum states of the full system are converted to mixed
states by summing over inaccessible degrees of freedom
behind the event horizon. Recently, the general require-
ments for a Planck spectrum and mixed state density ma-
trix formulation have been investigated. ' The noncom-
pleteness of X and thermal aspects of the emission process
should be expected whenever a timelike Killing field K'
exists whose Euclidean orbits are periodic. The periodici-
ty P is the inverse Hawking temperature of the emission
process in adiabatic approximation. The usual Tolman
red-shift formula would then be expected to relate the lo-
cal temperature to the Hawking temperature. The local
entropy production in this near thermal equilibrium state
is then related to (3.6) by

Setting a =b =0 and

x 5g,z(r') . (3.3)
Bp &Bs
Bt Bt

(3.7)

(To)= (3.4)

gives

5 —p = —,
' lim f K dX,'[o)D't, (r, r', to)]

Bt ' ~-o

x5g,d(r') . (3.5)

This equation shows that in the adiabatic static field limit
matter creation takes place if and only if oiD'&'"(co) is fin-
ite as oi~O. This is a general criterion for particle
creation in a static background. Thus as long as the
creation rate is slow enough to justify the relevance of the
adiabatic switching on of the background field, the boun-
dary conditions do not need to be rederived for each dif-
ferent background configuration. We simply need to
check whether or not D' 't~(r, r', co) develops a singular
1/to behavior as co~0. In this adiabatic method the actu-
al creation rate in the static background is then given by
Eq. (3.5) by integrating up the linear response from fiat
space to the desired background; if the metric is related to
flat space by variation of a one-parameter sequence of
metrics, labeled A, (A, =M in the Schwarzschild case), then

8 Bp
BA, dt

(3.6)

gives the full particle creation rate in adiabatic approxi-
mation.

%e have yet to relate this particle creation rate to entro-

py production. If the matter is produc& with a Planck
spectrum, however, this relation is immediate. The ap-
pearance of a local temperature 8 for the matter is simply
a reflection of the noncompleteness of the three-surface X,
viewed as a Cauchy surface for the time evolution of the
fields. Boulware' had shown previously that correspond-
ing to the Hawking temperature of emission from a black
hole there is also a matter entropy as soon as the pure

which is just the first law of thermodynamics for the
matter fluid.

Thus, the commutator function D't, ' does indeed
describe the dissipative effects of particle creation through
Eqs. (3.6) and (3.7) while the symmetric function S'&'"
describes the fluctuations about the time-symmetric state.
Thus, the fluctuations in the time-symmetric equilibrium
state, described by the symmetric function S,b' and the
dissipation of gravitational field energy into matter,
described by Eqs. (3.6) and (3.7) are really two different
aspects of the same quantum-thermal matter fluctuations.

The relationship between the two is summarized in Eqs.
(2.25)—(2.31). Specifically,

,' S,b'"(x—,x') = —,
' ( ( T,b(x), T (x') I )p

dto
e tu(~ i—')

e~—l

XD,b'~( r, r'; to) (3.8)

IV. COSMOLOGiCAL VACUUM
INSTABILITY AND DECAY

The formalism developed in the preceding sections de-
scribes the Gaussian stochastic fluctuations of quantum
matter in curved background fields. The polarization ten-
sor gives the linear response of the energy-momentum ten-
sor to a gravitational perturbation 5g,b through Eqs.

is the desired fluctuation-dissipation theorem for quantum
matter in curved spaces possessing a timelike KiBing sym-
metry. Moreover, the positivity properties of the fluctua-
tions, Eq. (2.26), can be used to derive results about the
direction in which the particle creation drives the
geometry. The tendency of the quantum particle creation
to decrease the background curvature parameter, i.e., dis-
sipate the coherent gravitational field into particle degrees
of freedom (as in the Schwarzschild case), is actually a
much more general phenomenon. However, the analysis
involves the decomposition of II~' into scalar and tensor
parts which must be treated independently, and will be
reserved for a future publication.
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(2.4)—(2.7). This perturbation was assumed nondynamic
and external in Sec. II. However, because of the semiclas-
sical Einstein equations (2.1), fluctuations in the matter
stress tensor must induce fluctuations in the metric as
well. It should be emphasized that these metric fluctua-
tions are purely slaves to the matter fiuctuations in the
semiclassical theory through (2.1), whereas in a full quan-
tum theory of gravitation, as independent degrees of free-
dom they would also have to be allowed to fluctuate in-
dependently. So, we may view this semiclassical analysis
as coming to the threshold of quantum gravity without
actually broaching it.

Once matter and/or metric fluctuations are admitted
into the discussion, we can use our linear response formal-
ism to analyze the stability of the thermal equilibrium
state to these quantum disturbances. %'e simply regard
the linear response 5( T,b ) (2.5} as a source for the semi-
classical Einstein equations linearized about the given
solution g,b. The resulting linear equation for 5g,b,

5G~+A5g, b
——8ir5( T,b ) „ (4.1)

can now be analyzed by standard methods. Because of the
timelike Killing field of g,b it is useful to introduce a
Fourier decomposition of the fluctuations and write

Re5( T, '(x) ) = (5T, '(x) )

+ —,Re Jd x'( —g')'~ II,"(x,x')5g,d(x') .

(4.4)

The first term is purely real and local and may be han-
dled exactly as in Eq. (2.8):

(5T,'(x)) = ——,
' Re f d x'( —g')'~ II,"~(x,x')5g, (x') .

(4.5)

Thus,

Re5(T (x))——Re f d~x'( —g') II (X,X )5g d(x ) ~

(4.6)

Upon substituting (4.2), this can be conveniently rewritten
in terms of the Fourier spectral functions introduced in
Sec. II:

Re5(T, '(x)) = I P
4 —ce 2K N —N

X f ( dX'bK )—

5g~b(x) =Re[e '"'h b(r)] (4.2)

Stability is tested by demanding that there be no solu-
tions of (1) with co & 0. On the other hand, when particle
production and dissipation is possible, i.e., when the resi-
due of D~'"(r, r';r0} at ~=0 is nonzero, from Eq. (3.5},
we expect an unstable mode to exist.

The polarization tensor is given in terms of the spectral
functions by Eq. (2.31), which has both a real and an
imaginary part. The integral over ~' in Eq. (2.31) may
also be converted into an integral over co' from 0 to oo,

by using the symmetry property of the spectral function,
Eq. (2.26). Then it is clear that the imaginary part of
II,b' is present only for co &0. We are interested pri-
marily in any unstable modes with co &0. There the
i+5(co' co) term—in Eq. (2.31) does not contribute, the
principal part prescription becomes superfiuous and Ii,b'~

is purely real. It is this real part which must be substitut-
ed into the right-hand side of Eq. (4.1) in order to test for
the existence of unstable modes. This is the variation in
T,b away from its value in the equilibrium or Euclidean
state in which all the analysis of Sec. II applies.

To illustrate the general method and discuss the
relevance to the cosmological constant question, consider
the case of de Sitter space in the coordinates:

ds = dt (1 Hr )+— +—r dQ
~2y 2 (4.3)

de Sitter space clearly has a timelike Killing field 8/Bt in
the region 0& r &H '. The scalar curvature of the back-
ground is rigidly fixed classically, i.e., E. =4A=const.
With the quantum matter source in Eq. (4.1) this is no
longer the case. Thus, the conformal mode, for which Ii~
is proportional to g,b itself is the interesting one. Tracing
over the semiclassical Einstein equations (2.1) with the
background de Sitter metric g~ gives

&(D, "(r,r';a))h, g(r') .

o(co )= J ( dXbK )D,—', '(r, r', co) ~, 0 (4.8)

justified by the fact that D,b'" is an odd function of co,

leads to

Re5( T,'(x) ) i, 0 —— f I'

dco co cf(co )=ReP 8
N —N

co'o(c0' )e

(4.9)

The left-hand side of the linearized Einstein equations
evaluated at r=0 is trivial: Re(co +4H }e '~', where
H =A/3. Canceling the now irrelevant time-dependent
phase factor results in the scalar linear response equation
in Fourier space:

(4.10)

This is the desired linear response equation for spatially
homogeneous scalar fluctuations in de Sitter space.
Several aspects of Eq. (4.10} deserve coinment. First,
from the definition of cr in Eq. (4.8) and the relations
(2.26) and (2.28) we see that cr is also a positive spectral
function:

g(co )&0. (4.11)

Thus, for co &0, where the principle part prescription in

(4.7)

For the conformal mode, we may take h,~(r) =g,d(r). In-
troducing the notation
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(4.10) is unnecessary, the integral is always positive.
Second, co appears in the denominator of the integrand.

This means that the integral cannot be written as a local
expression of a finite number of time derivatives operating
on the metric fluctuation (4.2). It is completely nonlocal,
as also must have been evident from its form in position
space, Eq. (4.6). The fact that Eq. (4.10) is the Fourier
transform of an integro-differential equation for the
dynamic metric fluctuations means that it already incorp-
orates boundary conditions. These are just the time-
symmetric boundary conditions of the time-ordered prod-
uct which defines the polarization tensor (2.5). As in dis-
cussions of radiation reaction in electromagnetism the
present treatment with boundary conditions included el-
iminates the many unphysical "runaway" modes that
would be obtained if we tried explaining the denominator
of Eq. (4.10) in powers of cu and truncating at some finite
order, for example.

Indeed, Eq. (4.10) makes it quite clear that when H =0
(flat space), there are no unstable modes of Eq. (4.10), for
the left-hand side of the equation is negative while the
right-hand side is positive for oi &0. Thus flat space is
stable under conformal fluctuations of the metric. Spa-
tially inhomogeneous modes can only be more stable since
then a negative —k appears on the left-hand side of Eq.
(4.10}in addition to oi .

Usually one thinks of the physics of the scalar part of
Einstein's equations as uninteresting„because the confor-
mal modes do not freely propagate as do the transverse,
trace-free spin-2 excitations. The conformal modes are
constrained by the matter sources, much as in elec-
tromagnetism, the longitudinal modes of the electric field
are constrained by the charge sources through Gauss's
law. If the sources are fixed (nondynamic) nothing can
happen in these constrained modes. As soon as the
sources are themselves allowed to respond dynamically to
changes in the metric (or electric potentials) as in our
linear response analysis then these previously constrained
degrees of freedom are quite physical. They are really
matter degrees of freedom whose dynamics has been reex-
pressed as conformal excitations of the metric through the
constraints imposed by the Einstein equations themselves.

Returning to the de Sitter case H &0, we can verify
these statements explicitly. It appears that the linear
equations would have an unstable mode even in the com-
plete absence of matter, since ni = 4H is a solutio—n of
Eq. (4.10) with 5( T,b ) =0. However, this is a pure gauge
mode as may easily be seen by calculating the curvature to
linear order in the perturbation away from pure de Sitter
space. There is no unstable conformal mode in the ab-
sence of matter since R =4A is completely fixed. When
the vacuum polarization of the matter on the right-hand
side of (4.10) is turned on this gauge mode still exists, al-
beit at a slightly shifted value of co, corresponding to the
slightly different value of the effective cosmological con-
stant induced by the matter.

The existence or nonexistence of a second nontriuial
solution for co &0 depends on the behavior of E(co ) for
small coz. In particular, suppose that the residue of D,b'"
at co=0 is nonzero. From Eqs. (2.28) and (4.8) this im-
plies that

/~H'

FIG. 3. The graphica1 solution of Eq. (4.10). The straight
line is the left-hand side of (4.10) and the curve is the right-hand
side, E(m~). The schematic form of I'(co2) is inferred from the
small-co behavior (4.13), and the positivity and the monotonic
decrease of I' as co2~ —00. The solution at co2~ —4H2 is a
gauge mode as explained in the text, while the solution at small
co2 is a physical unstable conformal mode of de Sitter space.

o(co )- f ( dX—bKb )S,', '(r=O, r';oi)-
N

(4.12)

(4.13)F(co ) — z i&z as co —+0

by inspection of the integral in (4.10). If
~

co
~

&&4H we
then obtain the approximate solution

'2

N ==—
4H

(4.14}

The general qualitative behavior of the left- and right-
hand sides of Eq. (4.10) is illustrated in Fig. 3, in the case
A &0.

To show that the spectral functions do indeed behave as
indicated in (4.12) requires a closer look at their specific
forms in de Sitter space. Consider the concrete case of a
scalar matter field. Then the wave equation can be
separated in coordinates (4.3):

with

4~(~(&)-e '"'f~«i')I'tm«) (4.15)

2—co 1 d
(1 Hz z) z d

1 —H2p p2

+ +M f~(r) =0 .
l (1+1)

(4.16)

The modes are normalized with respect to the inner prod-
uct

(u, u)=i I dX'u'B, u

=i I dn J" """,, u* ~ u.
1 Hr—(4.17)

For the modes (4.15) the normalization is

as N ~0.
This was the condition we required to have nonzero dis-

sipation at late times under time-asymmetric boundary
conditions in Sec. III. It is also the condition that Eq.
(4.10) have a (nongauge) negative coz solution, for, with
the behavior of o indicated in (4.12},
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('4, l 'l' I } @~) ~2}lil,l '4, (4.18)

Because of the time derivative in (4.17) this implies that

f„i(r)- 1
for fa)

f
~0.

If we now calculate

(4.19)

f „(r')f „(r')f'„(0)f'„(0), (4.20}

where we have used the fact that f~(r)-rI so that only
l =m =0 survives, when the argument r=0, we find

—EC b Dy ~ I', I' ~co

1 1-Im as cu —+0
cubi (c0—

cubi

} co
(4.21}

P„'I' -e'"j'i(kr}Fi~(Q)
with

due to the implied ie prescription on the ~ integrands
which allows completion of the integration contour in the
complex plane. Thus, since the residue in Eq. (3.4) is
indeed finite in de Sitter space, nontrivial particle creation
and dissipative effects can occur and o(ro ) has precisely
the behavior advertised in (4.12) necixsary for the ex-
istence of an unstable conformal mode solution to Eq.
(4.10).

It might still appear that the same argument applied in
the case H =0. This is not correct, however, of the mass
threshold for pair creation. That is, in flat space

0

I (1+iy}I +

3 lp lN 1 lp fN

4 2 2H 4 2 2H

(1 Hr )+—

(4.25)

near r =H '. Since

~

I'(1+iy)
~

-cschimy-e (4.26}

as M/H ~ oo the magnitude of the residue at co =0, A de-
creases exponentially as M/H becomes large:

By using the inversion transformation for the hyper-
geometric function, ' the solutions regular at r =0 be-
come a linear combination of

(4.27)

with Tz —H/2n the H—awking —de Sitter temperature. In
this limit the approximation leading to Eq. (4.14) is valid
and the time scale for the instability of de Sitter space to
develop is seen to be exponentially long compared to the
expansion time H . This agrees with the earlier esti-
mate in paper I.

Finally, it is worth commenting on the relation of the
present work to previous analyses of the stability issue in
flat space. In the linear response method we have expli-
citly neglected the time derivatives coming from the pos-
sible higher-order (R,R,i ~R' ) terms generated by the
one-loop polarization tensor II,&'~. These terms do gen-
erate unstable modes when expanded around flat space
due to the ghost degrees of freedom present in the higher
derivative theory. The unstable ghost modes have fre-
quencies of order Mpi, „,i, and must therefore be called
into question: Quantum gravity might eliminate them en-
tirely. The mode found with co given by Eq. (4.14) is
quite distinct from this. It is a low-frequency mode [cf.
Eqs. (4.14) and (4.27)] well within the range of validity of
the semiclassical analysis, which explicitly contains no
higher derivative interactions and therefore no ghosts.
This low-frequency instability of de Sitter space is physi-
cal, as is the statement that flat space is stable
semiclassically —the ghost modes lying beyond the range
of applicability of the analysis. These latter modes are
rather like the Landau ghost modes of one-loop elec-
tromagnetism which are also presumed unphysical.

(4.23)
where

g = —,
'

( ,' +i y+1 ia)/H), ——
b =—,

'
( ,' +i y + I +—ico/H ),

(4.24)

Q = 1+i/
1/2

M 9
V

2 k2+M2 )M2 (4.22)

Thus, the integration ranges in (4.20) do not include co =0,
and the coefficient A in (4.13) and (4.14) is identically
zero. A zero-energy conformal metric variation cannot
produce a massive particle pair in flat space. In de Sitter
space the horizon at r =H ' means that even an indef-
initel small ai variation corres;ponds to a large local ener-

gy perturbation near r =H, i.e., co /(1 Hr ) &M, —
even for co~0 as r~H '. The particle production, dis-
sipative effects and the instability of de Sitter spacetime
are all traceable ultimately to the existence of this hor-
1zon.

For the massive field, the coefficient A can be estimat-
ed by considering the behavior of the normalized solutions
to Eq. (4.16) near the horizon. The solutions may be writ-
ten in terms of hypergeometric functions as
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V. THE COSMOLOGICAL CONSTANT PROBLEM

The cosmological constant in the present Universe is
vanishingly small:

~
A

~

&10 ' . The entropy, on the
other hand, is enormous: S & 10 . Inflationary models
of the early Universe attempt to explain this large entropy
by postulating a unified field theory of matter which un-

dergoes a phase transition as the Universe cools through
the transition temperature ( —10'5 GeV-100 K}.' The
tiny cosmological term is not addressed at all in this kind
of inodel.

The cosmological constant problem does not arise in
flat-space field theory. It is only the gravitational field
that weighs all energy, including cosmological vacuum en-

ergy that can give a nonzero A physical meatiing through
its curvature effect. The real problem, then, is not the
value of A per se, but rather why the Universe we observe
is so very nearly flat, even when quantum fluctuations
and their associated zero-point energy are taken into ac-
count. That is, why do vacuum fluctuations not curve
spacetime?

It might be said that this question cannot be tackled by
present theory and that the issue must be laid at the door
of quantum gravity=xcept that matter and/or radiation
vacuum fluctuations are present even when spacetime is
treated as a classical continuous manifold. So the issue of
the gravitational effects of vacuum fluctuations is present
long before Planck scales are reached. As long as the en-
ergy density is significantly smaller than the Planck scale
it should then be feasible to approach this question within
the context of the semiclassical theory, considered in this
paper. Let us reconsider the cosmological constant prob-
lem, then, in the light of the semiclassical theory present-
ed in the previous sections.

The effect of a positive cosmological energy density is
to drive the Universe towards de Sitter space, classically. '

However, the semiclassical methods of this and previous
papers (I and II) show that de Sitter space is unstable in
the presence of quantum matter. The analysis of Sec. IV
relates the instability of the de Sitter vacuutn to zero fre-
quency matter fluctuations over one horizon volume.
These are the same fluctuations which are responsible for
the increase in matter energy and entropy density through
Eq. (4.15}.

The increase in ordinary matter energy density is clear
enough. Particle excitations are created by the gravita-
tional field -ither by viewing it as a time-dependent
scattering potential as in I, or because, in a time-
independent gauge, the horizon acts as a potential barrier
through which particle pairs may tunnel. ' If the effect

of this particle creation, to first order in A', is to decrease
the local scalar curvature, then a kind of gravitational
Lenz law would be at work, in that particle creation in a
gravitational field has the effect of decreasing the curva-
ture, decreasing the creation rate still further. This effect
has been noted previously. '

These observations have a profound implication for the
cosmological constant problem. For they imply that
when the quantum matter stresses in curved backgrounds
are taken into account, there exists a dynamical mecha-
nism for reducing the scalar curvature towards zero—
independently of the value of A. de Sitter space is not a
stable solution to the full semiclassical equations (2.1).
Since this statement applies for all A & 0, it seems highly
plausible that the only stable solution to Eqs. (2.1) is, in
fact, flat space. Then the cosmological constant problem
would "solve itself;" i.e., vacuum fluctuations do not
curve spacetime, because if they did, vacuum dissipation
would flatten it again, through particle creation effects.
A definite arrow of time is distinguished by the imposi-
tion of physically reasonable time-asymmetric boundary
conditions on otherwise time-reversal-invariant equations
of motion. This gives a definite meaning to the ideas of
"vacuum viscosity" which have from time to time ap-
peared in the literature. 2o

Thus, one and the same mechanism, particle creation by
gravitational fields may be responsible for both the enor-
mous entropy of the present Universe and its approximate
flatness. The cosmological constant may then be viewed
as effectively screened by the quantum vacuum polariza-
tion of the matter fields. Its actual value is irrelevant
since it does not imply a stable curved universe at the
same scale. An extraordinarily large, flat universe such as
the one we live in, with an effectively zero cosmological
term, may then be the result of quantum vacuum dissipa-
tion actually taking place in a quasi —de Sitter phase of
the very early Universe. Clearly what is needed is a de-
tailed numerical investigation of the behavior of the semi-
classical equations for long times, to determine whether
quantitative agreement between an inflationary model
based on these ideas and the observable Universe can be
obtained.
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