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Dynamical gluons in low-energy mesons

1 APRIL 1986

M. Z. I. Gering and %'. D. Heiss
Nuclear Theory Research Group of the Physics Department, Uniuersity of the Wittoatersrand, Johannesburg, South Africa

(Received 15 July 1985; revised manuscript received 26 December 198S)

The meson spectrum below 2000 MeV is calculated within the quark bag model. The frequency
dependence of gluon exchanges is explicitly taken into account. Starting from the Bethe-Salpeter
equation consistency problems are carefully discussed. Restriction to one-gluon exchange allows the
derivation of a Dyson-type equation for the quark-antiquark propagator. Numerical results are in
fair agreement with experimental data.

I. INTRODUCTION

Mesons are basically interpreted as quark-antiquark
states. The successful description of the gross structure of
meson spectroscopy in terms of such states is in fact a
cornerstone in support of QCD. ' When quark confine-
ment is taken into account in a phenomenological way as
in the bag model, it appears natural to describe mesons as
quark-antiquark states, or in the language of traditional
nuclear physics, as particle-hole excitations. This idea of
collective excitations should apply even and in particular
to the lowest meson —the pion. To view the pion as the
Goldstone mode in association with chiral-symmetry
breaking from confinement is attractive; from the micro-
scopic point of view this only underlines the collective na-
ture of the pion. ~

In contrast with nuclear physics, where the nuclear
forces can in most cases be successfully approximated by
static terms, this approach does not seem to be obvious in
the quark bag model. There it is the gluon exchange
which is the basic quark-quark interaction as dictated by
@CD. Since the lowest gluon modes mingle nicely with
the first quark levels in the bag, a static approximation
for the quark-quark interaction could be doubtful. In
fact, an appreciable admixture of gluon components in all
hadrons has bien claimed by other authors. 5

This paper is motivated by the dynamical treatment of
the gluons, i.e., by the correct treatment of the frequency
dependence of the quark-antiquark interaction. In other
words, in addition to the quark-antiquark components of
the wave function we explicitly incorporate quark-
antiquark-gluon components into the Fock space. Such
hybrid states have been discussed in the literature in a per-
turbative way and it has been stated in the quoted paper
that a perturbative treatment is inadequate if the unper-
turbed qq energies are close to or interlacing with the un-
perturbed qqg energies. In this case, a proper diagonaliza-
tion in the space spanned by qq and qqg is required. This
is exactly what is done in our paper. As a consequence,
we get more states and an appreciable mixture of gluonic
content into the wave function, in particular, for the
higher-lying mesons. Since we begin with the Bethe-
Salpeter (BS} equation and employ the Green's-function
formalism, only the qq projections of the meson states are

directly obtained from the residues of the Green's func-
tion. The gluonic content can then be determined from
the normalization of the states.

The Bethe-Salpeter equation appears to be the appropri-
ate framework whenever a frequency-dependent interac-
tion is to be considered in an interacting many-body sys-
tem. As the assumption of a bag is made a priori, the
convenient infinite-momentum frame cannot be used and
the BS equation therefore bears all its well-known intri-
cate difficulties. Within the context of our approach
these difficulties are carefully discussed in Sec. II. One
important aspect is the consistency of a dynamic interac-
tion (the gluon) with the dressing of the single-particle
propagators (the quarks). For pragmatic reasons a
Dyson-type equation for the quark-antiquark propagator
would be desirable rather than the clumsy (but correct) BS
equation. A derivation of a Dyson equation under specif-
ic assumptions which are pertinent to our approach is
presented in Sec. II.

The self-energy (to lowest order) is crucial for theoreti-
cal reasons, and this is confirmed by our numerical re-
sults. The problems related to the self-energy are dis-
cussed in Sec. III. While the expression as such is infinite,
we do not embark on a renormalization program but rath-
er use an ad hoc cutoff procedure. Arguinents are given
for justifying this procedure, but a rigorous treatment of
this unsatisfactory problem is still outstanding.

In Sec. IV results are presented. Three parameters are
used to fit the observed masses of the pion, the p, and
kaon; these are the bag radius, the coupling constant, and
the mass of the strange quark. The higher-lying meson
states are then obtained in fair agreement with the experi-
ment, the discrepancy being never greater than 20%.
From the wave functions it is obvious that the gluon com-
ponents are appreciable, and the role of the self-energy is
essential in that no reasonable agreement can be obtained
by simply ignoring it. By the a priori assumption of a bag
the principle of a partially conserved axial-vector current
cannot hold, yet the pion-decay constant can be computed
from (0

~
A„(x}

~
tr) which can be directly evaluated; we

obtain f =84 MeV to be compared with f'"t"=93 MeV.
The puzzle with the g meson cannot be tackled when

o»y one-gluon exchange is taken into account. An
isospin-dependent force requires at least two gluons,
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which causes many additional difficulties as discussed in
Sec. II. However, these problems can be dealt with, and

since our approach looks rather encouraging judging by
the results, we expect that an extension of this procedure
should shed morc light onto thc isospin-zero mesons.
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II. FORMAL BACKGROUND

The particular time ordering of the four-point function,
viz. ,

~31,24(t) =1 &o I TI a4(r)a2(t)a3(o)a i(0)l I
o} (2.1)

contains all the information of interest. In fact, its
Fourier transform
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(2.3)

while M is the solution of the Bethe-Salpeter equation:

displays explicitly the excitation spectrum of the system,
i.e., the meson spectrum in the quark bag model as well as
the respective quark-antiquark components of the wave
functions. In general a Dyson equation for I' does not ex-
ist (Ref. 13) and F should be obtained from the Fourier
transform of the more general four-point function W
(s, t, u) via the expression

S —N S+&
W1234(s, co,u)= 2%5(u)614 623

dz s co+—u s +co+A+ 633 U763s(Z +S,CO, Z +u)A s264(Z +S —Q, CO, Z} .
2'Fl 2 2

(2A)

The fully dressed single-particle Green's function is denot-
ed by 6, and U stands for the t-channel irreducible vertex
part. Although this equation seems to be intractable it
has been used for perturbative QCD calculations in an
infinite-momentum frame' as it then simplifies due to the
nonoccurrence of backwards-going diagrams.

%'ithin the bag model @re cannot use this trick. %'hile
Eq. (2.4} is then not tractable as it stands, we must
nevertheless use it as a guideline so as to eventually arrive
at a useful equation for F. Several comments are in order.
The irreducible vertex part must be approximated. The
equation becomes tractable when a static approximation is
made; i.e., the frequency dependence of U is ignored. In
this case we obtain the random-phase approximation
(RPA) for E(co} with its advantages (it is tractable) and
disadvantages (its reliability is doubtful in the vicinity of
the instability point'0" ). The RPA has in fact been used
for calculating the pion in a chiral-bag model, where the
emphasis lies on the possible Goldstone-boson nature of
the pion.

As ee aim at calculating the low-lying mesons an obvi-
ous frequency dependence of U is brought about by
gluon-exchange diagrams as discussed in Sec. I. The sim-
plest contribution depicted in Fig. 1 yields

gz3g¹i
U1234(s, t, u) = g

Q —
COg Q +COg

where the precise form of the vertices g is deferred to the
Appendix. The energies ~z are the gluon modes as ob-
tained from the confinement of the gluons inside the bag.
Even this simple expression immediately gives rise to
complications when inserted into Eq. (2.4). We list here
the three major ones as they concern us for making fur-
ther progress.

To second order Eq. (2.4) generates a contribution cor-
responding to the diagram in Fig. 2(a} where two gluons
propagate simultaneously. The diagram depicted in Fig. 3
is not generated by Eq. (2.4), yet it should be included if
we allow the first diagram to occur; it is actually a part of
U that must, in addition, be included explicitly. Needless
to say that to higher order such treatment is impractical.

Apart from Figs. 2(a) other time orderings of the four
vertices occur. As a consequence, the intermediate lines
not only relate to the traditional quark-antiquark states
with the quark (antiquark) referring to positive-
(negative-) energy states, but also to intermediate states
for which the individual particles sit both in positive- or

(a) (c)

FIG. 1. Simplest nonstatic t-irreducible contribution: a prop-
agating gluon.

FIG. 2. Second-order contributions generated by Eq. (2.4),
i.e., t-reducible contributions.
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(a} (b)

FIG. 3. Second-order t-irreducible contribution that is not

generated by Eq. {2.4).

negative-energy states as illustrated in Fig. 2(b). In fact,
the correlations invoked by the frequency dependence of
U will, for the labels (3,1) and (2,4) in Eq. (2.2), give rise
to (pp) and (hIi) combinations m addition ' to the usual

(ph) and (Iip) combinations encountered in the RPA (we
use the notation customary in nuclear physics: p for
positive- and h for negative-energy states}. For illustra-
tion a first-order diagram (in U) which contributes to

Fpp p~ is depicted in Fig. 4.
The third point concerns the dressing of the Green's

functions. Consistency problems occur when the dressing
is not tuned to the approximation made for the dynamic
interaction. For purely forward-going diagrams this
mechanism is well understood. ' If, for instance, only
one-gluon exchange is considered at a time [this means to
second order that the time of label 3 is before that of label

4 as illustrated in Fig. 2(c)] then the appropriate self-

energy is given by Fig. 5(a). If two gluons are admitted at
a time [Fig. 2(a)] Fig. 5(b) makes a contribution; likewise,
Fig. 3 is associated with Fig. 5(c). We note, however, that
the latter cases must also contain vertex corrections in the
gluon exchanges; as we confine ourselves to one-gluon ex-
change in this paper, we do not pursue this aspect further.
%hen backwards-going diagrams must be included, no
connection between dressing and interaction has been es-
tablished to the best of our knowledge. It seems to be
plausible and is confirmed to some good extent by our nu-

merical results, that Fig. 5(a) still is the major contribu-
tion which must not be left out, if only one gluon at a
time is considered. We postpone a discussion of the self-
energy [Fig. 5(a)] to Sec. III and focus our attention on
the first two points listed above.

Using Eq. {2.5) as input for Eq. (2.4) a solution has been
obtained. But the inconsistent treatment of higher-order
contributions, such as leaving out the one in Fig. 3, makes
this solution unreliable. For our particular problem in
mind we omit contributions of more than one gluon at a
time; in other words we aim at an infinite series of one-
gluon exchanges. Since our intention is the calculation of
low-lying meson spectra, we may well, for energy reasons.

neglect unperturbed intermediate states containing two
gluons. By the same argument, contributions of the kind
depicted in Fig. 3 should be excluded; i.e.„we restrict our
intermediate states to the traditional RPA space (ph) and
(hp). These restrictions which characterize specific ap-
proximations immediately open the prospects of deriving
from Eq. (2.4} a Dyson equation for F, which we denote
by a frequency-dependent RPA (Refs. 14 and 15).

Taking for the sake of simplicity the bare Green's func-
tion for G and performing the integration as in Eq. {2.3)
on the iterated solution of Eq. (2.4}we obtain the series

F go++0~0+F0~0~0+ (2.6)

as long as we adhere to the restrictions of intermediate
states as discussed above.

The calculation yields

(~) ~ 823841
ph, ph

8 Q) —(Ei—5g) —678

SZ4&+
Gl —(Ei—51)—Gt)s

(2.7)
8238 41

ph, hp g { 5 )+
gZ4&+

(6g 51)+'o—ig

with e and 5 denoting positive- and negative-energy states,
respectively; Fo denotes the familiar free ph propagator
known from RPA. Clearly, Eq. (2.6) is the iterative solu-
tion of a Dyson equation in RPA. space, viz. ,

F=Fo+Fodd (2.8)

with an effective, frequency-dependent interaction. It is
now a simple matter to generalize to the situation where
G contains a number of left-hand and right-hand poles
owing to dressing. As a consequence, the entry for, say,
(ph, ph) with p

—=si~z and h =—si&2 will be fragmented; i.e.,
the actual matrix will be enlarged, since all the right-
(left-) hand poles of G.. . can combine with all the left-

(right-) hand poles of Gr . To bring the enlarged matrix
I/2

F [(FO)—1 g]—1 (2.9)

into the final form of Eq. (2.2), a sum over the fragment-
ed residues of the poles of F has to be performed.

III. THE SKI.F-ENERGY

FIG. 5. Self-energy contributions. The particular form of the
self-energy that must be included depends on the particular type
of gluon-exchange diagrams taken into account.

FIG. 4. A contribution to F~.~. Since the diagram starts
with a vacuum process, the actual propagation can begin ~th
both labels 3 and 1 referring to a positive-energy state.

As discussed in Sec. II, the self-energy must be included
for reasons of consistency. When the summation over all
intermediate gluon and quark states in Fig. 5(a) is per-
formed, the expression diverges logarithmically. Since the
bag is a phenomenological model, an attempted renorxnal-
ization program is not necessarily appropriate. Further-
more, consistency requires the sum to be extended only
over those intermediate states that are taken into account
in 5 (the gluons} and by the actual space considered in Eq.
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TABLE I. Effective pole positions (first column, in MeV)
and residues (second column) of the single-quark Green's func-
tions.

Light quarks Strange quarks

d 5/2

426
1240

—1320
670

1130
—1530

750
1060

—1700
995

—1490
1100

—1560

0.809
0.124
0.051
0.607
0.291
0.073
0.761
0.226
0.010
0.936
0.046
0.969
0.007

533
1360

—1470
765

1290
—1640

810
1740

—1220
1080

—1600
1130

—1470

0.819
0.126
0.048
0.644
0.287
0.009
0.838
0.137
0.037
0.947
0.037
0.966
0.002

(2.9) (the quarks). There remains the question of whether
the poles and residues of F depend on the size of the space
and the higher-lying gluons. This in turn depends on the
behavior of the vertices g;k. If they give rise to a decreas-
ing behavior for higher-lying gluon states and/or higher-
lying quark states labeled by i, when k is kept fixed,
stable solutions can be expected .Unfortunately, the bag
that we use, i e ,.t.he square well which renders the quark
and gluon wave functions readily available, does not give
rise to a decreasing behavior. The reason is that even the
wave fuIlctloIls corresponding to high-lylllg solutIOIls

are confined within the same bag. If the bag had soft
boundaries, e.g., V(r)-r, a decreasing behavior of gik
would be the consequence. We, in this work, mimic the
soft-bag behavior by multiplying the vertices by a cutoff
function chosen to be a Lorentzian in the transferred
momentum. Whether, in fact, a soft bag does avoid diver-

gence problems must be subject to more rigorous scrutiny
which is not pursued here.

Even when a cutoff is used for the vertices the expres-
sion for the self-energy still contains many left- and
right-hand poles, thus giving rise to many left- and right-
hand poles for the dressed Green's function G. As a
consequence, the size of the matrix in Eq. (2.9) becomes
very large. Since our interest is focused on the low-lying
states, we replace, merely as a numerical device, the more
distant poles by a single pole. For the s and p states two
right-hand poles and one left-hand pole is sufficient
(Table I) while for the higher states only two poles are
necessary. Clearly, for the s,p, d, . . . states right and left
must be interchanged.

While we aim at one gluon at a time, we have, by dress-

ing the Green's functions, unavoidably, contributions of
two and three simultaneously propagating gluons as illus-
trated in Fig. 6. This problem can be dealt with con-
sistently for forward-going diagrams, ' ' but no method
is known to us in cases where backwards-going contribu-
tions are important. A pragmatic way to suppress this os-
tensible "overdressing" is to multiply the self-energy by a
factor fx. The values listed in Table I are actually ob-
tained for fx =0.2. The role of this apparent

FIG. 6. A diagram illustrating contributions of more than
one simultaneous gluon due to dressing.

parameter —in fact, a wider range of values for fz is able
to produce acceptable results —is discussed in Sec. IV;
here we only anticipate that a complete omission of the
self-energy, besides being inconsistent, cannot reproduce a
satisfactory meson spectrum.

IV. RESULTS AND DISCUSSION

The wave functions of the quarks and gluons are readi-
ly available for the square-well bag. Expressions are given
in the Appendix. For convenience the mass of the light
quarks has been chosen to be zero.

The vertices g;k can then be calculated. The final ex-
pressions for b, (co) require angular momentum coupling to
the total angular momentum of the channel considered,
for instance, 0 for the pion or 1 for the p. The color
coupling to a singlet state rules out the quark-antiquark
annihilation into one gluon. Final expressions are given in
the Appendix.

As a first step in the numerical procedure the self-
energy is determined for some values of the bag radius R
and coupling constant a=g /4m. . The form of the cutoff
for the vertices has been chosen as

A
gik gsk

A +(k; kk) +(k; —k, ) +(kf —ks)—2

with a suitable value for A (850 MeV). This leads to up to
25 poles for the self-energy. For the dressed Green's func-
tion the higher-lying poles have been replaced by a single
pole for numerical convenience as indicated in Sec. III.
Using this fragmented single-particle spectrum the poles
and residues of I' can be obtained from Eq. (2.9). If the
self-energy is not taken into account, the meson spectrum
disagrees globally with experimental data in that no fit for
R and a could be obtained for which the second 0 state
would lie at least above the first 1 state, i.e., the p. In
turn, if the self-energy is not suppressed, the fragmenta-
tion of single-particle strength is too strong; as a conse-
quence b,(~) appears to be weakened to the effect that the
splitting between the lowest 0 and l state, i.e., the pion
and the p mass, is insufficient. As we argued in Sec. III, a
suppressing factor is justified and a good fit can be ob-
tained for 0. 1 &fz &0.5.

The coupling constant is then so determined that the
mass ratio between the p and the pion agrees with experi-
rnent. The bag radius is determined by setting the energy
scale. This leads to

R =0.92 fm, a=0.76,

for fx ——0.2 and A=850 MeV. For other choices of fx
(in the range indicated) and A within 500 MeV
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TABLE II. Masses (MeV) of the nonstrange mesons as calcu-

lated in this paper.

TABLE III. Masses (MeV) of the strange mesons.

Observed (Ref. 16)

0

Calculated

139
1080
1370

1300
1600

Observed (Ref. 16)

139 (m)
1300
1770
770 (p)

1250
1600

0 495
1250
1450
913

1400
1700

495 (E)
1400
1830
892 (E )

1659

Theory
2000MeV

Experiment

& A & 1200 MeV, both R and in particular u have to be
readjusted to fit the p and the pion mass.

Once these parameters are fixed the higher excited
states are calculated. The results are listed in Table II and
illustrated in Fig. 7. The agreement with available data'
is remarkably good for the 1 states and for the 0 states
still within 20%.

A best fit would improve the global pattern, but we did
not pursue this approach, since some of these higher-lying
states are experimentally doubtful' and also theoretically
less reliable in our model.

The mass of the strange quark is finally determined to
fit the lowest strange meson, i.e., the kaon. With

m, =220 MeV

all the strange mesons including the 1 states are calcu-
lated up to 1SOO MeV and the results are listed in Table
III and Fig. 7. Again the agreement with experiment is
fairly good.

Only the quark-antiquark components of the wave
functions are obtained from F. They are listed in Table
IV. We stress two important features. The F components
(in the traditional RPA natation) are particularly strong
for the pion. This indicates that ground-state correlations
are brought about essentially by the pion. In this spirit
our findings are qualitatively in hne with the chiral-bag

cosec kp(0
/
it/(x)y„ysf(x)

/

n ) = "F e'~
2ko V

(4.1)

with k„ the pion momentum, V the normalization
volume, and Hc the Cabibbo angle. The pion that we have
calculated has no sharp momentum, we must rather as-
sume that is has a (spurious) momentum distribution. We
therefore have to replace the right-hand side of Eq. (4.1)
by a superposition over a range of momenta using a cer-
tain distribution function. 's This is related to the fact
that the principle of PCAC (partial conservation of axial-
vector current) does not apply here, in that the divergence
of the axial-vector current is zero inside and singular at
the wall of the bag. Now it turns out that the left-hand

model where the pion is interpreted as the Goldstone
mode. The second important point is the defect of the
ph components, i.e., the amount by which X (X —F ) de-
viates from unity. For a static RPA this quantity is uni-

ty, while in our model the defect indicates the extent of
gluon admixtures in the wave function. It is noticeable
that these admixtures, albeit globally appreciable, are
stronger for the p than for the pion. This is expected,
since the higher-lying p will couple even more strongly to
gluons than the lower-lying pion. The importance of
gluon admixtures has been noted by other authors.

The knowledge of the matrix elements (0
~
a a

~

5r) en-
ables us to calculate the pion-decay constant I' which is
defined by the covariant expression

TABLE IV. The quark-antiquark components of the pion
and the p. X and F denote the forward- and backward-going
parts, respectively.

X —F

100QMe V
S I/2 $1/2

P3/2 P3/2

P 1/2 P 1/2

d5/2 ~5/2

d3/2 ~5/2

0.823
0.599
0.005
0.287
0.001

0.232
0.457
0.002
0.251
0.001

0.590
0.142
0.003
0.036
0.000

FIG. 7. A diagram which would lift the isospin degeneracy
as it can contribute only for I=0.

S1/2 S1/2

P3/2 P3/2

Pl/2 Pl/2
d5n ~5n
d5/2 ~5n

0.450
0.168
0.001
0.053
0.001

0.003
0.027
0.000
0.025
0.000

0.448
0.142
0.000
0.028
0.000
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TABLE VI. Masses of strange mesons with quantum num-
bers different from those of the E and I( family.

FIG. 8. Comparison of calculated masses with experimental
values for low-lying mesons with J =0 and J =1

side of Eq. (4.1) is weakly dependent on x thus indicating
that the center-of-mass motion of the pion is well peaked
around k=0. It is therefore sensible to use Eq. (4.1) at
x =0 for calculating F We.obtain

0+
1+
2+
2
3
4+

Calculated

1300
1200
1200
1500
1450
1800

Observed

1350
1400
1430
1580
1780
2050

to be compared with the experimental value I'" '=131
MeV.

With one-gluon exchange the interaction is isospin in-

dependent. It turns out that our results are degenerate
with respect to I=0 and l. In particular, in view of the

g meson, the experimental facts are different. Isospin-
dependent interactions come into the play when two
gluons are considered; e.g., the diagram shown in Fig. 8

can only contribute for I=0 . This indicates that two-
gluon effects are important. While they go beyond the
scope of this paper, their implications must be carefully
considered along the lines discussed in Sec. II.

In view of the strong gluonic admixture that we have
found for most mesons except the pion, the question arises
whether the incorporation of more gluons renders the qq
component to a comparatively small part of the mesons.
In principle, there is no logical objection against this to
happen. But as long as the bag is used as a phenomeno-
logical model, caution is required with conclusions that
are based on partial summations of particular diagrams.

Finally we turn to meson states with different values
for J that are observed in the range 1000—2000 MeV.
Since we place less credibility on the higher quark states
in our model, we do not calculate them as we did the 0
and 1 states. %e rather estimate these states as being
poles of Fo, which, as we recall, are obtained from dressed
propagators. Results so obtained are presented and com-
pared with available data in Tables V and VI.

In summary, despite the crudeness of the model a large
part of the low-lying meson spectrum can be satisfactorily
obtained in this uniform approach. As expected by the
nature of the model, the dynamical treatment of the
gluons plays a crucial part. Encouraged by our findings,

we feel an extension to two gluons is important to tackle
the ubiquitous question of the isospin zero states.
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APPENDIX

The appropriate boundary conditions for the quark and
gluon wave functions, which lead to the unperturbed
quark and gluon modes, are given in the literature. '
For the quark spinors we obtain

ig (r)Q„(r)
"'" f (r)(a"r)Q„(r)

where

& (r) = g &~'X„(&mI 2p ~

j~—),

g (r) =j I(k r),

f (r)=sgn(v)j~, (k r) .

For the longitudinal gluon modes we have

while the transverse magnetic and electric modes read

TABLE V. Masses of nonstrange mesons with quantum
numbers different from those of the pion and p family.

Calculated

[A(A+1)]'"

a„=Xg g VXI- . g

ikey[A(A+ 1)]'~

0+
1+
2+
2
3
4+

1180
1080
1080
1410
1340
1700

980
1190
1270
1680
1670
2030

The vertices

3 —C S C p, ,g
glk d 7 l VP~cc 'Vk

then factorize' into radial integrals, denoted by p,gk, with
g denoting the gluon mode under consideration, a spin an-
gular part of the structure
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1/2
+ i r2 (2jI + 1)(2j;+ 1 )(2A+ 1)

( —1) '+
4m

Jf A J~

—mf M m; ' 0

and a color part as indicated by the labe1s c, c', and s. To
obtain the explicit form of the final expressions needed in
Eq. (2.7), the respective quark-antiquark pair must be cou-
pled to a total angular momentum J of the meson con-
sidered and a color-singlet state. The latter yields a factor
—", from the A,9.* term which in turn originates from the
g1uon propagator being diagonal in the color labels. %'e
eventually obtain, for the numerators in Eq. (2.7),

(g g ) = g$ g& ( —1) ' 3 2 4 [(ji+1)(2j2+1)(2j3+1)(2I'q+1)] (2A+1)
3

J4 J2

.J J 01 1

2 2 01 }
2 2

Ji ~ J4 J2 A J3

while isospin yields unity for I =0 and I= 1. Finally, us-

ing

I
m ) = g [X„„(atb )„„—Y„,(ab) „]I

0),
V, K

where

(atb~) = g (jmj —m
I
00)a„„b„„

and

P(x) = g [q„(r)a„„+q„(r)b„„],
V, K, m

Vn =&'V5&29n ~

the left-hand side of Eq. (4.1) yields the final expression
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Note that our wave functions carry the dimension fm
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