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Clustering in a quark gas
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In an infinite one-dimensional quark gas it is showa that a static color force, which increases at large dis-

tance, leads to a density fluctuation in the ground state. A self-consistent mean field can only be found for
an effectively attractive quark~uark interaction that increases less than linearly at large distances. For a
fixed coupling constant, the clustering disappears at high quark density.

It is an established fact that an infinite Fermi system can-
not have a uniform ground state for an essentially attractive
two-body interaction. ' Clustering solutions have been
shown to exist as mean-field soluiions2 which are stable to-
wards particle-hole excitations. In this note we address
ourselves to the question of whether or not a quark gas will
also exhibit a similar pattern. Two features make this inves-
tigation different from previous work:2 (i) The effective
quark-quark interaction increases at large distances and (ii)
the color dependence A. X makes a contribution only to the
exchange term in a mean-field calculation, if the ground
state is assumed to be a color singlet.

A phase transition from nuclear matter to quark matter
has been discussed in the literature; there~ the authors use
thermodynamical considerations. %'e use a microscopic ap-
proach when starting from Hartree-Fock equations. Our
findings are similar in nature to those of some recent work5

~here the significance of a finite quark amplitude between
nuclei is discussed.

We consider a one-dimensional model of a quark gas with
the quarks interacting through the static force V(x)
-gk, i A2)x~", u &0. This phenomenological potential is
motivated by the one-gluon exchange which yields v 1

from the one-dimensional Fourier transform of the bare
gluon propagator q . Actually the form of the potential
that we should use is ct, (q)/q' where the running coupling
constant vanishes logarithmically (see, for instance, Ref. 6
and papers quoted therein). In our numerical procedure the
logarithmic term is insignificant for large values of q since
the pattern is essentially governed by the singular behavior
at q-0. This in turn reflects the confining behavior of
V(x) for large [x); in one dimension we find for ~x~" the
behavior q

' ", ~here a precise mathematical meaning of
the singularity at q 0 is given in Ref. 7. In three dimen-
sions, V(x) —~x~ gives rise to a q

' behaviors for small
values of q; an extension of our calculations to the three-
dimensional case is in progress.

We use the relativistic expression for the kinetic energy
term, but the static force renders the model nonrelativistic

in character. This is similar in spirit to some recent works
on hadron structure in quark matter. In our work the em-
phasis lies on cluster formation by a mean field, while the
authors of the quoted paper considered the interaction
among model hadrons which are constructed explicitly. The
lumps which we obtain in the single-quark distribution func-
tion originate by construction from color-singlet con-
glomerates, i.e., from clusters of three, six, etc. , quarks as
they may exist in nuclear matter. ~ A residual interaction
among these clusters goes beyond the scope of this work.
In particular, we believe that its long-range part requires a
genuine relativistic treatment to reproduce the expected
meson-exchange terms; the short-range repulsive core
seems to be explainable by the Pauli principle. s'0

We employ the zero-temperature formalism, but investi-
gate the dependence on the coupling constant g which can
be related directly to a density dependence by a scaling
property of the Hartree-Pock equation. As expected ' the
cluster formation is less pronounced the higher the density.
The high-density limit corresponds to the noninteracting
limit, i.e., a uniform quark distribution.

In the calculation we look for a self-consistent solution
under the assumption of a static periodic density distribu-
tion. The periodicity assumption is technically advantageous
and physically acceptable as it means a homogeneous had-
ron distribution if there is clustering. The appropriate
quasiparticle operators are then given by the canonical
transformation2

~here the ck are the plane-wave operators. The fixed
momentum Q determines the "lattice spacing" d=2sr/Q.
The total ground-state energy is minimized for Q=2kF,
where the Fermi momentum kF is determined by the densi-
ty of the system. This situation corresponds to a filled first
Brillouin zone (k)~Q/2 [n=l in Eq. (1)1. The real
a,'"'(k) are given by the eigenvectors of the coupled sys-
tem:

eio ~ Qj2 F
~'"'(k)~,'"'(k) =e,(k)a,'"'(k) —~g X g dq V(k —q —rQ) $ [~,'p', (q)u,'~', (q)]a,'"'(k),

s-- n~l
(2)

where the eigenvalue to
" (k) and e, (k) are the single-particle and relativistic free-particie energies, respectively. Here we

consider Nr = 1 in accordance with Q = 2kr.
The Fourier transform V(q ) of the confining potential ~x ~" is defined by'

V(q) = lim d~ x)"ex"~"~e
~~ 04 —oo
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&(q) = —I'(I +I) lim
I 1

v I -»q (/I, +iq)" (/I, —/q )"

we obtain
I

4/ 4/, v(/ /, )
4I (I + I ) . IrI (2/

~ -kFJ I(1—v) 2

where, for numerical convenience, small finite values of p.

have been used, from which the actual limit of the solution
of Eq. (2) has been extrapolated.

The expectation value of this interaction with respect to
the uniform ground state (plane waves) is finite only for
v & 1. Using7

(iii) The single-particle energy spectrum ~("'(k) shows
the same structure as the one obtained in the band model in
solid-state physics, with k being a wave number in a Bril-
louin zone. Note, ho~ever, that this pattern is brought
about by a self-consistent density distribution.

(iv) In contrast with the situation with finite-range poten-
tials, the critical interaction strength is g, =0, i.e., the total
energy for the nonuniform ground state is immediately
lower than that of the plane-eave ground state when the in-
teraction is switched on. This is illustrated in Fig. 1. Fur-
thermore, this feature does not depend on the density of
the system as can be seen from the scaling law

(~g Q) ~l/(I+() E (g ~ —(/(V+1) Q)

which becomes infinite for v 1. Note that, while the
right-hand side of Eq. (5) is finite for v & 1, the integral
does not exist in the classical sense. ' This carries over to
the nonuniform state, ~here self-consistent solutions of Eq.
(2) are found by iteration for I & 1, while no solutions
seem to exist when v approaches unity. This is exhibited in
the numerical procedure, where the extrapolation of the
screening parameter p, to zero value is straightforward for
v & 1, while for v =1 no limit can be attained.

The parameters used in the calculation were kq=2 fm
m - 0.1 fm ' and 10 ' fm '"+"~ g ~ 10 fm '"+"(g= 1)
%e record the main results obtained.

(i) Self-consistent solutions are only obtainable for g ( 0,
i.e., for interactions that appear effectively attractive in the
exchange term.

(ii) As discussed, the numerical solution of Eq. (2) be-
comes increasingly more difficult as I 1. For I =0, V(q)
is a 5 function7 and we obtain the free solutions (g=0)
with shifted single-particle energies.

a„(Q)=X (c„,c„, ), n =0, +1, +2, . . . ,

k

(8)

are plotted in Fig. 2 for Q-2k~ and two different coupling
strengths. For sufficiently large coupling strengths or low
densities, the probability of finding a quark between clusters
is virtually zero.

(vi) There is a singularity of the solution at g =0 in that
no perturbative expansion (Taylor series) exists around
g=o. This becomes obvious from Fig. 3, ~here the free
solution is compared with a solution for g & 0. The single-

which follows from Eq. (2) provided mass scaling is ignored.
An immediate consequence is that higher densities corre-
spond to weaker interaction, i.e., the clusters dissolve at
high density.

(v) Typical self-consistent density distributions

(ItI'(x)I/I(x)) = $ a„(Q) cos(nQx) (7)

where
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FIG. 1. The total energy per particle for the nonuniform solution vs negative coupling strength for v =0.2 (solid curve). The dashed line
indicates the corresponding plane-wave solution. The clustering solution is preferred immediately when the interaction strength is switched
on. Qualitatively, this picture does not change when v is varied between 0 and 1, nor if the density of the system changes.
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FIG. 2. Periodic density fluctuation for v-0.2 about the average po-2/n fm ', i.e., for Q =4 fm ', for t~o coupling strengths g = —2m

fm " (solid line) and —10m fm "+'~ (dashed line).

particie density distribution is given by n (k) -a'(k).
While we do not know the precise form of a(k) in analytic
terms, the curves are reminiscent of Fermi distributions at
T 0 and T & 0, respectively, displaying the well-known
essential singularity in the variable T at zero. Note that the
singularity at g =0 is in line with g, -0 as discussed under
(v).

In concluding, we note that despite great simplifications,
the model does provide a mechanism for quark clustering.
hile at this level a more quantitative analysis does not
seem appropriate —the most important results are listed
under items (iv), (v), and (vi). We recall that these results
are brought about by a confining force in combination with
the A A. term.
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FIQ. 3. u(k) for zero coupling (dashed curve) and g - —2m frn ~"+'~ (nonuniform ground state).
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