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Using the approach to black-hole thermodynamics initiated by Gibbons and Hawking, in terms of
the Euclidean Einstein action, I show that the canonical ensemble with elements of radius r and
temperature T(r} for hot gravity with black holes is well defined. This follows from the double
valuedness of solutions of the Euclidean Einstein equation with canonical boundary conditions. One
of the solutions is a locally stable hole. Its partition function is well defined and implies the entropy
S =4nM2 as well as a generalized version of black-hole thermodynamics that reduces to the usual
form if rM '~ 00. The density of states of the locally stable hole is real and nonpathological. The
free energy of this hole can be negative, while that of the other (unstable) solution is always positive.
Consequently, the direct nucleation of black holes from hot flat space, as proposed by Gross, Perry,
and Yaffe, can be given a thermodynamically consistent description. The scaling laws for hot gravi-

ty are obtained and applied to phase transitions between hot flat space and locally stable holes. The
free energy of the unstable solution forms the effective potential barrier between these phases. The
ground state of the canonical ensemble is always locally stable in the semiclassical approximation.
If N is the effective number of massless fields of helicity zero in hot flat space, then when

either r &N' or T &N ', hot flat space is the most probable ground state. Independently of N,
if rT g {27)' (Sm) ' there can be no real black hole in the canonical ensemble.

I. INTRODUCTION

In the original demonstration that a Schwarzschild
black hole of mass M has a temperature T„=(8m M)

measured at a large distance from the hole (r »M),
Hawking used techniques of quantum field theory on a
given classical background spacetime. ' Subsequently,
several studies that attempt to relate the thermal proper-
ties of black holes to qu'mtum gravity have appeared.
The case of a hole in thermal equilibrium with its sur-
roundings is particularly important in making the connec-
tion to quantum gravity. For this purpose, it is useful to
describe the hole in terms of the "real Euclidean section"
of its geometry, in which the time is rotated to a purely
imaginary value and is given the period P, =T„;this is
the so-called "Hartle-Hawking-Israel" state. Quantum
gravity enters through the interpretation of the contribu-
tion of the Euclidean Schwarzschild geometry to the
canonical partition function for hot gravity written as a
Euclidean functional integral.

Two very different conclusions have been reached using
the Euclidean approach. Gibbons and Hawking, and
Hawking, deduced the thermodynamic properties of
black holes that had already been found from the tem-
perature formula and a reinterpretation of the classical
laws of black-hole mechanics in a manner suggested by
the work of Bekenstein. In particular, they found that
the black-hole entropy S=4mM arises from the contri-
bution of the classical first-order Euclidean Einstein ac-
tion Iaii of the Schwarzschild geometry to the canonical

partition function. This conclusion was important be-
cause ordinarily the value of the classical action is not
considered to be physically significant; it can simply be
absorbed into the normalization of the functional integral.
However, Hawking argued forcibly that the classical ac-
tion of a black hole does contribute to the entropy and is
therefore not to be ignored. Nevertheless, the relation
T =(SmM) ' implies negative heat capacity for a black
hole in a large cavity and, as a result, the root-mean-
square energy fluctuations are imaginary. Hence, in this
approach, the canonical ensemble seems not to be well de-
fined and appeal was made to a microcanonical picture.
However, I shall not follow that path here.

On the other hand, Gross, Perry, and Yaffe reached a
different conclusion. They demonstrated explicitly that
the action of a Schwarzschild geometry of mass M in a
large cavity ( r »M) corresponds to a saddle point, rather
than to a minimum, with respect to small perturbations of
the background geometry. They found in the perturbation
spectrum of the Schwarzschild geometry a single "nega-
tive mode" that decreases its action in the second varia-
tion. The negative mode gives rise from a field-theoretic
argument to an imaginary free energy for the black hole.
This was interpreted as indicating an instability of "hot
flat space, " that is, an instability of gravitons and other
massless fields on a flat background geometry. The idea
is that activation of this instability by thermal (quantum)
fluctuations could spontaneously excite hot flat space over
an effective potential barrier, resulting in the nucleation
of a black hole. This would be a purely quantum-
gravitational phenomenon having no classical counterpart.
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It is not the same process as "ordinary" gravitational col-
lapse of hot flat space by a relativistic Jeans instability, as
the authors pointed out.

One can view nucleation of a black hole (BH) from hot
flat space (HFS) thermodynamically as a phase transition.
There is no conservation law to forbid it because the
chemical potentials of both phases (BH and HFS} are
zero. Moreover, energy need not be conserved because the
system is assumed to be coupled to a large heat reservoir
that keeps it at a fixed temperature. Phase transitions are
ordinarily treated under conditions of fixed temperature
and pressure (and chemical potential), in which case the
appropriate thn'modynamt'c potential is the Gibbs free en-

ergy 6 =E—TS+pV, E=thermal energy or total inter-
nal energy. However, in the canonical ensemble tempera-
ture and volume ("size") are fixed and the relevant ther-
modynamic potential is therefore the Helmholz free ener-

gy E=E TS, wh—ich is related formally to the Euclidean
action I by I =PF, P= T '. A spontaneous process, such
as a phase transition, in the canonical ensemble should
neuer imply an increase of Ii, in the same sense that a
spontaneous process in a microcanonical ensemble (fixed
energy and volume) neuer implies a decrease of the entro-

py, which would violate the second law of thermodynam-
1cs.

The above well-known points suggest a difficulty in the
description of nucleation proposed by Gross, Perry, and
Yaffe. The free energy FHFs of hot fiat space is zero clas-
sically and is negative quantum mechanically, where

FHFs ———3 'aT"V, a=Stephan's constant. For a black
hole in a large cavity, the thermodynamic identity
dM =TdS and the Euler relation M =2TS imply, as is
well known, that FaH ——(0.5}M, which is positive. Thus,
nucleation of a black hole of mass M from hot flat space
would seem to imply a spontaneous increase of Ii.
Nevertheless, Gross, Perry, and Yaffe found that the rate
I of nucleation events could be quite significant at high
temperatures. They found I'=D exp( —8), where D is a
determinant and B=(16m.T ) '. They assumed that the
critical black-hole mass nucleated would be M = (SirT)

Clearly there are problems to be resolved in assessing
the physical significance of the black-hole action in its
contribution to the Euclidean functional integral. Two
profoundly different interpretations have been given, but
each seems at best incomplete.

The purpose of this paper is to resolve the difficulties
described above. I deal with the following points.

(1) The boundary conditions that define a canonical en-
semble whose elements are spherical cavities of radius r
and temperature T at r are such as to admit either no
black hole (when rT &a critical value) or two physically
distinct ones, of which one is always unstable and the oth-
er is always at least locally stable. This holds even far ar-
bitrarily large r.

(2) The locally stable (larger mass) hole can have a neg-
ative free energy under certain conditions, which enables
one to see that it could form by nucleation from hot fiat
space. Its mass, however, is not (SnT) '. The unstable
hole always has a positive free energy (or action) that
forms the "effective potential" barrier between hot flat
space and the locally stable hole. Its action is fairly well

approximated by 8=(16m.T )
' if back-reaction effects

are ignored. The determinant D is not zero because the
free energy of the light hole corresponds to a saddle point
of the action, implying the existence of a negative mode.
The free energy of the heavy hole is a local minimum de-
void of negative modes.

(3) The canonical ensemble for hot gravity possesses a
locally stable state of lowest free energy (ground state).
This state can be either hot fiat space, or a "large" hole
(that does not engulf the cavity), or a superposition of
these phases. Which candidate prevails is readily deter-
mined from the given r and T.

(4) From the classical Euclidean action of the locally
stable solution, one can deduce black-hole thermodynam-
ics by generalizing slightly the approach of Gibbons and
Hawking. One finds that the entropy is one-fourth of the
area of the event horizon (4aM ), but that there is a dis-
tinction between the mass M of the hole and the thermo-
dynamic energy E of the hole embedded in a finite cavity.
The difference is a self-energy term which is negligible if
r AM. I deduce the scaling laws of black-hole thermo-
dynamics, which play an important role in the theory of
black-hole phase transitions, a subject to be dealt with in
detail in another work though some aspects are treated
here. (These transitions are first order in a thermodynam-
ic description. ) Naturally, the heat capacity of the locally
stable hole is positive and, consequently, its energy fluc-
tuations and density of states are real and nonpathologi-
cal. The latter properties were shown recently to hold for
black holes in anti —de Sitter spaces (A &0) under certain
conditions. However, I shall not introduced a cosmologi-
cal constant A here.

(5}For fixed r and T, I introduce a generalized real free
energy function F for black holes of any mass M. When
rT & (a critical value}, F has extrema corresponding to
the two equilibrium values of M, whose real Euclidean
sections are topologically regular with Euler characteristic
7=2. For other values of M, F is well behaved but the
corresponding geometries are topologically defective.
From E, E, and S, one can construct all the other thermo-
dynamic potentials for the black-hole phase. (One can in-
clude in these the modifications caused by equilibrium
back-reaction effects, based on the results of Ref. 9.) This
makes it possible to treat the formation (and disappear-
ance) of black holes from the relativistic Jeans instability
or the nucleation instability under a wide variety of am-
bient or boundary conditions. For instance, one can
dispense altogether with "fixed walls" by using the Gibbs
functions. This will be treated in detail elsewhere.

I shall limit attention to cases of explicit spherical sym-
metry. Thus, any black hole that is present will be as-
sumed to be at the center of the (by definition) spherical
cavity. This seems reasonable because, with the wall of
the cavity at a fixed uniform temperature, one expects the
locally stable equilibrium states to be manifestly spherical-
ly symmetric. Extension of the results by a "dilute-gas"
approximation seems feasible, but I shall not attempt that
here.

Throughout, I shall use absolute units ( G =R
=c =ka ——1} except where restoration of conventional
units is helpful.
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II. CANONICAL BOUNDARY CONDITIONS
AND DOUBLE VALUEDNESS

OF THE SCHIVARZSCHILD MASS

Two key problems that arise in describing self-
gravitating systems thermodynamically are the following.
(1) Such systems under certain conditions may collapse
completely to form a black hole. However, Hawking's
discovery ascribes a temperature to the hole and equilibri-
um thermodynamics can therefore be employed to
describe the exterior of the collapsed object. {2) In equili-
brium, a self-gravitating object does not have a spatially
constant temperature in its vicinity; one has for a local ob-
server at rest a local temperature that depends upon the
observer's position. This is a well-known consequence of
the principle of equivalence that implies that temperature
is red- or blue-shifted in the same manner as the frequen-
cy of a qu;mtum of energy.

Consider, then, an observer perched at the radius r of a
spherical cavity enclosing (say) a black hole. If a bit of
energy 5E is added to the system so as to maintain equili-
brium, it should have the local temperature T(r) =T pre-
vailing at the boundary radius r of the cavity. It follows
that (5E)T ' is independent of position if r and T(r) are
fixed and the formulation of black-hole thermodynamics
in a system of finite size must refiect this fact. If there is
a black hole of mass M at the center of the cavity, then

' —1/2

then the only solutions of (1) are real and positive. They
are given by

1 a m=—r 1 —2cos —+-
e~ 6 3 3

(3)

GMz a=—r 1+2cos—
6 3

(4)

'2

circle has a fixed value P=T '. Another solution is a
Euclidean Schwarzschild geometry of mass M with boun-
dary S'&S geometrically identical to that described
above. This geometry must be topologically regular (no
conical singularity at its "axis" or horizon), a geometrical
condition equivalent to the physical requirement of
thermal equilibrium. The mass M is found by solving (1)
for M as a function of r and T. An important finding is
that the solution of (1) is in general double valued, as I
have pointed out elsewhere.

Analysis of (1) proceeds by squaring it, obtaining the
roots of the cubic equation thereby obtained, and inserting
these roots back into (1). I assume here and throughout
that r )0 and T & 0. One finds that if

&27
(2)'-8 k.

T(r) =T =(SmM) 1—2M cosa = 1 —54
Sn rTktt

(5)

according to Hawking's result.
A canonical ensemble is defined by temperature and a

variable measuring the size of the elements of the ensem-
ble; this variable is ordinarily the volume. The above dis-
cussion motivates the following definition of the canoni-
cal ensemble, under conditions of spherical symmetry,
when a black hole may be present at the center of the cav-
ity. The size of the system is defined by the geometrically
well-defined invariant area A =4irr of the cavity wall,
where r is either the standard flat-space radius or the
standard Schwarzschild radial coordinate. It would seem
to be pointless to use spatial volume as a measure of size
when a black hole is present because the volume of a black
hole is not defined at constant Schwarzschild time. The
interior of a hole is not static in the Lorentzian descrip-
tion and the hole has no interior on its real Euclidean sec-
tion. Correspondingly, the temperature is defmed as the
uniform temperature T of the wall (boundary) of the
spherical cavity. This T is also uniform throughout the
interior of the cavity if there is no hole inside; otherwise it
is given by (1). In the latter case the usually purely "in-
tensive" variable T becomes scale dependent and is there-
fore no longer purely intensive.

Suppose, then, that we are given the boundary radius r,
or boundary area A =4mr, and the temperature T at this
locus. %'e ask what topologically regular spherically sym-
metric Euclidean solutions of the Einstein equation fit
these boundary conditions. One is fiat space with boun-
dary S'XS, where S denotes a sphere of fixed area
4mr and S' is the circle corresponding to periodically
identified Euclidean time. The proper length around this

0&a;&m .

If the inequality in (2) holds, then Mi & Mz. If the equali
ty holds, then Mi Mz and «M——i

' rM2 ' —3;——that is, —
the cavity wall coincides with the circular photon orbit of
the real Lorentzian black-hole geometry.

On the other hand, if

&27rTg
Sm kii

then there are no real solutions M of (1). [There is, how-
ever, a conjugate pair of complex mass solutions of (1)
with the given r and T real and positive. I do not know if
these have any physical significance. In any case, I shall
not regard them as "black holes" and shall ignore them in
this paper, though future work might show them to be
important if complex metrics are included in the function-
al integral. ]

We see that a region of the T rphase plane exists fr-oin
which black holes are excluded ab initio. It is significant
that the critical length scale implied by (7} varies as T
and consequently is independent of the gravitational con
stant G. This stands in sharp contrast with the critical
length scale defining the relativistic Jeans length for
massless quanta, which varies as T and depends expli-
citly on G. In fact {7}implies an absolute criterion: No
black hole whatsoever can exist in thermal equilibrium,
whether stable or unstable, inside a spherical region
bounded by area 4nrz=A with temperature T at r if (in
absolute units)
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QT2 O 537 14S
16m

(8)

If M(r) is plotted against r for fixed T&0, one sees
that the curve has two branches that join smoothly at
r =v 27(SmT) ' and M=@3(SmT) '. In the limit of
large r, only the light-mass or lower (M, ) branch ap-
proaches (SmT) ', while on the upper branch, Mz ap-
proaches (0.5)r from below. Previously, people have in ef-
fect only been treating the large rli-mit on the lower
branch. This leads to the misleading conclusion that T
and M are essentially synonymous. It will be seen below
that the hole Mi is thermodynamically unstable and Mi
is locally stable. Because (2) implies (4irrT) & (0.5)(27)'~,
useful approximations for Mi and Mi are

integrated over the period P, =T '=8aM and the
proper length of the S' of the boundary is therefore

1/2

P= T '= J g„'~ dt =SmM 1— (14)

which depends on the boundary radius r. We find
' 1/2

v y=r sine 1—2M
r

1/2
2 2M M 2M
r r r r

(15)

(16)

I1 ——12aM —SmMr .

The action subtracted in (11}is simply Ii evaluated for
a flat four-metric with boundary S'XS~ identical to that
of the Schwarzschild geometry; that is, it has proper area
4trr for the S and proper circumference P for the S'. A
suitable flat four-metric is (note ~+t}

III. ENTROPY, ENERGY, AND ACTION
ds =dH+dr +r de +r sin 8dg (18}

It is desirable to construct the thermodynamics of black
holes in a manner that incorporates the role of quantum
gravity, as stressed by Hawkin .' For this purpose, I shall
follow Gibbons and Hawking, and Hawking, in assum-
ing that the partition function Z contains the first-order
classical Euclidean Einstein action of a hole as its leading
term. I extend their calculation to spherical cavities of
finite size. I shall consider here only the contribution of
one Schwarzschild geometry because, of the two permissi-
ble cases, it turns out that only one of them (Mi) is in
fact thermodynamically locally stable. Only for the local-
ly stable solution does it make sense to derive thermo-
dynamic properties from the essentially classical contribu-
tion exp( I) to Z. T—he unstable solution is, however,
important as the mediator of phase transitions from hot
flat space to locally stable black holes. The critical mass
nucleated is M2, not M1.

As mentioned above, I shall take Z =exp( I)—
=exp( PI'), where I i—s the first-order Euclidean Einstein
action including a subtraction term. The present calcula-
tion is at finite radius.

The action I is defined by

where r has period p. We have v y =r sin8 and
E = 2r ', yie—lding"

2M
Ious,~~t= Pr =— SrrMr 1 —— (19)

I =12m'M SnMr +P—r . (20)

The important point about (19) is that it is linear in P (P
and r, or T and r, are the independent variables). As we
shall see below, this means that the subtraction term has
no effect on the entropy but "normalizes" the thermal en-

ergy E to zero for the Schwarzschild geometry with
M=O. Hence, the subtraction is analogous to removing
the zero-point energy for a collection of harmonic oscilla-
tors at a fixed temperature, which does not influence the
entropy. These two features may well give guidance in
constructing subtraction terms in cases where the bound-
ing three-geometry cannot be embedded at a finite dis-
tance in a given background "reference" geometry.

From (20), we see that I~4aM as rM '
woo and-

I~ 4mM for rM —'~2. At rM '=2.25, I=O. This
is important, for it means that

2&rM '«2. 25-- --F «0. (21)
~here 10

I, = — f Rvgd x+ f vyEdx.
16m Sm.

(12)

ds = 1 — dt+ 1—2M 2 2M
r

Here, K is the trace of the extrinsic curvature tensor K;~
of the bound ~ S1XS2(r=const) and y J is its induc~
three-metric. The four-space metric is

The free energy of a black hole can thus be negative. This
fact allows a thermodynamically consistent description of
black-hole nucleation.

The thermodynamic relations for a black hole can be
deduced straightforwardly from the usual formulas em-
ploying either Z or F or I; here the action I mill be used.
One has only to be careful in computing the derivatives
because I has to be regarded as a function of r and T
rather than of r and M that appear in (20). The thermo-
dynamic energy will be denoted by E. %e obtain
(A =4m.r )

+r de +r sin Odp (13)
2M=r —r 1— (22)

The volume term in (12} is zero. The Euclidean time is
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S =P I—=4nM (23)
are real in this case. We see from (23) that && is finite
even when r~2M, and therefore when T~ oo. We find
that, regardless of the value of M,

First, we note that the entropy equals one-fourth of the
area of the event horizon for all choices of r and T satis-

fying (2). This is in accord with the idea that the entropy
of a black hole can be regarded as a property of the hor-
1zon.

The formula for the thermodynamic energy E is worth
comment because E ~M except in the limit rM '~co,
when E =M. First, we see that if r is fixed, then

' —1/2

(5E),=5M 1—
r

(24)

as anticipated in Sec. II, that is, (5E},T is independent
of r Sec.ond, we solve (22} for M and obtain

1 EM=E ——
2 r

(25)

which states that the Arnowitt-Deser-Misner energy is the
thermal energy plus the gravitational self-energy associat-
ed with the thermal energy. We find M =E in the limits
rM '~ ao or rE '~ oo. That it is necessary in general
to distinguish E and M will be apparent in Sec. VIII,
which contains an estimate of the density of states v(E}
for a locally stable black hole.

Note that the subtraction term in I gives rise to the
term r in (22). Without this term, the thermal energy E
would have been ( —r) for M=O. However, M=O in (22)
yields E=O, as it should. Alternatively, we note that the
subtraction term makes the classical action I=O for fiat
space with arbitrary temperature and radius. Because it is
linear in P, the subtraction term did not affect the entropy
calculated in (23).

A

M
1

2M
r

—j, /2

(29)

%'e see that o is non-negative and that

1
)horizon =

4m

A finite result is obtained as r~2M because Cz ~0 in
this limit, that is, because no energy can be added to a
hole in equilibrium without changing its radius.

If r & 3M, Cz &0 and approaches 8aM— as
rM '~no. At rM '=3, Cz suffers an infinite discon-
tinuity and changes signs. This behavior in itself does not
indicate a phase transition in the canonical ensemble. It
determines the relative scale (rM ') at which a hole can
be in (meta)stable equilibrium when placed in thermal
contact with a heat reservoir that holds T fixed at the
given r. Referring back to the double valuedness of M,
we see that the light hole Mi is unstable while the heavy
hole M2 is thermally stable or at least metastable.

To complete the thermodynamic description of a black
hole we need to construct the thermodynamic identity.
Clearly dE+T dS; there is another term arising from the
stresses or "pressure" associated with the self-energy.
However, because volume is not defined, I replace ordi-
nary pressure by a suitable "surface pressure" conjugate to
the area A =4nri. This is defined in analogy in ordinary
pressure by

IV. STASII.ITY AND THE THERMODYNAMIC
IDENTITY dE=T dS crdA— (30)

BS
Cg =T

A

= 8m.M 1—2M
r

3M
r (26)

Hence, if 2M &r ~3M, the heat capacity is positive and
one has thermal stability. The root-mean-square energy
fluctuations &R defined by the square root of

((~) ) =Cq T =
Sm.

Black-hole thermodynamics as deduced above will only
make sense if a black hole can be in locally stable equili-
brium in the canonical ensemble. Thermal stability is
determined by the heat capacity. In keeping with the def-
inition of the canonical ensemble, the heat capacity is de-
fined at constant area A =4nr of the cavity boundary.
We find

is an exact differential. Both E and dE are regular for all
r & 2M; the divergences in T and a cancel at r =2M. In
the limit rM '~op, we recover dM =T„dS. Alterna-
tively, one verifies that dS =PdE+Po dA is equivalent
to dS =T„'dM.

Integrating (30) shows that the Euler relation for black
holes is E=2(TS —oA); E is homogeneous of degree
one-half in S and A and of degree one in M and r. Hence
the scaling laws for black-hole thermodynamics are
defined by M~A.M(S—+li, S), r~l, r(A —+A, A),
T~A, 'T, o ~A'cr, and , E +RE. The normally p—urely
"intensive" variable T therefore has to be scaled in the
theory of hot black holes. This has interesting conse-
quences in the description of phase transitions (Sec. VII).

Having defined the basic "mechanical" variable cr, we
can investigate the mechanical stability of a black hole in
a hot cavity. Ordinarily, for this purpose one would com-
pute the isothermal compressibility xT( V) (using pressure
and volume}, ' but I will replace that by an appropriate
analogous quantity. Stability requires that when the area
of the wall is increased at constant temperature, then o
should also increase. Therefore, I define and calculate



33 BLACK-HOLE THERMODYNAMICS AND THE EUCLIDEAN. . .

r= 16mr
M

3 I T

3M 2M
r r

3
r 3M

M r

3/2

' 3/2
2M
r

3M 3M
1 — +-

r 2
(31)

This quantity is non-negative for 2M & r & 3M, indicating
stability, and is negative for r & 3M, indicating instability.

It is perhaps useful to compare the above description of
the mechanical stability of a black hole with that of pure
massless radiation (hot flat space) using o and A rather
than p and V. From —p d V= —o dA, or definition (29)
applied to the usual radiation formulas, one has

4, rp = , —r(, a—T ) —.
2 2 3 (32)

V. STASILITY OF THE ACTION

The behavior of the thermodynamic variables C„and
~r(A) suggests that the action of a black hole should be a
strict minimum if 2M &r &3M. This question has been
studied recently by Allen" in an extension of the results
of Gross, Perry, and Yaffe to the case of a boundary at
finite radius. Allen found that when r & 2 89M, the sa.d-
dle point in the action is eliminated. However, we must
note that in the gauge used by Allen to describe "iso-
thermal perturbations, " the area of the surface S on
which T was fixed to have the value (1) did not remain
equal to 4n.r . This is because his formulation of the per-
turbations required that 5g~~ ——(sin e)5gss(r) not be zero
on the boundary. Hence, his value (—=2.89) and mine
(=3) are in no obvious disagreement.

However, there is a more basic problem that arises from
a nonzero variation of the geometry of the boundary
S'&S . Because this boundary has nonvanishing extrin-

Because p is independent of V, the usual (volume) isa-
thermal compressibility is not defined. However, apply-
ing the definition (31}of ar(A) to the radiation gives

1 BA 4 2ar(A)=— (33)
A Bo r rp cr

'

which is positive as expected.
I canclude that it is reasonable to deduce the thermo-

dynamic relations for the larger mass hole from the hy-
pothesis of Gibbons and Hawking concerning the role of
the Euclidean action in the partition function. Once ob-
tained, the differential relations can also be applied to the
smaller mass hole or to any spherical hole. The thermo-
dynamic identity (30) is generally applicable. However, if
[radius of boundary] & [3 X (mass of black hole)), the hole
will be unstable in the canonical ensemble. Its fate under
the influence of small fiuctuations will be either to decay
to hot fiat space or to grow until it reaches the stable mass
value. With high probability, the final state will be the
configuration of lower free energy.

in the first variation of (11) will not be zero if 5y,J is not
zero on the boundary. Hence, even though the
Schwarzschild geometry satisfies the Einstein equation,
the action does not have an extremum at boundary radius
r (of the background geometry} in Allen's analysis. Hence
the eigenvalue spectrum relevant to behavior of the second
variation was not calculated at an extremum of the action.
This does nat matter if rM '-+Do. However, this defect
can of course be repaired by a more careful formulation of
the problem.

Furthermore, an argument was made to the effect that
from the absence of a negative made when rM ' &(some
number), one can conclude that hot fiat space is stable
against nucleation of a black hole when A T
=(4' )T &(another number). This inference is clearly
impossible on dimensional grounds. It is correct that a
criterion involving AT will decide the issue and one has
been given in (8). But (8) follows from the nonexistence of
any black hole in this case; when AT2 satisfies (8), rM
is not defined. Below I shall give a result ruling out nu-
cleation that is stronger than (8) and applies even when
rM ' is defined.

VI. FREE ENERGY FUNCTION
FOR SLACK HOLES

The Helmholtz free energy function Fiiii deduced from
the action I =PFnii applies to the two equilibrium values
of mass Mi and M2. It is desirable to obtain a "general-
ized" free energy F for any value of M. We regard r and
T as fixed and employ the dimensionless parameter
x =Mr ' in the standard definition F=E —TS to obtain

F(x,r, T)=r r(1 2x)' 4m—r Tx- —

The extreme values of F are obtained from

(35)

This yields an equation for x equivalent to the relation
governing T, M, and r given by (1). Thus, extrema occur
when and only when rT & (27)' (8m ) '. Then the values
xi and x2 of the extrema are given by (3) and (4). One
finds F(xi, r, T)=Fsii(Mi)»d F(x2 r T) FQH(M2)

The extremum at xi is a maximum (Cz &0) and that
at x2 a minimum ( Cz & 0) except when x i ——x2

sic curvature, the surface term

(5I),~„,=const X f, 2 ~y(E. "J Ey—'J)5y;, d'x

(34)
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[rT =(27)' (Sm) '], which is an inflection point. Actu-
ally, of course, the extremum at x, corresponds to a sad-
dle point, not a maximum, of the action Here we are able
to use such a simple F and to consider only static spheri-
cal perturbations of finite mass because, as shown by
Gross, Perry, and Yaffe, only such perturbations are
relevant to the question of unstable equilibrium configura-
tions. (However, a black hole in empty space~not in
equilibrium —is quantum-mechanically unstable with
respect to time-dependent nonspherical fluctuations of
quadrupole or higher angular order. This provides an al-
ternative view of the origin of the Hawking effect. ' }

The free energy F is also defined at values of x for
which it does not take an extreme value. The correspond-
ing Schwarzschild geometries, however, do not have the
"correct" temperature. Geometrically, this means they
are topologically defective, possessing conical-type singu-
larities on the real Euclidean section at their "axes" at
2M. Formation of a stable black hole from hot flat space,
by way of the nucleation instability, will involve the pass-
ing of x from zero through xi to xi. The Euler charac-
teristics X of the corresponding sequence of geometries
take the values 7=0 at x=0, X =2 at xi and x2, and are
not defined at other values of x. Thus one sees the fami-
liar fact that in general there is no insuperable effective
potential barrier to prevent a change of topology in quan-
tum gravity at finite temperature. (The free energy plays
the role of an effective potential in the canonical ensem-
ble. ) It should be noted, however, that the barrier is infin-
itely high (in effect) and cannot be surmounted beginning
at x=O if rT &(27}'~ (Sn) '. In this part of the T-r
phase plane, black holes are excluded. One may imagine
that a hole can begin to form as a small "bubble" in this
region but that it must disappear quickly.

One recognizes that when the cavity contains a black
hole, it must also contain some residual radiation, charac-
terized by a nonzero renormalized stress-energy tensor, in
order actually to be in equilibrium. Thus, back-reaction
effects should be included. I have obtained these from the
results of Ref. 9. For the stable hole, the corrections are
typically small. For the unstable hole, the corrections can
be significant. However, if r &1 and T &1, the essential
features survive. The heat capacity still changes signs at
the (corrected) circular photon orbit rM '=3(1+5),
5 & 0. The increase of the action of (light hole plus residu-
al radiation) above the action of hot flat space is still rath-
er well estimated by I(M i ) =pF(M, ). From (9) and (20)
we obtain therefore

1+ 1

Sm'rT
(37)

rT & 27(32ir)-' = AT' & —( —",, )'-0.9-06437, (38)

then nucleation of a hole from hot flat space will never
occur in a thermodynamic sense.

A thermodynamically necessary condition for nu-
cleation of the locally stable hole from hot flat space
clearly is that F(M2) &0. From (21) and (4) we see that
this means rT &27(32m) '. Hence, if

VII. GROUND STATE
OF THE CANONICAL ENSEMBLE

The ground state will be the one of least free energy.
When F&0 for the black hole, one has that
(4mrT) &(27) 8 =11.4. Combining (20) and (10) we
obtain an estimate for I(M2 ) valid through order
(4mrT)

I(M2) Pr nr — =—PF(Mi) .
Sm

(39)

A ) W 3A= —Taop (41)
A A.

Inspection of I(Mi) and IHFs reveals that at sufficient-

ly large T and any value of r, hot flat space must always
be the dominant phase. Ignoring possible "finite-size"
corrections to the value of ao, we find that HFS dom-
inates thermodynamically when

T~) (r T) 2+—n(r T) '+ (r T)
135 Sm'

(42)

The right-hand side has a maximum with respect to (r T)
at (r T)=n '[I+0.25(10)'~ ], which implies that when

T & Tm~ =-2.401,

then HFS is the dominant phase, for all r. Exact calcula-
tions yield (r T}=(343)(192m) ' and Tm,„=2.402.

Similarly, HFS will be dominant for all T if r is suffi-
ciently small. This occurs when

r 2&(r T) +ir(r T) 3+ (r T) . (44)135' Sm

The right-hand side has a minimum with respect to (r T)
when (r T)=(6ir) '[4+(8.5)'~2], which implies that
when

r & r;„=0.179, (45)

then HFS is dominant for ail T. Exact calculations yield
(r T)=(2197)(192&n ) ' and rm;„=0.178.

%'e see that in the semiclassical approximation, when r
and T are near the Planck scale, hot fiat space will be the
dominant phase of spacetime structure. Because N could
be very large, the physical values could have r;„signifi-
cantly larger than the Planck length and Tm, „significant-
ly smaller than the Planck temperature. Therefore, the

The action (39) is to be compared to that of hot flat
space:

IH~ = —-, Naop v1

where ao ——ir (30) ' and N is the effective number of
massless states of zero helicity. The actions (39) and (40)
can be compared directly, for any fixed value of N, if we
employ the scaling rules for hot gravity introduced in Sec.
IV. Thus, take A, =N'~ and define scaled variables
r=N '~ir, T=N'~ T, M=N '~iM, and so on. Note
that rT =r T and rM '=r M '. We find that
I(M2}=N 'I(Mi) and IHFs N'IH——Fs can be com-
pared directly, with
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VIII. DENSITY OF STATES

Let v(E)dE be the number of states of the gravitational
field with energies between E and E+dE in a spherical
cavity of radius r. From a we11-defined partition function

Z(P, r), such as the one corresponding to the locally stable
black-hole geometry, one can obtain the density of states
by a suitably defined "inverse Laplace transform:"

v(E) = f Z(P, r)exp(PE)dP . (46)

dominance of hot flat space would seem to emerge as a
nonperturbative phenomenon. Obviously, new physics
could intervene to alter these conclusions because the crit-
ical values of r and T are close to where the semiclassical
approximation including back reaction breaks down.
However, an important point is that where new physics
might enter should be determined by the scaling laws for
hot gravity, that is, in terms of r and T rather than by the
physical values r and T.

It will be interesting to apply these results in the early
Universe. This will be more realistic if the implicit "im-
movable heat-conducting walls" are avoided. For this
purpose one uses the appropriate Gibbs function
G =E —TS+crA and the role of "boundary conditions"
is replaced by the ambient values of T and o. This will be
treated elsewhere. It is worth mentioning, however, that

the analogs of T,„and r;„tsill exist. One finds the

same T,„and a certain o,„above which hot flat space
is again the dominant phase in the semiclassical approxi-
mation.

In this integration, E and r are held fixed. To simplify
the calculation, and obtain an estimate, we can employ the
approximation (39), yielding

2

Z(P, r)=exp —Pr nr-
8m

(47)

The integration is straightforward and gives

v(E}=v 2exp[irr —2ir(E —r) ] . (48)

However, in the same order of approximation that gave
(39) and (47), one has, using (10},

n. r 2~(E——r) =—4mr — =4aM2 2 1 z &' z

4 2m
(49}
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that is, one-fourth of the area of the event horizon. Thus,

v(E)=~2exp(4aM ) .

A steepest-descent estimate of (46) gives a similar con-
clusion. These calculations can be contrasted with similar
ones employing in Z the action of the unstable hole.
There one obtains a divergent result for v(E) if one uses
(46).'
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