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The finite-dimensional Einstein-Maxwell-scalar field system, characterized by a spatially homo-
geneous or spatially self-similar gravitational field, is approached from a group-theoretical point of
view. The field equations are expressed as a parametrized finite-dimensional mechanical system
~hose singularity behavior is readily apparent, using a method which allows one to consider all pos-
sible symmetry types simultaneously.

I. INTRODUCTION

"Finite-dimensional" cosmological models have fas-
cinated many relativists at one time or another in their
careers. Here finite dimensional means that the configu-
ration space of variables which evolve in time is finite di-
mensional, with the result that the evolution of those vari-
ables can be described by ordinary differential equations.
The reduction to finite dimension, an enormous siinplifi-
cation, is a direct consequence of the high symmetry of
the class of models. However, the symmetry is not so
overwhelming that most interesting features of the field
equations are frozen out as in the most symmetric cosmo-
logical models of the Friedmann-Robertson-Walker type.
In fact the symmetry is just right, very often leading to a
close finite-dimensional analog of many features of the
infinite-dimensional system lacking any symmetry. Not
surprisingly, there are some differences, differences which
enrich the structure of the finite-dimensional system as a
dynamical system in its own right. In particular this sys-
tem is remarkably rich in the numerous ways in which Lie
groups play an important role, both at the spacetime level
and in the dynamics itself.

The finite-dimensional cosmological models are space-
times which are spatially homogeneous or spatially self-
similar, characterized by the existence of a symmetry
group 6 acting transitively on three-dimensional spacelike
orbits, the symmetry being isometrics of the spacetime
metric in the case of spatial homogeneity and homothetic
motions in the case of self-similarity. The energy-
momentum tensor of the source must share this symme-
try, while the source variables themselves are restricted
only by the condition that their energy-momentum tensor
have the symmetry. The spatially homogeneous symme-
try was introduced in 1951 by Taub' who constructed
cosmological models out of the homogeneous Riemannian
three-manifolds studied by the Italian mathematician Bi-
anchi at the turn of the century. Spatial self-similarity
was introduced some 20 years later by Eardley, who
presented a classification of the possible symmetry types,
extending the modern version of the Bianchi classification
given by Behr. ' Both the spatially homogeneous "Bian-
chi models" and their spatially self-similar generalizations
generically have a three-dimensional symmetry group act-

ing simply transitively on its orbits. The only models not
of this type are the Kantowski-Sachs spacetimes and
their spatially self-similar generalizations. These models
have a four-dimensional symmetry group but no three-
dimensional subgroup acting simply transitively on the or-
bits of the group. This case will not be treated in the
present paper; however, its omission is not serious since it
is related by analytic continuation to a particular class of
spacetimes with Bianchi type III symmetry.

In order to express the field equations for a specific
cosmological model (choice of gravitational theory and
sources) as ordinary differential equations, the spacetime
frame used to express those equations in component form
must be adapted to the symmetry. Since these spacetimes
have a natural slicing by the spacelike orbits of the sym-
metry group, they are ideally suited to the 3-plus-1 ap-
proach to the problem, introduced for general relativity by
Arnowitt, Deser, and Misner ' (ADM). Refined by many
others, this ADM formulation can be described in a
geometrical way involving two basic features. 'o" First
one chooses a slicing of the spacetime by a family of
spacelike hypersurfaces and then a threading of that slic-
ing by a congruence of curves nowhere tangent to the ele-
ments of the slicing, thus establishing a "global reference
frame. " The slices correspond to hypersurfaces of con-
stant time and the congruence of curves to the world lines
of points of "space." The actual choice of the time func-
tion t can be specified by a 1-1 parametrization of the ele-
ments of the slicing such that the differential of the re-
sulting time function is always nonzero (the value of the
time function at a slice equals the parameter of the slice).
The parainetrization of the slicing picks out a unique vec-
tor field on the spacetime whose congruence of integral
curves is the congruence used to thread the slicing. This
vector field is called an ADM generator for the slicing; it
is nowhere tangent to the slicing and one can recover the
entire slicing from any slice by Lie dragging along this
vector field. Next one must choose a spatial frame on one
shee and local coordinates Ix'~i =1,2, 3j on that slice
which are Lie dragged along the congruence by the ADM
generator (spatial frame means that each frame vector is
tangent to the slice). One thus obtains local coordinates
(ADM coordinates) adapted to the slicing and a spacetime
frame (a comoving ADM frame) adapted to the slicing
which consists of the ADM generator (just t)/Bt in the
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ADM coordinates) and the spatial frame vectors (which in
the ADM coordinates have no time component and spa-
tial components which are independent of t) T. hus in the
case where the spacetime has a natural slicing, the free-
dom in the choice of time is reduced to the choice of a pa-
rametrization of that slicing. The choice of a particular
spatial frame at one element of the slicing, as well as the
choice of the threading of the slicing, involves the spatial
diffeomorphism freedom.

For the spatially homogeneous and spatially self-similar
spacetimes, the spatial diffmmorphism freedom compati-
ble with the symmetry is related to the automorphism
group of the Lie algebra of generators of the action of the
symmetry group on the orbit. These generators are just
the Killing or homothetic Killing vector fields of the
spacetime associated with the spatial homogeneity or spa-
tial self-similarity. In order that the field equations be-
come ordinary differential equations when expressed in
terms of the adapted ADM spacetime frame consisting of
the ADM generator and a Lie dragged spatial frame, the
spatial frame must be invariant under the symmetry
group on each element of the slicing. This restricts the
choice of spatial frame on any given slice to a finite-
dimensional space and restricts the threading of the slic-
ing to those congruences which keep the spatial frame in
this finite-dimensional space on each slice under dragging
along. The freedom in the choice of global reference
frame is best described in terms of the lapse function and
shift vector field which result from the projection of the
ADM generator onto the unit normal vector field to the
slicing and into the slicing itself, respectively. The lapse
can only be a function of the parametrization of the slic-
ing of the spacetime by the orbits of the symmetry group,
while the shift vector field must be confined to the Lie
algebra generating the automorphism group of the Lie
algebra of generators of the symmetry group 6 in the spa-
tially homogeneous case and a certain Lie subalgebra of
generators of the automorphism group in the spatially
self-similar case. (In the latter case, not only the Lie
brackets of the symmetry group Lie algebra must be
preserved but also the values of the linear form on that
Lie algebra associated with the homothetic condition. }

Expressing the field equations in such a frame and pro-
jecting them into perpendicular and parallel pieces with
respect to the slicing" then leads to ordinary differential
equations which refiect both the gauge freedom associated
with the choice of shift through the action of the matrix
representation of the above automorphism group or sub-

group, as well as the freedom of choice of the initial spa-
tial frame, involving the same matrix group but acting as
a symmetry group of the initial data. These ordinary dif-
ferential equations contain the components of the struc-
ture constant tensor of the Lie algebra of generators of the
symmetry group (as well as the components of the
homothetic linear form) as parameters whose choice cor-
responds to a gauge condition on the choice of initial spa-
tial frame, preserved by the matrix representation of the
automorphism group (respectively, the subgroup also
preserving the homothetic linear form). Usually these pa-
rameters are set equal to their canonical values given in
the Bianchi-Behr or Eardley classification, and one stud-

ies the particular symmetry type represented by that
choice.

However, by allowing enough freedom in the specifica-
tion of these constants so that one can pass freely from
one symmetry type to another without complicating the
simplified form of the ordinary differential equations ob-
tained by choosing the canonical values, one can study the
system for all symmetry types simultaneously. In this
way apparently isolated exact solutions can be seen as par-
ticular members of families of solutions which contain
many symmetry types and qualitative methods of study-
ing particular symmetry types can be seen as part of a
qualitative treatment of the system as a whole (including
all symmetry types). Obviously certain properties will dif-
ferentiate between the approach one takes in the details of
treating each symmetry type, but by avoiding specializa-
tion until absolutely necessary one understands what one
is doing in a global context rather than as an isolated spe-
cial case.

This can be achieved by working with the parametrized
simply connected three-dimensional Lie group and a relat-
ed multivalued choice of parametrization of the variables
of the problem adapted to the automorphism gauge free-
dom. ' ' The parameter space consists of a particular
subspace of the space 4 of components of possible struc-
ture constant tensors for a three-dimensional Lie algebra.
This subspace, called the standard diagonal form subspace
CD, is essentially discussed by Ellis and MacCallum (ex-
cept for a permutation which singles out the first direc-
tion rather than the third as is customary in physics) and
is particularly suited to the discussion of isometry classes
of the spatial three-metrics' and therefore to the struc-
ture of the differential equations which govern the evolu-
tion of three-metric.

This paper will discuss the above ideas in the following
way. First the symmetry of the metric and sources will be
discussed, together with the spaces of symmetry adapted
variables and the explicit construction of the spacetimes
themselves. Then the O'D-parametrized diagonal gauge
will be discussed in general and finally the Einstein-
Maxwell-scalar field system will be discussed within the
context of zero cosmological constant general relativity.
The discussion of the vector potential and variational
principle for Maxwell's equations will be relegated to the
Appendix.

II. SYMMETRY TYPE

As shown by Eardley, a spatially self-similar spacetime
can be obtained from a spatially homogeneous spacetime
by a particular conformal transformation of the spacetime
metric. Similarly the sources of a spatially self-siinilar
spacetime can be obtained by scaling the sources for the
spatially homogeneous case by the appropriate power of
the conformal factor. Each field undergoes the scaling as-
sociated with its dimension q assigned so that the space-
time metric has dimension q =2 awhile the covariant
energy-momentum tensor of the source and the covariant
Ricci and Einstein tensors both have q =0 (the gravita-
tional constant does not scale here so it has q =0); this
scaling operation has been called "stretching" in the case
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of a perfect fiuid. " The sources of the spatially homo-
geneous spacetimes which are not themselves spatially
homogeneous can be obtained in all cases (excluding
gauge-dependent gauge fields) by a complex phase
transformation of the spatially homogeneous fields pro-
vided the appropriate variables are chosen; this complex
phase transformation has been called "twisting" in the
case of a Dirac spinor source. ' Thus all the variables
which enter into the problem can be expressed as at most
an inhomogeneous complex scaling of the spatially homo-
geneous variables. The classification of spatially self-
similar spacetimes arises from the study of the modulus
of this complex scale factor while the classification of less
symmetric sources for the gravitational field deals with its
phase. Not surprisingly this has a very simple group
theoretical interpretation. The logarithmic differential of
the modulus (the homothetic one-form) and the differen-
tial of the phase (the twist one-form) must be exact one-
forms on the spacetime which are invariant under the
symmetry group; in fact with certain identifications they
must belong to the adjoint invariant subspace of the dual
of the Lie algebra of generators of the action of the sym-
metry group. The classification both of spatially self-
similar spacetimes and of less symmetric sources for spa-
tially homogeneous or spatially self-similar spacetimes
then corresponds to the classification of adjoint invariant
or equivalently bi-invariant one-forms on the abstract
symmetry group G.

A given one-form associated either with the spatially
self-similar conformal scaling or the independent phase
transformation of a given complex source field can be ini-
tially classified as exceptional or nonexceptional depend-

ing on whether or not it is linearly independent of the
one-form associated with the trace of the adjoint represen-
tation of the symmetry group Lie algebra (automatically
nonexceptional if the latter form vanishes, as it does in the
unimodular case). Let this latter form be called the struc-
ture constant trace one-form. A source-filled spacetime is
called exceptional if the homothetic one-form or any of
the twist one-forms is exceptional or if the set of such
one-forms together with the structure constant trace one-
form contains more than one linearly independent ele-

ment. The exceptional case is a set of measure zero in the
space of all possible variables and symmetry types, which
is fortunate since its corresponding spatial gauge group
has at most one dimension rather than at least three as in
the nonexceptional case; hence, one is unable to eliminate
as many degrees of frexlom as is possible in the nonexcep-
tional case, leaving the system in a rather complicated
form. Reduction of the number of degrees of freedom is
accomplished by exploiting the constraint equations
which arise in the 3-plus-1 approach, together with the
gauge symmetry of the field equations. The exceptional
case can in fact occur only for symmetry groups G of the
special Bianchi types I, II, and III for which the adjoint
representation is not faithful due to the existence of a non-
trivial center.

The discussion is simplified if we explicitly construct
the spacetime manifold and symmetry action as fol-
lows. ' Let 6 be a simply connected three-dimensional
Lie group with Lie algebra p of left invariant vector fields

(2 3)

For example, the unit normal vector field to the family of
orbits of the symmetry group has dimension q = —1 so

e i ——e ~ei, ei N'(Bl"dt —N——) . (2.4)

The lapse function N and metric component functions

g,b are functions only of t, while the "scale function" f
and "twist function" 8 are assumed to be time indepen-
dent and have spatially homogeneous differentials

df=b, co'Ep fig', d8 =c,aF&p'(lP*, (2.5)

where b, and c, are real constants and

W' [le '=
I o=oa~'Ee*

I
(do)b, = —o.C'b, =oI

=ker ad(p)*

(0'PP fl~ ~o=oaco =cTaco )
(2.6)

is the fixed point set of the coadjoint representation of G,
equivalent to the space of bi-invariant one-forms on G.
The coadjoint representation of p is defined by

(ad(X)'o )( I') =o(ad(X) I'),
o.Ep, X, FEp,

and let p be the Lie algebra of right invariant vector fields
on G. [If XEp and XEP, then X(e)=X(e), where e is
the identity of G. ] Let [e, I be a basis of p with dual
basis Ito'I identified with a basis of the space p' of left
invariant one-forms on the group. [Let P' be the corre-
sponding right invariant space with o (e)=a(e) for
cr Eg, cr Eg ' ].The components of the structure constant
tensor of the Lie algebra with respect to this basis are de-

fined by4 5

&'b, =ai'([eb, e, ))= t0'—([eb e, ])=eb,grt +ttf5b,
'
(2.1)

g(ab) + ab C[ab] abc&
C

while [e„eb]=0. The structure constant trace one-form
mentioned above is C,fco'=2a, co'.

Take the spacetime manifold to be the product mani-
fold 8 X G, where R is the real line with global coordinate
t which is identified with the parameter of the natural
slicing of R XG. Identifying fields on the factor mani-
folds with corresponding fields on R X G, one can
represent a general spatially homogeneous metric g and a
general spatially self-similar metric g in the following

OH11

ag = Nidte—dt +g,b(aP+N'dt)e(~b+Nbdt),
(2.2)

4g 2f 4g

while a spatial or spacetime field X of dimension q associ-
ated with a source which is compatible with the spatial
self-similarity of the metric g can be represented in terms
of a spatially homogeneous such field X by the following
complex scaling, provided the appropriate variables are
chosen
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ad(X) Y=[X,Y] (2.8)

defines the adjoint representation of p. The subspace
p' A p

' is also the annihilator of the commutator
subalgebra or "first derived subalgebra" p"'=[@,p] of p,
which explains why it is a trivial space for a semisimple
Lie algebra where p"'=p. The dimension of p' A p

' is
3 —rank( C ), since the condition (2.6) on a is equivalent
to cr, C =0; the assignment of roman numerals in the Bi-
anchi classification is in fact based on the rank of the ma-
trix (C' ). If cr=o,ai'C p'fig' is a bi-invariant one-

form, it is called exceptional if e' a, oh&0, i.e., if the two
one-farms o and a,co'=[Tr ad(e, )]co' are linearly in-
dependent; otherwise a is called nonexceptional. The dif-
ferentials of the scale and twist functions will be called,
respectively, the homothetic one-form and the twist one-
forms. The trace one-form itself is the differential of the
determinant of the adjoint representation of the group.

The shift vector field is restricted first by the condition
that the linear transformation of the spatial vectors [e, J

induced by the action of its Lie derivative depend only on
the time; the same must be true of the Lie derivative of
the scale and twist functions:

Wy1(=W-8 =0, (2.12)

they will depend on the choice of spatial gauge. Rescaled

spatially homogeneous fields like g and X will also be
gauge dependent and will therefore undergo additional
conformal and phase gauge transformations when
transforming between different spatial gauges. These
complications can be avoided simply by imposing (2.12) as
an additional condition on the shift vector field.

For any homothetic Killing vector field of the space-
time metric g of the form Z =Z'( )re„ the following re-

lations hold for the Lie derivatives of the metric and the
source field X:

~z 'g =2dP(»'g
(2.13)

WzX=[qdg(Z)+i d8 (Z)]X .

the entire generating Lie algebra satisfies this condition,
while if a, =0 ( G a class A Lie group), this subalgebra of
the generating Lie algebra is the entire such Lie algebra
for a certain class 8 Lie group.

However, unless the shift Lie derives the homothetic
and twist functions themselves

(i) W -e, =ad, (N ),es, d(ad, (N )'b) =0,

(ii) W /=de(N)=b, ¹,d(b, N')=0, (2.9)

Such a vector field Z Lie derives all spatially homogene-
ous fields; in particular its time dependence is determined

by the condition

(iii) W-8"=d8"(N)=c, N', d(c, N')=0. 0=Wze, Z '=a'(W eb )Z' .
N

(2.14)

These conditions must be imposed in order that the field
equations reduce to ordinary differential equations. Since

f is time independent, df= dg holds and conditions (ii}
and (iii) may be rewritten

0= d(W-P)=W-df, 0= =W-d8 (2.10)

which may be expressed in component form:

0= —(W -df)(es) = b, (W ~ co')(e—s )

0= —(W y d8")(es) = =c, ad, (N ) i, .
(2.11)

The operator W- is already an inner derivation of the
N

infinite-dimensional Lie algebra of vector fields on G.
The condition (2.9) (i) requires the shift vector field to act
as a derivation of the Lie subalgebra p into itself and
therefore belong to the generating Lie algebra
pe, u~l'(G) =pe, ~~1'(G) of the group I.a, Hut (G)
=RG, Aur(G) of automorphisms and translations of G
into itself. The matrix [ad, (N)'s] belongs to the Lie
algebra of the matrix group of automorphisms of the Lie
algebra p with respect to the basis [e, ]. The conditions
(2.10) or (2.11) restrict the shift to the Lie subalgebra
which Lie derives the hoinothetic one-form dg and the
twist one-forms 18"associated with the source variables,
i.e., so that [ad, (N )'b] belongs to the Lie algebra of that
subgroup of the Lie-algebra automorphism matrix group
which leaves the covectors (b, ) and (c, ) invariant. In the
nonexceptional case with a, &0 (G a class 3 Lie group),

4'= [(n's, as) ESCA(R') XR'
~
a, n'~=0I (2.15)

and its obvious analog for the spatial self-similarity ac-
tions

= [(n',a„b, ) E4 XR
~
b, C' =0I (2.16)

and its further generalization to allow one symmetry com-
patible source

'+=[(n's a,b„c+)&g~XRi
~

c~C's=OI (2.17)

Note that such vector fields will in general be time depen-

dent unless N itself is spatially homogeneous (i.e.,
eb ——0). When this is so, the left action of G on

N
R )&G reduces to the natural left action in which each
copy of G in R &( G undergoes the same left translation of
G into itself. Otherwise the symmetry action of G on the
spacetime is by a time-dependent left translation of G into
itself. However, the condition (2.14), together with the
bi-invariance of the homothetic and twist one-forms, the
equality ai'(W - e& ) =co '(W es ) which holds for sym-

metry compatible shifts, and (2.11), implies the constancy
of the coefficients dg(Z) =b,Z' and d8 (Z)=c, Z'
which appear in (2.13) even if Z is time dependent.

The symmetry types of the vacuum and nonvacuum
spacetimes considered here are classified by considering
the action of the general linear group on the parameter
spaces which characterize the symmetry. Introduce first
the space of possible structure constant tensors,
parametrized by the Behr decomposition [letting Si(R }
be the space of symmetric 3X3 matrices]
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QN Qb =
~ a f~gE'bye Pf 11

ef dg (2.20)

When a, =0, one has invariants f and f defined by

b, bb = ,' fe~ebfen'fn —e,

C Cb 2 J 6 gftbfgfl 7f
XX tcX cf ctg

and when a,+0 and b, and c, are nonexceptional

b, =fa„c,=f a, .

(2.21)

(2.22)

For the exceptional one-forms no such invariants exist.
The easiest way of displaying the symmetry classification
is to pick a canonical representative of each orbit by
reducing the symmetric matrix (n ) to its standard Syl-
vester form and aligning a, with the third direction when

l

with obvious generalizations to the case of multiple
sources. The space 4 is divided into two categories called
class A (a, =0) and class 8 (a,~O) which are included
as subspaces of 4' (b,+0) and of Ã ' (b, =O=c»).
The space 4 contains in addition two nontrivial cate-
gories ( b, +0) called class C (a, =0) and class D ( a, &0)
and a subcategory class Do for which b, =a,+0.

GL(3,R} acts on these spaces of components in a way
which reflects the transformation properties of the corre-
sponding tensor densities and covectors over the Lie alge-
bra p of G under a change of basis

ca~A '
Neb, a)'I-+A'ba), A=(A'b)GGL(3, R),

(2.18)(n,a, )t+((d-etA ')A', Ann'", abA 'b, ),
with b, and c» transforming like a, . A symmetry classi-
fication amounts to a description of the orbit spaces
4/GL(3, R), 4' /GL(3, R), and 4 ' /GL{3,R). For
the space 4, the isotropy group

GL(3,R}(~ )
——[ANGL(3, R)

~
A eCe/eA '/bA

=C'„j=-Aur, (Z) g.19)

at a point {n, a, )G 4' is the matrix representation of the
automorphism group of a Lie algebra p with respect to a
basis [e, I in which the structure constant tensor com-
ponents are exactly this point. The isotropy groups for4'~ are subgroups of those at corresponding points of C,
with a similar statement holding for ))'~». For example,
on 4 one has

GL(»»(n, a)=[A&Auto(p) I bbA "a=baI
It is worth noting that the isotropy group on 4'~ at a
nonexceptional point (n,a„b,} of 4'~ is the same as
that at (n ~,a, ) of i)' or if a, =0 then it is the same as at
the point (n, bb) of 4', etc.

Invariants of this action of GL(3,R) are helpful in the
classification. When a,+0, one has an invariant h de-
fined by

(Z, N) (e'4'Z, e'~N)~Fi cospF sinq)'—F . (2.23}

Thus one can introduce the phase factors P, 8, and 8
and the parameters c,', c, , and cs for electromagnetic,
Dirac, and complex scalar field sources. The electromag-
netic case has been discussed extensively by McIntosh. 2

A perfect fluid, on the other hand, is completely deter-
mined by its energy-momentum tensor and so must have
the symmetry of the metric. The fluid variables
{p,p, u~, n, ib, l, u, ) have respective dimensions ( —2, —2, 1,
—2y ', 2ly ' —l), 3—2y ', 2y ' —1) for a perfect fluid
with equation of state p =(y —1)p with yC[1,2] a con-
stant. 2~

III. DIAGONAL GAUGE

It is most convenient to work with a basis [e, ) of p in
which the components of the structure constant tensor
and of the one-forms associated with the symmetry action
are assumed to be in a certain simple form called standard
diagonal form in which the symmetric matrix (n' ) is di-
agonal and the covector (a, ) is aligned with the third
direction. Introduce the standard diagonal form subspace
ÃD C 4' of points which satisfy these conditions

nonzero, etc., leading to a table' of canonical representa-
tives for the space Ã . [Other tables in the literature '
only list the signs of the nonvanishing eigenvalues of
( n' };converting these signs to +1 gives a table of canoni-
cal representatives. )

How do the various familiar sources fit into this
scheme? Let us consider the Maxwell (s =1), Dirac
{s= —,

'
), and scalar (s =0) fields and a perfect fluid, fol-

lowing the conventions of Misner, Thorne, and %Reeler. 9

Let F~p be the components of a spatially homogeneous
electromagnetic two-form with respect to the spacetime
frame [e

~
a=0, 1,2, 3I = [8/Bt, e, J with dual frame

[a) )
= [dt, co'I and introduce the electric and mag-

netic field densities 8"=g'~ E'=g'~ E ' and
=g'~8' =1/2e Eb„all of which have dimension

q =1, and the complex fields Z p Fp+——i 'F
p and

2'4=g'~2(Fi'+i ~Ei') =S"—i 3t', where 'F
p= I/2il~p„sE" are the components of the dual of E and

bio)23 ——Ng ' . The energy-momentum tensor is T~p
=(8ir) 'Re(Z'rZ"P), where Z'P is the comPlex conju-
gate of Z p. Let 4 be a spatially homogeneous Dirac
spinor field with dimension q =—~ and the
energy-momentum tensor T p

——,'i4y——Vp+ and let (()

be a real or complex scalar field (dimension q =0) with
energy-momentum tensor T p ——(4n ) '(B~ P Bp)P——,'g pBr(i)'Br/). Since the energy-momentum tensor is
real, it is invariant under constant phase transformations
of the complex fields which occur in it. In the elec-
tromagnetic case there are just duality transformations

en [(n,a.)e—e
l
(n )=diag(n'", n"', n"'},ab=aS'b, a &O,an"'=OI .

Correspondingly introduce the space

en = [{n~,a.,bb) C e ) (n",a. )e en, b, =b'*'S„,E.+bs'. ,bn") =0}),
a&here

(3.1)

(3.2)
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E,=
~

n' '
~

' 5' +sgnn'"
~

n'"
~

' 5 (3.3)

is an R -valued function on CD which satisfies E,C "=0 on the Bianchi type III orbit (characterized by lt =—1) and

5iii is the characteristic function of the Bianchi type III orbit having the value 1 on the orbit and zero elsewhere. For a
single source introduce the space

——I(n', a„b„c,) ~(n', a„b, )CKD, c, =c1515',+c2(51+511)5,+c '"'5iiiE, +c 5 „c n' '=cin' '=0},
(3.4)

while for multiple sources one simply includes each cx in
the definition.

The explanation af these definitions is as follows. The
semisimple Bianchi types UIII and IX [for which
det(n' )&0] do not admit bi-invariant forms and require
all of the covectors to vanish. For the nonsemisimple Bi-
anchi types, assuming (n', a, )EV D and n(2'=0, the
one-form co =coi=dxi is always bi-invariant, but the
space of bi-invariant one-forms is larger than span Ito }
for the "degenerate'* Bianchi types I, II, and III whose ad-
joint groups have dimension less than the generic dimen-
sion 3. For these three types the space p'Ap' of bi-
invariant one-forms has dimension 3, 2, and 2, respective-
ly, which leads to the terms involving the Bianchi-type
characteristic functions. The most general type II twist
one-form is obtained only for the case n("&0. For ÃD
one can use the matrix automorphism group to align the
homothetic one-form with the third direction in the Bian-
chi type I case; similarly for one of the source spaces one
can assume c 1

——0. Of the three Bianchi types I, II, and
III, only the case 8 type III admits exceptional one-forms,
but all these types allow the possibility of exceptional non-
vacuum spacetimes.

For each point of 4'D let 6 be the simply connected
Lie group with the basis Ie, } of its Lie algebra p explicit-
ly parametrized by its expression in canonical coordinates
of the second kind Ix'} which are global coordinates on
6-R for all but the type IX points of KD where 6-S
and their range must be restricted. ' In this way we ob-
tain fram (2.2) a 4'D-parametrized spacetime (R XG, g)
which includes all spatially homogeneous and spatially
self-similar spacetimes except the Kantowski-Sachs space-
times and their spatially self-similar generalizations. For
a given point of ÃD or 422 ', the explicit basis Ie, } of p
can be changed by any element of the invariance group of
that point under the action of GL(3, R), a subgroup of the
matrix automorphism group Hut, (p) with respect to that
basis, without changing the parameters which character-
ize the symmetry type of the given class of vacuum or
nonvacuum spacetimes. This symmetry may be used to
siinplify initial data.

For vanishing shift vector field, the Einstein equations
for a spatially self-similar spacetime can be written in
Hamiltonian form with a nonpotential force arising from
the spatial curvature and lapse derivative terms in the evo-
lution equations exactly as in the spatially homogeneous
case. ' The nonzero shift case may also be treated exactly
as in the spatially homogeneous case. One finds an ad-
ditional contributian 2 df(N)m dg, b to the momentum-
dependent force which arises in the nonzero shift case,
provided one adds the term

P- =e ((W- g),bm =P(ad, (N)) (3.5)

ea 2
—1/2(n(b12+n(e)2)1/2 (u 5 c) +(1 2 3) .

~(a) (a) aa a~—Hn =n e

(3.6)

[Ka~Kb]=C abKc

C~=e,ben~, (n")=diag(n'", n'", n"') .

Here e b is the 3 & 3 matrix whose only nonzero corn-
ponent is a one in the ath column and bth row, while the
notation o+(1,2, 3) means an even permutation of the
triplet (1,2,3). The matrices K, are well-defined functions

to the zero shift Hamiltonian, using the notation of Ref.
22. [Note the misplaced factor of 2 and missing g'/ in

Eq. (3.7) of this reference. ] The additional term involving
the homothetic one-form generates the conformal scaling
associated with the gauge dependence of the spatially
homogeneous rescaled fields due to the gauge dependence
of P. By imposing the additional gauge condition

/=0 on the shift vector field, one makes g gauge in-

variant and avoids this complication. This will be as-
sumed here.

Two different choices of spatial gauge lead to symme-
try adapted spatial frames which are related to each other
by a time-dependent matrix belonging to the automor-
phism group Hut, (p) (Ref. 21). The usual and most
transparent gauge is the zera shift gauge or "orthogonal
gauge, "but a much more convenient choice of shift main-
tains the diagonality of the spatial metric. Such a diago-
nal gauge, intimately connected to the standard diagonal
form of the structure constant tensor, offers the advantage
of simplifying all expressions involving the spatial metric.
However, rather than working directly in diagonal gauge
one can obtain the diagonal gauge field equations by a cer-
tain gauge decomposition of the orthogonal gauge vari-
ables, an approach which has the advantage of incorporat-
ing the shift variables into the Hamiltonian system an the
same footing as the other gravitational variables.

First one introduces the transformation matrix from
the orthogonal gauge spatial frame Ie, } to the diagonal
gauge spatial frame I e,' }.This matrix assumes values in a
particular 3-dimensional subgroup of the special automor-
phism matrix group of the Lie algebra p and may be
parametrized by canonical coordinates of the se:ond kind
with respect to the basis IK, }:
e.'=S-'b, eb, a)"=S'ba)b,

8~x 8x HaS=e 'e 'e 'ESAut, (p);
K =e- (n'"e' +n "e' )
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g=Srg'S, X=(T(S ')X'. (3.7)

Here u is the tensor density representation under which
the source variable X transforms, while the diagonality of
g

' characterizes diagonal gauge
2P

P=djag(P', 13,P ) =P 1+P+diag(1, 1,—2)
(3.8)

+P diag(v 3, —3/3, 0) .
Diagonal gauge is not unique when 6 is not semisimple,
but the choice of transformation (3.6) picks out a particu-
larly useful gauge in this class. The interpretation of (3.7)
in terms of the change of spatial gauge is valid only when
the additional gauge condition W )|t =0 holds since oth-

erwise an additional conformal scaling would be involved.
The variables tP = —Q,P+,P j = IP"j„o+ were in-
troduced by Misner. P-+ parametrize the space of trace-
free diagonal matrices, while P parametrizes the pure
trace matrices and hence the determinant g' of g'. Since
S is unimodular this agrees with the determinant g of g:

g
1/2 gii/2 3ti (3.9)

The geometrical configuration space variables I p",8 j
have associated velocities Ip",8 a

j and conjugate momen-
ta Ipz,p, j. The automorphism variables t8'j are local
coordinates on the group manifold 6, where it is more

everywhere on O'D except where rank (n) &2 and the
~1 ~2 ~3

scale matrix e =diag(e, e,e ) is singular; at these
points they have direction-dependent limits from points of
higher rank. The set of such limiting values are interpret-
ed as possible values of ~„which are everywhere nonvan-
ishing and linearly independent multivalued functions on

The spatial metric matrix and the source variables are
then decomposed into diagonal gauge variables denoted by
a prime superscript and the transformation between the
two sets of variables

convenient to use noncanonical velocities and conjugate
momenta which correspond to expressing components
with respect to a right invariant frame on that group
manifold ':

I P„P« j =C;«P„ IS P, j =XaS . (3.1 1)

Any member of the equivalence class of shift vector

fields which satisfy [ad, (N)'b]=ra W' will induce the
change of spatial frame (3.6) to diagonal gauge. The con-
ditions (2.11) are identically satisfied for arbitrary values

of W' except for Bianchi types I, II, and III:
c X cbc+a b 0 cc +a baba ba& ca —ca (3.12)

For types I and II the condition involving b, selects those
values of ira whose one-parameter groups leave b, invari-
ant. This condition is automatically true for the type III
nonexceptional case, but in the exceptional case b, is in-

variant under only a one-parameter subgroup of 6 so b,'

necessarily depends on two independent linear combina-
tions of the variables I8'j, leading to many complications.
In particular diagonal gauge is incompatible with the as-
sumption leading to (2.11). The same is true for any ex-
ceptional case source-filled spacetime: at least one of the
set of homothetic and twist one-forms is time dependent
in the diagonal gauge, leading to explicit dependence of its
primed components on the transformation matrix S.

Evaluating the ADM gravitational Lagrangian density
and the Legendre transformation and then the associated
gravitational Hamiltonian HG leads to the results

(3.10)

The matrices (W'b) and (E, ) are inverse matrices and
represent the coordinate components of the right invariant
one-forms W' and vector fields E, associated with the
basis I)r, j of the matrix Lie algebra of 6; one can easily
derive the Poisson brackets relations '.

W =N(W —U ) W=N e (6q p "p +3 W'W") p =N '(12e 2}qgp P =N '(12e +) 63 W

p"=N(12e +) )rI"epb, W aN(12e )3(63) )a«P H =NMG=N(~+U )

NW=N(12e3+) '( ,'2}"pqpi)+37—"PP) U =e+V'+2e'+(e ~)' (3a a —4a b'+b'b')

Va 1

[( (1))2 4+( (2))2 2 +( (3))2 4 ] (
(2) (3) 1 + (3) (1) 2 + (1) (2) 4)

(3.13)

laa~ —1 1 —2a (b) 2 3Pa (c) 2 3) a 2~=( ) = —,e (n e ' ne ')—
(2}&2)}=(2}")=diag( —1,1, 1}, 6p, :——2p'+p +p', 2v 3p, —:p —p'

. (a, b, c)=cr(1,2, 3) .

When b, =b5 „the gravitational potential and the nonpotential force are explicitly' '
U =e V'+2e++ ~ (a —b)(3a b), —

Q =4(a b)e++ ~ [2—(3a 2b)d13++4b d—p +e 933W j=Q+dp++Qodp +Q3W

while the gravitational supermomentum components are

A = Pbp, —(a 2b l3)5—,p++b—l35, po,

(3.14)

(3.15)
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where the constant matrix p and its determinant are

p=e~+2 -'"(3a —2b)( —sgnn"'e2 +sgnn"'e' ), detp= —,
' sgnn'"n'"[n'"n'"+(3a —2b)']ea' (3.16)

H=NP N(—A G+P" +A },
~..=(~.'+m'. +M),

one obtains the gravitational equations of motion

(3.17)

Forming the total super-Hamiltonian and supermomen-
tum

duced system of gravitational variables, it is UG ~ which
generates the correct Hamiltonian equations. In the spa-
tially homogeneous case b =0 or the class Do case
a b=—0, it is in fact V' alone which drives the p+p
variables.

IV. SOURCE VARIABLES AND EQUATIONS
pA

P,

pA

,H
SA

8'
0

P,

0

NQ~

0

5,NQ2

and the gravitational constraints

(3.18)

A spatially homogeneous electromagnetic field acting
as the source of a gravitational field is best described in
the Hamiltonian approach using the orthogonal gauge
MTW (Ref. 9) field variables g(" and A' already intro-
duced above, or the complex combination 2'= F' i %-'
The stretched and twisted electromagnetic field is ob-
tained by the transformation (2.3) with q = 1:

A =0=4, . (3.19}

In the most general case, the matrix p is invertible and
one may solve the supermomentum constraints (3.15) for
the momenta P, in terms of the source variables. One is
left with a reduced system involving the diagonal gauge
gravitational variables I p,p+, p J and their momenta
which is driven by the spatial curvature and the source
energy-momentum as well as the kinetic energy of the
variables 8' which remains as an effective potential. The
reduced Hamiltonian equations including the nonpotential
force contribution are equivalent to part of the Einstein
equations expressed in diagonal gauge. The source equa-
tions themselves can also be expressed in diagonal gauge;

the velocities W' expressed in terms of the momenta P,
and in turn expressed in terms of the source variables
parametrize the shift vector field associated with diagonal
gauge. Using the primed source variables, the variables 8'
do not appear explicitly in the nonexceptional case and so
have been eliminated from the system. In the exceptional
case this is not true, and some or all of the variables 8'
remain explicit, since 6 is no longer a gauge group. The
case in which p is degenerate retIuires special handling ex-
actly as in the perfect-fluid case.

The final remaining constraint on the reduced system,
namely, the super-Hamiltonian constraint, may be re-
moved by choosing P or II as the new time variable. '3

The only component of the nonpotential force which
directly affects the unconstrained gravitational variables
p p in the nonexceptional case is Q+ which may be el-
iminated by redefining the gravitational potential:

UG P Ve+ UGbad UG, eff eP Va+ UGbad, eff

eii+i8 ~ d8em &em e (4.1)

(M)Ng '~
g (I"8' —l0'lF )

1

Sm

1
(2&)Ng' 1/2g (g—ug'b a+ b)

Sm'

1

, (2~)g '"g.,(S-"((f'+e'eb)

1

8 ob(2K)g' ' 2g' (8'"8" +SF"3P' ) t (4.2)

(2~)e~N" SP"
4m

(2~)equi 8"bA" Sd, ,

using the MTW convention of multiplication of the
"true" expressions by a factor of hc, where ~ is the con-
stant appearing in the Einstein equations G~p ——~T~p.
These expressions are also equal to the rescaled expres-
sions for the stretched and twisted fields since no deriva-
tives occur.

Maxwell's equations for the stretched and twisted field
take the form

with II' and 4' given as the real and imaginary parts of
the complex conjugate field N'. The Lagrangian density,
super-Hamiltonian, and supermomentum of the spatially
homogeneous electromagnetic field in orthogonal gauge
and diagonal gauge are

UG~d—=2e &+i"(G —b)(3a —b),
UGbad, eff 2eP +P

(3.20}
Z'= iNg '~ Nb[C —e(be+ice) J, —
0= ( —2a, +b, +ice~)2" .

(4.3)

UGbad+ Q ~ g UGbad, eff
+ +

The potential U ' generates the correct contribution
to the p+p equations of motion without a nonpotential
force correction. Thus for the purposes of the fully re-

In the nonexceptional case the divergence constraint
reduces to the form 0=(—2a+b+ic )N which forces
N =0 unless b —2a =c' =0. To transform these equa-
tions to the diagonal gauge frame one must introduce the
time derivative of the transformation matrix
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SS '=ay W', N"=S'b2'

(N") = i—Ng '~ N' [C~+e (b,'+ic, )]

+IV'a ' N'

P=(2a/4n) 'g ' Nrr~(2a/4n). 'g'

harp
(—2—a/4~)Ng ' [2i (b, —a, ) c—, ]c 'P'

= (2a /4n )Ng '~ [2i (b,' —a, ) —c, ]c

(4.8}

y.b
= —zy—~= —2C— C'be ={1 h)—~(n}.b

6(n) b =
2 e eebfsn nef dg

h(n)~ ——diag(n'2'n' ', n'2'n'", n'"n' '),
y~bn =(1—h}(detn)5; =y,bC

y&e a~ ——0 .bed

(4.5)

In the semisimple case this is related to the electromagnet-
ic parameter e of the Brill "electromagnetized" Taub
solution by g=gna 'e (Refs. 15 and 23). However, the
divergence constraint in the nonexceptional case requires

g to vanish unless b —2a =c =0. At points of O'D

where g is identically zero independent of the values of
~

2'"
~, one may often obtain a nonzero constant of the

motion by suitably rescaling g and taking the limit as one
approaches these points from more general points of 4n.
This has already been described in detail for the corre-
sponding perfect-fluid constant of the motion. For ex-
ample, scaling y,b to (Trn ) y,b in g is relevant to the
semisimple values of a, for the Bianchi type I case.

Next consider a massless spatially homogeneous com-
plex scalar field. Since it has dimension q =0 one need
only twist this field:

p=e'+p, d& =csee'. {4.6)

The rescaled spatially homogeneous Lagrangian density,
super-Hamiltonian, and supermomentum of this twisted
field in orthogonal and diagonal gauge, respectively, are

,'(2a/4 )Ng '"(N 2-y 'y g'bc.'cbody'y-)—

,'(2a. /4n)Ng'~ (N —p'p g" c, cb p—'p),

,'(2a/4rr)[(2a/4—n)g '
n~m~+g. '/g c,c P'P]

,' (2a/kn )[(2a/—4rr) g'

+g~1/2gtabCS CS ye y]
{4.7}4, =i (mpP nP')c, =i(np—P nb/')cb S, ,—

where m~=(2a/4m)N 'g' p* is the conjugate momen-
tum. The equations of motion for the twisted field are
just the result of expressing the wave equation in first-
order form:

0=( —2a, +b,'+ic, )N" .

In the nonexceptional case these equations admit a con-
stant of the motion g which involves the Killing form of
the Lie algebra p

g=y b(&'&b+ &'~b) =y.b(~"e"++ "~')
3

= Xy

These may be interpreted as the Hamiltonian equations of
motion obtained from NA if P and P are treated as in-

dependent variables vnth the usual Poisson brackets

jg, mP =2= jP', @~I and a nonpotential force is intro-
duced

4= jP,N~'j, ~,= j~,,N~']+Ng',
Q =(2K/41r)2lg C (bg —gg ) .

(4.9}

The basic Poisson brackets follow from the usual Poisson
brackets for the real and imaginary parts of p=p, +i/2
and their conjugate momenta, in terms of which

m~ m~,
——

iver~,
—. Reality of the scalar field corresponds to

the special solution $2——0=m~, of the equations of motion

when c, =0. For an untwisted scalar field, c, must van-

ish, making n~ a constant and contributing a term propor-
tional to g

' to the super-Hamiltonian.
For the gravitational equations of motion (3.17) to be

well defined, one must specify the Poisson brackets be-

tween the gravitational and source variables. The scalar
field variables P and m~ and the contravariant densities 5"
and A" commute with the canonical gravitational vari-
ables, but from (3.11}one has

j 2'",Pb I =ab', N" . (4.10)

V. QUALITATIVE COSMOLOGY
FOR ELECTROMAGNETIC-SCALAR

FIELD SPACETIMES

Of the many questions one can ask about the solutions
of the equations of motion for the finite-dimensional
electromagnetic-scalar field system, one of the most
natural to investigate is the question of their asymptotic
behavior. If one considers the big bang solutions which
start at an initial singularity (which may or may not. be
physical) and then expand, one may study the limiting
behavior approaching the initial singularity, and in those
models which continue expanding indefinitely, the asymp-
totic behavior at large times after the initial singularity.
The first case has intrigued many people over the past few
decades.

There are various approaches one may take in formulat-
ing the problem of describing the behavior of these
cosmological solutions near the initial singularity. Spa-
tially homogeneous vacuum models and later perfect fluid
models were flrst studied by Lifshitz, Khalatnikov, and
Belinsky (BKL), whose work is summarized in several
long articles, and vvhich involves direct analytical ap-
proximation, and by Misner ' and Ryan who em-

ployed the ADM Hamiltonian formulation to reduce the
problem to that of the motion of a particle under the in-
fluence of various potentials. Bogoyavlensky and Novi-
kov later applied the qualitative theory of differential
equations to the system in its Hamiltonian form for
orthogonal fluid flow in a series of papers summarized in
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a long review article. Their work has recently been ex-
tended to the general perfect-fiuid case by Rosquist.

Real scalar field sources were considered by Nariai ' us-

ing the Misner-Ryan formalism and by Belinsky and
Khalatnikov who included electromagnetic fields as well
using a five-dimensional Kaluza-Klein formulation. Elix:-
tromagnetic fields alone were studied by Bogoyavlensky
using the techniques developed by himself and Novikov
for the perfect-fluid case and by Spokoiny from the
BKL point of view. More recently Wailer has discussed
electromagnetic fields in the Misner-Ryan approach.

The "qualitative cosmology" approach developed by
Misner and Ryan and discussed in detail by Jantzen)~ for
the general perfect-fluid spatially homogeneous case is
quite helpful in understanding in a pictorial way the
asymptotic dynamics approaching the classical initial
singularity in these finite-dimensional cosmological
models. Since the natural gravitational variables which
are essential to the dynamics are logarithmic, the poten-
tials which drive the system involve terms which are ex-
ponential in these variables. Because of this exponential
dependence, a regime is easily reached when approaching
the initial singularity in which at most one or two of these
terms tend to be important at any given time and one can
idealize their effects on the system in terms of an
equivalent collision of the system point with a representa-
tive potential contour called a wall.

The analogy with the classical mechanics of a particle
moving under the influence of time-dependent potentials
is drawn in Misner's supertime time gauge specified by
the lapse choice N =N'"i"'= 12g)~ =12—ei+. This makes
the P contribution to the kinetic energy EW in the La-
grangian or Hamiltonian of the system equal to that of a
point particle in a flat three-dimensional Lorentz space-
time on which the variables IP,P+,P I are orthonormal
coordinates. (8 is the time coordinate while P+ and P
are the two spatial coordinates. The "time dependence"
of the potentials which contribute to the total potential-
energy function occurs explicitly through factors of e
and implicitly through the source variables.

Any potential term whose explicit dependence on P" in-
volves a single exponential can be assigned a constant
velocity in P+P space associated with that explicit
dependence. Since one is interested in running time back-
ward toward the initial singularity, the variable 0= —P
is convenient. A contour line of a potential involving
such an exponential factor

exp( u)&P")=exp( —(()OQ+ w+ P++ w P )

will move in P+P space with an "0 speed"
(m, '+(J ')-"'

~
~,

~

in the direction (u, '
+ (() )

' (u)+, i() ) perpendicular to the straight con-
tour lines if the implicit time dependence is ignored. The
latter of course contributes an additional time-dependent
component to the velocity of the contour lines of the po-
tential since the contour line associated with a particular
value of the potential must change if the value of the po-
tential changes due to the dependence on the variables
other than P+ and P . Even if the explicit velocity is
zero, which occurs when the potential does not explicitly
depend on P, the implicit contribution will still have the

direction given above. The quantity ((()+ +(J ) ' is
the characteristic constant for the above exponential. Su-
perimposing two different exponential potentials whose
contours intersect at an angle will lead to noticeable dis-
tortion of the true contour from the joined straight line
contours at their vertex only on distance scales compared
to the larger characteristic constant (associated with the
slower rise). The distance is measured in the Euclidean
metric of the P+P plane.

The variables (P, ,P, ) defined by (3.12) for a = 1,2 are
orthonormal coordinate systems rotated clockwise by
2n/3 and 4m/3 radians, respectively, from the P+P sys-
tem which coincides with the case a =3. Because the po-
tentials arise from various contractions of the matrix of
primed metric components with one or two index objects,
their P+P dependence occurs only through exponential
factors involving these three sets of variables. The con-
tour lines associated with potential terms involving a sin-
gle exponential as described above have an angle of in-
clination to the P+ axis which may take one of six in-
dependent values equally spaced in the interval from 0 to
rr (see Fig. 2 of Ref. 13).

Consider the effective gravitational potential for the
nonexceptional case in the supertime time gauge given ex-
plicitly in (3.13), (3.14), and (3.20):¹"i'U ' =e +V'+2b(a b)e '++~—' . (5.l)

Each of the six individual terms in e V' as well as the
final term involve a single exponential of a linear com-
bination of the variables P". According to the preceding
discussion, the first three terms have unit Q speed —,

' in
the negative P, direction, while the second three terms
have unit 0 speed in the positive g' direction, respective-
ly, while the final term has unit 0 speed in the positive
P+ direction. In each case the direction of motion for in-
creasing 0 is the direction of increasing values of the po-
tential. No implicit contributions to the velocity exist
since the potentials depend only on P". Superimposing all
of these individual potentials yields the total effective
gravitational potential whose contour lines for large
values of 0 when all terms are nonzero essentially form
an equilateral triangle associated with the three exponen-

tial potentials Us"= —,n") e ' with 0 speed —,, the(~) ( (~)2 4(P —2P, ) 1

vertices of which deviate from the triangle due to their su-
perposition and the four unit 0 speed potentials. Taking
the limit as a function on ÃD where some of the terms go
to zero pushes some of the sides of the triangle out to in-
finity. "

The effective potential remaining from the P' variables
consists of three terms U,"' caHed centrifugal potentials,
each of which depends only on P and P„r espetciv le:y

3 3

y U(a) g 6P 2( —a (b) i a —a~ (c)e a
)
—2

(a, b, c)=o+(1,2, 3) . (5.2)

%%en e ~n'~'n'"&0, ho~ever, the potential U,"' does
not involve a single exponential term, but the contour
lines are still straight lines of constant P, . In either case
the explicit velocity of a given contour line is zero since
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the potential is independent of P, but the variable P,
when not constant contributes an "implicit velocity" term
of either sign in the P, direction. These potentials have
already been discussed in detail. '

The scalar field snd electromagnetic super-
Hamiltonians contribute source potentials to the total po-
tential driving the P~ variables. The P+-dependence

4(8—+IrE )
occurs only through the factors g'g' =e ' and

2+—4P+
g~ = e ', respectively:

¹"~'4~=6(2~/4n )[(2IL/4m) 2m~ir~+g'g""c~cg p'p],
(5.3)

3 3N'"~'~' = g 6(2~/4 )g ~a" ~'= g U~".

A nonexceptional twisted scalar field, i.e., one for which
c, =c 5 „contributes a single exponential potential with
explicit unit Q speed in the positive P+ direction. An
untwisted scalar field does not directly effect the P+-equa-
tions of motion. A general electromagnetic field contri-
butes three purely exponential potentials U~, each of
which has an explicit 0 speed of —, in the negative P,
direction, respectively, the direction of increasing poten-
tial values, exactly like the first three terms in the gravita-
tional potential. However, the contour lines of the super-
position of all three electromagnetic potentials when all
three are present are closed, resembling closed equilateral
triangles when the vertex effects of the superposition are
small.

The source potential contour lines all have implicit
velocity contributions. For example, decreasing

~

9'"
~

causes the contour line associated with a fixed value of the
potential U', to "move outward, " that is, move in the
direction of increasing values of the potential, while de-
creasing

~

2'"
~

causes the contour line to "move in-
ward. " This leads to s variable velocity depending on the
rate of change of ~2'"~2 which adds to the constant
velocity arising from the explicit P" dependence of the po-
tential. If

~

N"
~

momentarily passes through zero, the
contour lines move out to infinity. A similar behavior is
exhibited by the three centrifugal potentials U,"where
the role of ~H"

~
is played by P, . In the purely ex-

ponential case e ~n' 'n"=0 the behavior is identical,
but squared reciprocals of hyperbolic sines and cosines ap-
pear when this parameter combination is nonzero and the
contour lines "moving outward" toward increasing values
converge from opposite directions on a fixed contour line
of infinite or maximum value, respectively, while those
"moving inward" diverge from this special contour line.

The gravitational equations of motion are exactly solu-
ble when all but one term in the total potential are
neglected, in almost all cases corresponding to specialized
initial data and particular values of the symmetry parame-
ters. These exact solutions may be used to relate the in-
coming and outgoing asymptotic-free states before and
after the interaction with a given potential in the limit in
which only that potential is effective at a given time.
Such an interaction has been called a "bounce. " The
free system with no potentials is just the diagonal Bianchi
type I system. The solution is geodesic straight line
motion in P space; the super-Hamiltonian constraint re-

quires the geodesic to be null, i.e., have unit 0 speed. Ex-
cept for (1) a small neighborhood of isotropy in the type
IX case where the unit 0 speed terms in the spatial curva-
ture make the total gravitational potential negative and (2)
the parameter values b E(a, 3a) in the nonexceptional spa-
tially self-similar case, all the contributions to the super-
Hamiltonisn are non-negative, making the three-velocity
of the system point timelike, corresponding to ever-
increasing p from the initial singularity j3 -+—oo.

An untwisted scalar field has constant canonical
momentum m~ and contributes s constant term to the
supertime time gauge Hamiltonian. This makes the geo-
desic motion timelike rather than null when the remaining
potentials are negligible, leading to less than unit 0 speed
in the free phase, potentially changing the character of the
evolution. 3' i For a twisted scalar field this term in the
super-Hamiltonisn becomes implicitly time dependent but
has similar consequences.

Misner 6 i7 introduced the idea of associating a moving
"wall" with each potential by selecting a particular can-
tour line which marks the point at which the potential has
a large enough value to significantly affect the motion of
the system point, independently of the other potentials.
The equation

()
&

p 2+ U(Pwall) (5.4)

locates the contour or "wall" at which a turning point of
the motion would occur if U were time independent, po
were constant, all other potentials were zero, and the
motion were orthogonal to the contour. Because of the
exponential cutoffs, the system point will not be affected
by this potential until its distance from the wall ap-
proaches the characteristic constant associated with the
potential. One may then ignore this potential until an ac-
tual "collision" or bounce against the wall occurs, which
may then be approximately described by the analytic solu-
tion associated with that particular potential alone. If the
potential has "implicit time dependence" due to depen-
dence on the other variables, such an approximation is
valid when the change due to those variables is insignif-
ican during the scattering of the system point. The effect
of the potential on the system point may then be reduced
to a "bounce law" connecting the free motion before and
after the bounce; essentially the influence of the potential
is reduced to an equivalent bounce of the free system
point against an infinite step function potential located at
the wall contour, the result of the collision being described
by the bounce law.

A bounce against one of the three Q speed —,
' gravita-

tional potentials is described by the exact diagonal Bian-
chi type II spatially homogeneous solution (with or
without a constant term arising froin a scalar field). A re-

scaling of this solution by a factor of 2 describes a bounce
against one of the 0 speed —,

' electromagnetic potentials
U'," with constant

~

N" ~, which is the diagonal elec-
tromagnetic spatially homogeneous Bianchi type I solu-
tion with only one nonzero component of N' The.
bounce law in each case is the result of simply Lorentz
transforming reflection from the moving potential in its
rest frame. ' ' A bounce against a unit 0 speed potential
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is described by the exact Bianchi type Vlo spatially homo-
geneous Taub-type solution, a solution which is obtained
by introducing null coordinates in P space which comove
with the potential. ' '

A so-called "mixing bounce" occurs when the system
point is affected by two (or more) potentials whose indivi-
dual contours intersect at a nonzero angle. This occurs
when the system point penetrates the vertex at a scale
compared to the characteristic constants of the two poten-
tials. This has been studied from several points of view
for mixin~ bounces that occur for the gravitational poten-
tial. 2 For example, the gravitational potential due
to V' alone with n' '=0 and n'"n'2'&0 has a vertex
where the contours of Us"' and Ust

' intersect, the charac-
ter of which is determined by the third nonzero term in
V'. The contour of the total gravitational potential at the
vertex' is open or closed if n '"n'2' is positive or negative,
respectively; in the open case a narrow channel extends
outward to infinity. The vertex between two electromag-
netic potentials is always closed from the point of view of
the total electromagnetic potential since no analogous
third term exists.

The system point is confirmed by the super-
Hamiltonian constraint to a region of P+P space "in-
side" the potential walls, a region which may be "open" or
"closed" depending on the number of potentials which are
present (disregarding vertex details). The key feature of
the system which makes the above bounce description
feasible is that as one approaches the initial singularity
Q~ oo, the walls all recede from each other due to their
explicit P dependence, allowing the system point to move
over larger and larger distances in P+P space before col-
liding with a potential. Each collision then occurs at dis-
tance scales determined by the characteristic constants
which become more and more insignificant compared to
the distance scale of the free motion phase; similarly ver-
tex effects become increasingly less important for the
same reason. Furthermore, the limit 0~00 tends to
freeze out the implicit effects on the system due to the
source variables which could conceivably oppose the
motion of the walls due to the explicit P dependence.
This can be seen at a superficial level by examining the
source equations of motion. Rigorous verification of
these features requires and deserves a more sophisticated
study of the system.

The existence of the so-called "oscillatory approach to
the singularity" for a particular symmetry type and source
depends first on having enough potentials (with explicit Q
speed —,

' or less) present to close up the region of P+P
space to which the system point is confined by the super-
Hamiltonian constraint, neglecting vertex effects which
are important only for special initial data. The system
point then rattles around inside such an expanding closed
"trapping region" overtaking and bouncing off the walls
since its free phase Q speed in the direction of the wall it
is approaching is always greater than that of the wall it-
self. A second condition for the existence of this oscilla-
tory approach is the absence of the scalar field, owing to
its effect on the Q speed of the system point. This latter
quantity is determined by the super-Hamiltonian con-
straint

0 ~super~ t
( p 2+~ 2+~ 2)+ Utotal

dP/dQ=[(d13+/dQ) +(dP /dQ)2]'/2

[(~ 2+~ 2
)/~ 2]1/2

( 1 Utotai / 2
)
1/2

(5.5)

The bounce laws show that
~ po ~

decreases through col-
lisions with the potential walls which move with Q speed

Indeed its equation of motion shows that
d ~po ~

/dQ&0 necessarily holds except possibly in a
neighborhood of isotropy in the type IX case and for the
interval of values i'd&(a, 3a) in the spatially self-similar
case. If U" has a constant term then as

~ po ~

de-
creases, the free phase Q speed of the system point will
decrease as well until it decreases below —,. At this point
it will no longer be able to catch the potentials with Q
speed —,

'
and should remain in the free phase, thus ending

a possible oscillatory phase which might otherwise have
continued indefinitely in the absence of the scalar field.

The gravitational potential alone is enough to form
closed trapping regions in the semisimple case of Bianchi
types VIII and IX. Addition of a general perfect-fiuid
source in the spatially homogeneous case leads to closed
trapping regions for all of the remaining Bianchi types ex-
cept I and V, where isotropic spatial curvature robs the
system of a nontrivial less than unit Q speed gravitational
wall. '3 The same statement holds for the nonexceptional
spatially self-similar case, with the same qualification
when the symmetry group is of Bianchi type I or V. The
trapping regions when they exist are formed by two cen-
trifugal walls and an opposing gravitational wall of Q
speed —,'. Without the tilted fluid, the supermomentum
constraints eliminate at least two of the three centrifugal
walls except for those allowed by the degeneracy of the
supermomentum constraints (Bianchi types I, II, and
VI 1/9 in the homogeneous case).

A general electromagnetic source provides a closed
trapping region except when the supermomentum or elec-
tromagnetic divergence constraints remove one or more of
the three electromagnetic potentials. As long as
—2a, +b, +ic,' =0, the divergence constraint [see (4.3)
and (4.4)] is automatically satisfied and does not remove
any of the electromagnetic potentials. However, when the
gravitational supermomenta are not independent, another
algebraic constraint restricts the electromagnetic field due
to the algebraic constraint on its own supermomentum
arising from the supermomentum constraint. For exam-
ple, consider the spatially homogeneous Bianchi type I
case with a spatially homogeneous electromagnetic field,
obtained by setting all the symmetry parameters (and the
scalar field) equal to zero. Then W' are constants and the
electromagnetic supermomentum must vanish since the
gravitational supermomentum vanishes identically. This
in turn requires that the electric and magnetic field densi-
ties be aligned along the same direction. This allows two
centrifugal walls to form a closed trapping region with the
electromagnetic wall or walls which are present. For this
it is sufficient that the electric and magnetic fields not be
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eigenvectors of the extrinsic curvature, a possibility over-

looked by Spokoiny. A similar situation exists for the
spatially homogeneous Bianchi type II case. Vfhen the su-

permomentum constraints are not degenerate, three cen-

trifugal potentials will in general be present, and closed

trapping regions are formed by two centrifugal walls and

an electromagnetic wall as in the tilted perfect-fluid case.
The discussion of all of these effects for the nonexception-
al spatially self-similar case is similar to the class A spa-
tially homogeneous case.

The walls associated with the nonexceptional twisted
scalar field have unit explicit 0 speed and so cannot lead
to closed trapping regions which might temporarily trap
the system point before its "free phase" 0 speed decays
due to the effect of the P independent term in the super-
time time gauge Hamiltonian. However, the addition of
the scalar field supermomentum to the supermomentum
constraint may allow the presence of more electromagnet-
ic potentials than otherwise would have been allowed and
therefore lead to a temporary oscillatory phase.

VI. CONCLUSIONS

The present paper essentially extends Bogoyavlensky's
formulation33 of Bianchi type IX electromagnetic space-
times to all of the spatially homogeneous and spatially
self-similar symmetry types, allowing a less symmetric
electromagnetic field and including a neutral complex sca-
lar field as an additional source. The discussion of the
system extends Wailer's description of qualitative cosmol-

ogy for the Bianchi type IX electromagnetic spacetimes35
to the general finite-dimensional case. By extending
Bogoyavlensky's application of the qualitative theory of
differential equations to the present case, taking
Rosquist's work into consideration, a more rigorous
understanding of the qualitative behavior of the system
could be obtained. A step in this direction was done by
Spokoiny, who also included an untilted perfect-fluid
source.

Additional symmetry, ' either continuous or discrete,
can be used to classify the specializations possible for each
symmetry type. Some special solutions of the electromag-
netic case exist in the literature, sometimes including an
untilted perfect fluid. i ~ These may be organized in a
fashion similar to the summary of exact solutions given in
Ref. 15; the YD parametrization of the system enables
one to identify families of solutions containing more than
one symmetry type. The Brill solution, for example, is a
member of a family of locally rotationally symmetric elec-
tromagnetic spacetimes containing Bianchi types I, II,
VIII, and IX which allows the inclusion of a scalar field
and an untilted stiff perfect fiuid, ' as may be understood
from an analysis of the structure of the gravitational con-
straints.

One need only take seriously the ideas developed over
the past two decades toward understanding the structure
of gravitational theories to arrive at the present formula-
tion of the finite-dimensional case. These methods can be
applied to any gravitational theory or choice of sources.
They provide a framework with which one may put into
perspective the hodgepodge of particular and seemingly
unrelated results which are scattered throughout the

literature. All too often particularization of a problem in
mathematical cosmology forfeits the possibility of inter-
preting the results in a wider setting. The subject could
benefit from some more understanding rather than the
simple presentation of more solutions of particular dif-
ferential equations. While concern for length has limited
the present discussion, the foundation has been laid for a
more global perspective of the topic.

mq (2a/4n )N 'g '——i g'"Ab ———(2a/4m )8a,

=(2a/4m. )[ 2 (2a/4n ) g '~ g,bm„H

+—'g' g dC "C "A Ab]

(A2)

while the correct Hamiltonian equations [the source-free
Maxwell equations (4.3) for the evolution of the electric
field density] require a nonpotential force

A =IA XA™Img ——jag XA I+XQ' a

gema (2 /4 ) 1/2A C d C [ba]
(A3)

APPENDIX: ELECTROMAGNETIC VECTOR
POTENTIAL

By introducing a vector potential for an electromagnet-
ic field without symmetry, half the Maxwell equations
may be satisfied identically while the remaining equations
take the form of a constrained Hamiltonian system. '

Imposing symmetry on this system leads to complications.
For the sake of brevity only untwisted electromagnetic
fields will be considered, i.e., those for which c, =0;
these share the symmetry of the metric. Suppose one tries
to represent the electromagnetic two-form as the differen-
tial of a one-form of the same symmetry type in orthogo-
nal gauge

A =ei A =e"(Aodt +Aaco'),

I' =e~I' =dA,
(Al)

e'. =X-'g'"( —A, +A,S.), ~ = —A, C",
( ab ( ab eabc$ +ab+eabc(& b

In the spatially homogeneous case, Ao does not contribute
to the electromagnetic field and might as well be set equal
to zero. There is no reason not to impose this same gauge
con ition in the spatially self-similar case as well, so it
will be assumed that Ao ——O.

Two problems may arise. When the matrix (C'b) is not
symmetric one obtains the incorrect Hamiltonian equation
for the momentum ez conjugate to A„and when this
matrix is degenerate, it does not necessarily produce the
most general divergence-free magnetic field of the given
symmetry type. (An asymmetric vector potential is need-
ed. ) The first problem can be solved by the introduction
of a nonpotential force into the electromagnetic Hamil-
tonian equations. The second requires the addition of cer-
tain constant magnetic field density components of the ex-
pression derived from the vector potential.

From the electromagnetic Lagrangian in orthogonal
gauge, the momentum m„and electromagnetic super-
Hamiltonian are evaluated to be



ROBERT T. JANTZEN 33

whose sole effect is to reverse the order of the indices on
C~ from the incorrect order which appears in the
Poisson-brackets term. The usual Poisson-brackets rela-
tions I A„n „I =5, hold.

When (C' ) is degenerate, the vector potential can be
decomposed into a piece lying in the kernel of the matrix
and the remainder

g cyclic+ g not g cyclicC ba
0 0 u ~ b (A4)

while the magnetic field density can be decomposed into a
piece lying in the range of the matrix (C' ) and a
remainder which is subject to the divergence constraint

~e g not C ha+ ~a

(A5)
( —2a, +b, )%'=(—2a, +b, )3P'„Ot.

Since A;« is not in the range of the matrix (C' ), while
Maxwell's equations place 3P ' in that range, it follows
that 9F'„« is constant. On the other hand, since 2;"""
does not appear in the super-Hamiltonian, its conjugate
momentum sr&,„,i;, is a constant of the motion, assuming
no complications arise with the nonpotential force, i.e., as-
suming the component of that force along AN'""" is zero.

In the nonsemisimple case of spatially homogeneous Bi-
anchi type VIIE and IX metrics, C~=C~=n, ' is sym-
metric and nondegener ate and no problems arise
( A;"""=0=3k'„«). For the other extreme case of spatial-
ly homogeneous Bianchi type I metrics, C' =C' =0 and
9P'=IF'„«, while A,"o'=0 and gt" is constant. For the
remaining symmetry types an intermediate situation ex-
ists. The details will not be enumerated here. It is worth
noting that for a spatially homogeneous electromagnetic
field of class A (a, =b, =c,' =0), the divergence con-
straint is identically satisfied by the electric and magnetic
field densities and each is allowed three independent com-

ponents. The finite-dimensional Maxwell equations in
this case therefore do not model the infimte-dimensional
equations (for fields without symmetry) which lead to
only two independent degrees of freedom for the source-
free electromagnetic field. This feature as well as the
necessity of a nonpotential force in the Hamiltonian equa-
tions breaks the naive correspondence between the finite-
and infinite-dimensional systems. This is of course due to
the nonignorable nonvanishing divergences which occur in
the variational formalism and in decompositions associ-
ated with the constraints. '

Using the canonical variables I g,b, rt;A„mz, g, sr&I

one has a totally Hamiltonian system with Hamiltonian
NA, driven by the nonpotential forces when they are
nonzero, and subject to the constraint equations. The
point transformation (3.6)—(3.8) of the canonical gravita-
tional variables must be extended to a noncanonical
transformation of the full set of variables in order to solve
the supermomentum constraints and simplify the system.
One needs to introduce the primed components

A, =AaS ', mg
——8'amp (A6}

( —2a, +b,')n'„'=0 (A7)

is easily imposed. The supermomentum constraints may
then be solved as discussed at the end of Sec. III. Finally
the super-Hamiltonian constraint may be eliminated by
choosing P as the new time variable. One is left with a
reduced system in the remaining unconstrained variables
which have canonical brackets among themselves.

in order to do this. A,' and m" are canonically conjugate
but both have nonzero Poisson brackets with the momenta

P, as in (4.10}. The electromagnetic constraint which re-
quires that the electric field density be divergence-free
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