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%'e provide a fully covariant analysis of a nontopological soliton Inodel of hadron structure and

make an application to the structure of various mesons. %e study the p and co mesons, charmoni-

um, and the Y system. The model describes quarks coupled to a scalar field which plays the role of
an order parameter of the QCD vacuum. There are a few parameters in this model: a flavor-

dependent constituent quark mass, a mass parameter for the scalar field, a coupling constant which

determines the strength of the coupling of the quarks to the scalar field, and a cutoff parameter.

The mass parameter of the scalar field and the scalar-quark coupling constant are taken from our

study of nucleon structure. Therefore, once a value is chosen for the high-momentum cutoff, only a
single parameter is varied in this analysis, the flavor-dependent (constituent) quark mass. A reason-

ably good fit is obtained to a series of mesonic states of quite different mass in this extremely simple

model, indicating that a unified approach to hadron structure may be possible. (At this point, we

have not attempted to model the confinement mechanism. Further, our Hamiltonian has continuum

solutions and, given our method of calculation, these solutions prevent us from studying all but the

low-lying states of charmonium and the Y system, for example. ) %e have also modified cur La-

grangian in order to study gluon-exchange effects; however, the study of such effects requires the in-

troduction of additional parameters. By fitting these new parameters to the mass splitting of the

lowest 0 and 1 states of the charmonium system, we are able to make a prediction for corre-

sponding splitting in the Y system.

I. INTRODUCTION

Recently we have constructed a covariant model of nu-

cleon structure by making a fully covariant analysis' of a
simplified form of the Friedberg-Lee soliton model. i
While our analysis involved certain simplifying approxi-
mations, such as a description of the nucleon as composed
of a quark and a "diquark, " the fit to nucleon observables
was quite remarkable. The radius, electromagnetic form
factors, magnetic moments gz, and the nucleon mass
were well reproduced in a simple model. ' In this model
the quarks were coupled to a scalar field which serves as
an order parameter of the QCD vacuum. The parameters
of the model included the coupling constant of the quarks
to the scalar field, a mass parameter for the scalar field,
and a quark (constituent) mass parameter. (In addition, a
cutoff was introduced to regulate the high-momentum
components of the interaction. ) In our model of the nu-
cleon we also coupled the quarks to various fields, with
the quantum numbers of the tr, m, p, and to mesons, which
play an important role in the description of nucleon-
nucleon scattering; however, these couplings were related
to empirical meson-nucleon coupling constants and we
therefore did not require additional parameters in the
model. Indeed, the contribution of these fields tended to
cancel leaving the overall structure to be governed by the
scalar field which we called X.

One great advantage of a model of this type is the pos-
sibility of calculating the modification of the properties of
the nucleon when the nucleon is in a nucleus. ' %e
found that the sohton increased in size when in nuclear

matter. In fact, the size increase we found was precisely
what was needed to explain the European Muon Colla-
boration (EMC) effect, 5 if we made use of the rescaling
analysis of Jaffe, Close, Roberts, and Ross. In addition,
we were able to calculate the modification of nucleon elec-
tromagnetic form factors when the nucleon is in a nu-
cleus. 3 These modifications were able to explain the
quenching of the longitudinal response observed in (e,e')
inclusive reactions near the (nucleon) quasielastic peak.
For example, we have recently shown that the longitudi-
nal response function for Ca and Fe is overestimated
by about a factor of 2 in the impulse approximation at

~ q ~
=550 MeV/c. This defect is remedied if we calcu-

late the response using the medium-modified form factors
calculated previously. ' %e have also carried out a de-
tailed study of the longitudinal and transverse response
functions for deep-inelastic electron scattering on ' C.
Again, the use of our medium-modified form factors
leads to a good fit of the longitudinal response, supporting
the conclusions we drew from our study of Ca and Fe.
Further, these medium-modified nucleon form factors aid
in explaining some long-standing problems in relating
(theoretical) matter distributions to the observed charge
distributions in nuclei. ' "

Because our simple nontopological model appeared
quite useful when applied to the study of nucleon struc-
ture, we decided to apply this model in a study of meson
structure. Our goal was not to make a detailed fit to large
numbers of levels and transition rates, but to see if one
could find a unified approach to hadron structure. Once
we obtained an overall qualitative description we could
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then attempt further refinements. In keeping with this

gaal we decided to use the fewest possible parameters and
the simplest possible dynarnica1 rn.cxiel. We take the cou-
pling constant of the quarks to the X field, gr, and the X-
field mass parameter, mr, from our study of nucleon
structure. At this point, the only parameters of the model
are a fiavor-dependent quark mass and a high-momentum
cutoff for the interaction, which we will describe at a later
point in this discussion.

The Lagrangian of our model is then'

W(x) = q(x)[iy"8„m—e gz—X(x)]q(x )

+ —,
' O'X(x }Bg(x)——,

' mz2Xz(x ) . (1.1)

(This model is generalized to include effects due to "gluon
exchange" in Appendix D.) The quark mass me is a large
number in our analysis. [In our study of the p and co

mesons, which made use of the Lagrangian of Eq. (1.1),
we used me=471 MeV, for example. This quantity is
usually called the "constituent" mass to distinguish it
from the "current" mass which is about 5—10 MeV for
the up and down quarks. ] This large quark mass is
thought to have its origin in symmetry breaking associat-
ed with the formation of vacuum condensates; however,
no theory is presently available that would allow one to
calculate the constituent mass with any confidence.

It is sometimes useful to introduce P(x)=P„~+X(x).
One can then write mz

——m&"'+g&P„„, where me"' is a
flauor dependen-t current quark mass. With these substitu-
tions we can write Eq. (1.1}as

W(x) =q(x}[iy~a„—m,
'"—g,y(x)]q(x)

+ —,
' B„P(x)c)i'P(x)——,

'
mz [P(x)—P„] . (1.2)

[If we adopt this scheme we see that g„P„„-466MeV
since me"'-5 MeV for the up and down quarks, and we
have put me~471 MeV in our study of the p and to

mesons using the Lagrangian of Eq. (1.1). When we in-
cluded effects of gluon exchange we found me=619 MeV
for the up and down quarks. In that case we would have
gran„„=614 MeV—see Appendix D.]

We stress that Eq. (1.1) represents one of the simplest
models one can use to describe soliton structure. There is
clearly no reference to confinement in this simple model.
This feature is, of course, unsatisfactory and has the prac-
tical consequence of limiting our considerations to only
low-lying states in the spectrum of charmonium and in
the Y system. (For example, we achieve a description of
the 1S, 2S, and 3S Y states, but the 4S state is already in
the continuum of our model. This problem has its origin
in our use of plane-wave states as a basis for the solution
of the equations of our model. Satisfactory results for
highly excited states may be obtained if we consider an ex-
pansian in a different basis set.)

%e should also note that there are many competing
models of hadron structure. Almost all of these models
are static models and require difficult and lengthy calcula-
tions if one wishes to restore translational invariance to
the theory. Among the many models of hadron structure
under current study, we can mention potential models, '

the MIT ba model, ' chiral bag models, ' the "cloudy"-
bag model, ' and various models. describing topological'

and nontopological solitons. ' (We assume the reader is
reasonably well acquainted with the literature in this
field. )

At this point, we can expand upon the concepts under-
lying our research program. Our aim is to construct a
model of hadron structure that is somewhat analogous to
the Ginzburg-Landau theory of superconductivity. In
that theory the Hamiltonian is written in terms of an
order-parameter field. (In a microscopic theory of super-
conductivity this field can be seen to be proportional to
the anomalous expectation value, in the superconducting
ground state, of an operatar describing a zero-momentum
electron pair. ) No one has yet identified the appropriate
order parameters for quantum chromodynamics. Howev-
er, we believe that the work reported here, and our earlier
work, is suggestive that models of QCD based upon the
use of appropriate order-parameter fields may be use-
ful. '2'9 (In Ref. 12 we put forth some conjectures con-
cerning relations between the equations of QCD and
models of hadrons of the type considered in this work. )

Before discussing the mathematical details of our
analysis it is useful to provide a schematic description of
the integral equation which emerges. In Fig. 1 we present
such a description. There we see that the object of interest
is the amplitude for a meson to decay (virtually) into a qq
pair. Either the quark or antiquark may be placed on
mass shell and the two amplitudes, with either the quark
or antiquark on shell, are then related by charge conjuga-
tion. In the figure we show an equation for the amplitude
where the antiquark is placed an mass shell. In Fig. 1(a)
we see that the resulting integral equation contains the
scalar form factors of the meson. (The wavy line denotes
the propagator for the X field. ) In Fig. 1(b) we have
shown the evaluation of the scalar form factors in terms
of the amplitudes for meson ~(qq ) that are the objects of
our analysis. Therefore, we see the nonlinear aspect of the
problem emerging in a clear fashion. As we will see, the

p
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FIG. 1. Schematic representation of the covariant nonlinear
equations considered here. (a) An integral equation for the am-
plitude describing meson decay to a quark-antiquark pair is
given. Here the interaction is given in terms of the scalar form
factor of the meson. (A cross denotes an on-shell particle and
the wavy hne represents the scalar field g.) (1) The form factor
is expressed in terms of the amplitudes for meson decay into gq
pairs. (The nonlinear aspects of this equation become apparent
upon inspecting the figure. )
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( p', TMr
~
p, TMr ) =5(p —p') 5M, (1.3)

States of vector mesons will be denoted as
~ p,SA, TMr)

where S is the meson spin and A, is the helicity. These
states are normalized such that

resulting equations are fully covariant and nonlinear; they
are solved by a straightforward iteration procedure.

In Sec. II we describe the mathematical techniques used
to provide a covariant description of bound-state solutions
of our simplified Lagrangian. In Sec. III we study in-

tegral equations for various covariantly described ampli-
tudes and in Sec. IV we indicate how one may calculate
the mass and size of the soliton (meson). (In Appendix D
we extend the model to include effects of "gluon ex-
change. " The modifications of the various equations of
the theory required are presented in Appendix D.) Finally
in Secs. V and VI we present our numerical results and
conclusions.

In the discussion which follows the states of pseudosca-
lar mesons of isosPin T and Projection Mr will be denot-
ed as

~ p, TMr ). These states are normalized such that

( p', SA,'TMr
i p, SATM, r ) =5(p —p')5ii 5 (1.4)

(We use the Dirac matrices and metric defined in the texts
of Bjorken and Drell. )

II. A COVARIANT DESCRIPTION OF MESONS
AS NONTOPOLOGICAL SOLITONS

We now consider the Lagrangian of Eq. (1.1) which de-
scribes the interaction of quarks with the X field. (Here
me, mr, and gr are parameters of our model. ) From the
Lagrangian density of Eq. (1.1) we obtain the following
field equations:

(iy"8„me)—q(x ) =gxq(x)X(x ),
(CI+ mr )X(x)= —grq(x )q(x ) .

(2.1)

(2.2)

We may now form matrix elements of Eq. (2.2) between
meson states. We are then led to define various form fac-
tors for pseudoscalar and vector particles as follows. For
a pseudoscalar meson we write

1 r~r 4m(p', TMr ~X(0)
~ p, TMr) = —g& iyz Fs(q

mz —q (2n. ) [4'(p)co(p')]'
(2.3)

For vector mesons we denote the polarization vector (with helicity parameter A,) by gi, and use the notation g=g(p)
and // =AD(p'). Then we have

1 r~r 4m( p', SA, 'TMz'
~
X(0)

~ p SA TMr )= —gz
mx q(2n )s —[4'(p)ai(p')]'i2 Fi(q )+CA, '@F2(q ) (2.4)

where m and co(p) are the mass and energy of the meson under consideration. (The isospin indices will, of course, be ab-
sent if we are considering isoscalar particles. )

We now turn to a description of certain meson-quark amplitudes. Specifically, we consider the decay amplitude for a
meson of momentum p to go into an off-shell quark and an on-shell antiquark of momentum k. The amplitude for a
meson going into an off-shell antiquark and an on-shell quark is related to the first amplitude introduced here by charge
conjugation. %'e consider the pseudoscalar and vector mesons separately.

A. Pseudoscalar mesons

For a pseudoscalar meson of mass m and isospin projection Mr decaying into quark with momentum k and isospin
projection t we define, using the notation of Bjorken and Drell, and noting that tz is a Dirac index,

1/2

rs
Nl

' 1/2

( kst
i q;(0) i p, TM )=,z u, (k) A+ (2.5)[2ai(p)]'~' Ee (2ir)'

Here A and 8 are Lorentz scalars and est is a vector of unit norm. Using charge conjugation we have (see APPendix
A), for decay into an on-shell antiquark,

( kst
i q;(0) i p, TMz ) =

[2 (p)]l/2 (2m )' (2.6)

where E=A, F= —B, and q is a phase factor.
The scalar invariants E and F can be taken to be functions of Lorentz invariants [(p.k fme) —m )' . We denote the

scalar invariants which are functions of [(p'.kfme) —m ]'~ by E' and F'—see Fig. 1. In the meson rest frame, p=O,
the amplitude defined in Eq. (2.6) becomes

e (k)
(kst

i q (0)
i
p=O, TMr)=

(2~)' E k 4m

(E F)X—
(E+F) a kX

eq k

z(v"est ) X



33 COVARIANT DESCRIPTION OF MESONS AS. . . 201

where e&(k)=(k +ms )'~ +m~ .We recall that the sca-
lar invariants E and F are functions of

[(p.klm~) —m ]'
kt(k) =

' 1/2
4ir 1 es(k) k[E(k')+F(k')]

(2~)' m E, k eq k

(2.11)
Thus in Eq. (2.7)

E=E =E(k'),
Pily

(2.8)

We also choose the normalization

f k dk[k„(k)+Rt (k)]=1 . (2.12)

=F(k') . (2.9)

(2.10)R„(k)=

Here k' is the momentum of the meson in the Lorentz
frame where k=O. We define wave functions as follows:

[E(k') —F(k')],
(2&)' m E,(k)

S. Vector meson

We consider the decay of a vector meson into an on-
shell quark and an off-shell antiquark. The description of
this amplitude is somewhat more complicated than in the
pseudoscalar case described above. In general, there are
four scalar invariants needed to describe this amplitude.
We organize these invariants such that, in the rest frame
of the meson, only s-wave decay is allowed. This leads to

' 1/2
1

(2ir)

Using charge conjugation (Appendix A) we have

(kst
~
q~(0)

~ p, SA,TMr) =
Ee

i k
x u, (k) ~, 1+~ +((;& ~+~

pn,
'

m Ptl

' (~t r eMr4
a

(2.13)

( kst
i q (0)

i p, SA, TM '}=—
[2~(p)]'"

1/2
1

(2m )'

X
gi k d — —Pa, 1 — —

g& &+&
72lq Pl

(~ eM, )'& irl i ~-- (2.14)

These equations describe s-wave decay if

(2.15)

e functional dependence of g i, g, and 8 is the same as in the case of scalar mesons. That is, they can be taken as
functions of [(p k/m )z—m ']'~2. In the meson rest frame, p =0, we find

(kst
i q(0) i p=O, SA, TMr )=— es(k)

4m E,(k)

(A —8)gi.crX,
(2+8)k o"kg'i. trX

[(r eM ) X,i),] . (2.16)

From this we can again identify wave functions,

' 1/2

R„(k)=,— [A(k'}—8(k')],
(2~)' m E,(k)

(2.17)

Rt(k) = [A(k')+8(k')]
eq k

(2.18)

and choose the normalization

f k dk[R„(k)+Rt (k)]=1 . (2.19)
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111. INTEGRAL EQUATIONS FOR INVARIANT AMPLITUDES

We now analyze Eq. (2.1) using the fact that

&kst [q(x) [p, TMr&=e "t' ""&kst ~q(0) [p, TMr& . (3.1}

We obtain, for pseudoscalar mesons, upon inserting a set of mesonic states,
~

p', TMz &, between the operators q(0) and

X(0):

(p —&—ms) &kst
I
q(o}

I p TMr & =gz g f dp'&ktt
I q(o}

I

p' TMr & & p' TMr
I
X(0)

I p TMr & . (3.2)

Similarly for vector mesons, we obtain

(p —It —ms)&k t lq(0) I p ~~TMr &=gz g f dp'&k t
I
q(o} I

p'»'TMr&&p'»'TMr
I
X(o}

I p ~~TMr & .

We analyze Eqs. (3.1) and (3.2) in the antiquark rest frame
where k=0. For that analysis it is useful to define, for
pseudoscalar mesons

Similarly for the study of vector mesons we define

R„=—R„(p)= E(p) F(p)—

Ri =Rt(p )= F(p )~—
m [~(p)]i/t

I

R '„—=R„(p')= E(p'}—F(p')
PPl

1

[~(p)]'"
(3.4)

(3.5)

(3.6)

R„(p )=,/2
A (p ) —8(p )

[~(p)]i/2 m

Rt(p)=—,8(p)~,[~(p)]'"

(3.9)

(3.10)

I

R t
=Rt(p') = F(p')~— (3.7)

[~(p~ )]i /2

The isospin factors may be canceled in Eq. (3.2) and we
obtain equations for the amplitudes defined above,

t

R„(p) 2mq p R„(p}

Rt(p) . p 0, Ri(p)

I

R„(p')=, , /, /I p') &(p')—
[ (p~)] i/2

Rt(p') =—,t &(p')
[ei(p')] i/t m

(3.11)

(3.12)

dp' 4m

(2m) [4a)(p)co(p')]'

Again we can remove the isospin factors from Eq. (3.3),
and using the fact that

F (qi) 1 () R„(p')

m»' —q' 0 —p'p
I

(3.8)
I

Vx(e)'sr=-e"+ p p, ,
7?l

~e obtain

(3.13)

R„(p)
co(p)

Rt(p )

T

2m' p Rg(p) d I
1 4

Rt(p } (2n) 3 [4'(pro(p')]' mx —q

V11
1

~21
1

~12
1 2

I/ i Fi(q'}+
V 2

22 . 21

~12
2'

V 2 F2(q')
22 .

R„(p')

Rt(p')
(3.14)
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Np Np
m m

+ 2
—+ + 2

—1
p'p N N M QP

m m m

order parameters should break down at some large
momentum scale.

IV. EVALUATION OF THE MESON MASSES
AND RADII

2 &2

—PP(r ~, )2p p +,"a+m co'+m

%e recall that

( p', TMr I P, TMT) =5(p' —p)5~, ~ (4.1)

+(p.p, )3 I p I I
p'

I

Nf
, (3.15)

Nl m

y i IP I I P I
1

ror0 +(~.~r) P & +P ~0
zz =

2
—

2 +P'P
m Pff m

r

—PP(-.-.)z I
p'

I I p I

m
(3.16)

and also note that

( p', TMT
I
H

I p, TMr )

= p', TMq P x x P, TMT

(2qr) 5(p p) (p ™T
I
~(0)

I p, ™T~
Here 4 (x}is the Hamiltonian density and is given by

r

(4.2)

2—

~zz =—2—

N N p'p+
m m m

m m

r

I P I
Ip'

I +-.-,+P'P +

(3.17}

(3.18}

4 (x)= q(x ) —,y.V+ mq+grX(x ) q(x }
1

l

ax (x) +
I
VX(x) I2+mr+2(x)

~e now define mH as follows:

( p', TMr I
I

I p, TMr ) =5(p —p')(p2+ mH2) i ~2 .

(4.3)

~~z = Vz~'= ~z~'= ~iz'=O.1 (3.19)

(4 4)

Using the meson-quark decay amplitudes determined ear-
lier and inserting a complete set of quark and antiquark
states between the various operators in Eq. (4.3) we find

and

co=co(p)=(m +p )'i~,
mH ——2(m —(E ) )+N'f,

(3.20) where

(Eq) f k dk Eq(k}[R (k)+Ri (k)]

(4.5)

(4.6)

co'=m(p') =(m2+p'2)'~2 . (3.21)
and

Equations (3.8) and (3.14) can be solved for R„(p) and
RI(p) for pseudoscalar and vector mesons. From the
solution of these equations we can construct E(p), F(p),
Ai(p), A(p), and 8(p).

Some questions of normalization are discussed in Ap-
pendix 8, while the evaluation of various form factors is
described in Appendix C. Finally, we note that me have
introduced a high-momentum cutoff in these calculations.
Effectively we replace the propagator (m& —q )

' by

(m 2 q2)-i qp2 2

x pz

where A2=100 fm . This is somewhat larger than the
cutoff used in our calculation of nucleon properties. In
the latter case we put A =40 fm . The larger cutoff is
needed in particular for the description of T'(1S) which is
a quite small object. A value of A-2 GeV seems not un-
reasonable since at these large momentum transfers non-
collective aspects of @CD are expected to play a role.
That is, one expects that a description in terms of QCD

4m "p'dp' 2(q) 1

(2n) o (p') (m q ) m —q
l

X[Es(q )]'.

Here q& is given by

q =m —co(p')

and

Similarly for vector mesons we find

m~ ——2(m —(Eq ) ) + 8'r,
where again we have

«, & = f,
"

k'dk E,(k)[k„'(k)+k,'(k)]
and also define

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)
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y 2 4m p'dp' 2(q) I p'&x-gx'
(2m) 0 ro(p') (mr —q ) mz —q 3m

'2
~(p')

Fi(q )+F2(q ) —[Fi(q ))i +[F2(q )]~

(4.12)

For systems with isospin zero (charmonium and Y) we
find the same expression for the mass if we use the nor-
malization conventions described in Appendix B.

We have also calculated the size of the solitons. We de-
fine

R„(r)= 3 J k dkjo(kr)Rg(k),(2~)'"

ki(r) =
3/2 f kzdk ji(kr)RI(k),

(21r) 0

(4.13)

(4.14)

and calculate the mean-square radii of the baryon and sca-
lar densities:

(r )~= J r drr [R„(r)+ki (r)],

( r )s ——f r dr r [R„2(r)—Ri (r)] .

(4.15)

(4.16)

Values for the root-mean-square radii are presented in
Tables I and III.

V. CALCULATIONAL PROCEDURES AND RESULTS

In this section we will describe the procedure used in
our calculations. The discussion is somewhat complicated
since several different masses are described. To clarify
this presentation we can define the quantities mH, m,„p„
and m~. We will first describe m,„~, and mi. We use
m, „~, to denote the experimental meson mass. (This
quantity is known for most of the states we consider here. )
Now consider the meson energy co(p) which appears on
the left-hand side of Eqs. (3.8) and (3.14). We write
ro(p)=(p +mi, )' and determine mi as the eigenvalue

of the nonlinear equations, Eqs. (3.8) and (3.14). The
meson mass is also required in the calculation of the form
factors [see Eqs. (C4), (C9), and (C10), for example] and
in the potentials [see Eqs. (3.15)—(3.18)]. The equations
are solved so the mass rii, which appears in many places
in our equations, is equal to mi, the eigenvalue of our
equations, as described above. After the equality between
the eigenvalue mi and the meson mass used to construct
the form factors and potentials is achieved, we have only
a single mass parameter in our equations. %'e can denote
this mass as m. (See Tables I—IV.)

We proceed as follows. We guess a value for the form
factors [Fs(q ) in the case of pseudoscalar mesons, or
Fi(q ) and F2(q ) in the case of vector mesons]. We then
construct the potential terms appearing in the right-hand
side of Eqs. (3.8) and (3.14). If we are treating the p or ro

mesons, or the lowest 1 state of charmonium and of the
Y system, we use m, „~, in Eqs. (3.8) and (3.14). We then
determine ms such that m=rn, „~,. This procedure pro-
vides a value for the constituent mass of the up and down
quarks, the charmed quark, and the bottom quark. With
these quark masses fixed, we can then study the 0 states
of charmonium and of the Y system, as well as the excited
1 states of both systems. Since

rnid
is fixed, we now

have no parameters at our disposal. %'e again proceed to
solve Eqs. (3.8) and (3.14) so that m~, the eigenvalue, is
the same as the mass used to generate the form factors
and potentials. Therefore, at the end of our analysis there
is only a single mass m which appears in our equations
for each mesonic state considered (see Tables I—IV).

The notation rriH is used for the mass of the meson
which is calculated by forming the expectation value of
the Hamiltonian. This expectation value is calculated us-

TABLE I. Results of calculations based upon the Lagrangian of Eq. (1.1). The quark masses m~ are
fixed so the corresponding underlined masses are equal. The baryon and scalar radii are defined in Sec.
IV. The electromagnetic radius is defined in terms of the slope of the appropriate form factor.

Ps&

J/P 1S)
J/P(2S )

X,(1S)
X,(2S)
Y(1S)
Y(2S)
Y(3S)
Y{1S)
Y(2S)
Y{3S)

0

0

m (expt)
(MeV)

775
140

3 100
3 685
2980
3 590
9460
10025
10355

m (theory)
(MeV)

775
782

3 100
3 795
3 101
3 794
9 460
10355
10900
9 460
10356
10900

PFl q

(MeV)

471
471

2025
2025
2025
2025
5700
5700
5700
5700
5700
5700

Baryon-
density
radius
(rms)
{fm)

1.38
1.39
0.484
1.21
0.483
1.21
0.272
0.531
0.893
0.271
0.534
0.889

Scalar
density
radius
(rms)
(fm)

1.21
1.21
0.434
1.19
0.431
1.19
0.263
0.524
0.886
0.262
0.527
0.883

Electro-
magnetic

radius
(fm)

0.949
0.936
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TABLE II. Results of calculations based upon the Lagrangian of Eq. (1.1). The various quantities

(E~ },g'», 4g'f, and rn~ are defined in Sec I.V.

P, GP

J/P 1S)
&/+2S)
g,{1S)
X,{2S)
Y(1S)
Y(2S)
Y(3S)
Y{lS)
Y(2$ }
Y(3S)

1

0
1

1

0
0
1

1

1

0
0
0

m (expt)
(MeV)

775
140

3 100
3 685
2980
3 590
9460
10025
10355

775
782

3 100
3 795
3 101
3 794
9460
10355
10900
9460
10356
10900

{MeV)

524
527

2125
2103
2126
2105
5806
5847
5831
5806
5847
5830

g'

(MeV}

1234
906
590

735
339

1236
905
588

(H &=m~
(MeV}

742
734

2 685
3 721
2 676
3 719
8 545
9 922
10726
8 542
9 924
10710

ing the self-consistent invariant amplitudes, wave func-
tions and form factors, and the equations developed in
Sec. IV. (As we will see, m~ and m differ significantly in
some cases. We will comment on this aspect of the calcu-
lation at a later point in the discussion. }

In our calculations we did not attempt to vary mz and
gz. We choose mz ——500 MeV, which is the value we
used for the study of the properties of the nucleon. ' We
took go=7.0, which is approximately the average value
of this parameter used in Ref. 1 (g& ——6.3) and in Ref. 3

(gz ——7.5). Thus, once a high-momentum cutoff is
chosen, there is only a single free parameter, the fiavor-
dependent constituent quark mass in the analysis which is
fixed by the procedure described above.

The results of some of our calculations are given in
Tables I and II. We note that the choice m~ =471 MeV
for the up and down quarks leads to a fit to the experi-
mental p and co mass. A value of m~ =2025 MeV for the
charmed-qu~~k mass leads to a fit to the J/g(3100} state,
while the value m~=5700 MeV for the bottom quark

leads to a fit to the (vector) Y meson, Y(1S). The other
masses, and various radii given in Table I, represent pre-
dictions of the model. In general, we see that the model
leads to too large a separation between the various states
of the charmonium and Y systems.

In Table II we present values calculated for the expecta-
tion value of H (denoted as mH) and the quantities (E» ),I'f, and 8'», defined previously. [See Eqs. (4.5)—(4.7) and
Eqs. (4.10)—(4.12).] It is interesting to note that the larg-
est discrepancies between m and mH appear for the
mesons with the smallest size. The discrepancy becomes
smaller as the meson size increases in a fairly systematic
fashion indicating that for quite large objects one could
achieve consistency for m and mH. For example, the
mass difference mzz —m is quite small for p, co, J/f(2S),
and X,(2S), which are large objects with (scalar density)
radii of about 1.2 fm. For even larger objects we antici-
pate that m and mH will be almost equal. This feature of
the calculation deserves further study.

We note from Tables I and II that we obtain no split-

TABLE III. Results of calculations including the gluon-exchange potential (see Appendix 0}. The
quark masses are fixed so that the underlined theoretical and experimental masses are equal.

Ps QP

J/g(1S)
J/g(2S)
X,(1S)
X,(2S)
Y{1S)
Y(2S)
Y{3S)
Y{15)
Y{2S)
Y(3S)

0
1

1

0
0
1

1

0
0
0

m {expt}
(MeV)

775
140

3 100
3 685
2 980
3 590
9 460
10025
10355

m (theory)
(MeV)

3 100
3 961
2 980
3 910
9460
10505
11 152
9425
10503
ll 157

mq

{MeV)

619

2299
2299
2299
2299
6037
6037
6037
6037
6037
6037

Haryon-
density
i'adius

{rms)
(fm)

0.781

0.337
0.763
0.310
0.713
0.210
0.419
0.672
0.208
0.415
0.674

Scalar
density
radius
{rms)
(fm)

0.641

0.288
0.741
0.264
0.692
0.200
0.412
0.665
0.199
0.408
0.668
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TABLE IV. Results of calculations including the gluon-exchange potential. (See Appendix 0 for the
definitions of m~ and O'G. ) The quantities g'r and (E~) are defined in Sec. IV for pseudoscslar and
vector mesons.

Meson

Ps 6)

J/P(1S)
J/1((&&)
g, (1S)
X,(2S)
Y(1S)
Y(2S)
Y(3S)
Y(1S)
Y(2S)
Y(3S)

0
1

1

0
0
1

1

1

0
0
0

m (expt)
(MeV)

775

3 685
2 980
3 590
9460
10025
10 355

rn (theory)
(MeV)

775

3 961
2980
3 910
9460
10505
11 152
9425
10503
11 157

(MeV)

2469
2544
2508
6208
6263
6252
6216
6266
6251

g~
(MeV)

362

509
770
533
1264
1023
771
1272
1009
750

306

570
318
768
298
664
442
308
698
454
314

(H )= rnH

(MeV)

708

2 556
3 811
2409
3 736
8 431
9 948
10980
8 388
9937
10874

ting between vector and pseudoscalar states with the same
number of nodes. Therefore, we have investigated the ef-
fects of adding a potential which represents the exchange
of a massless colored vector field. The modification of
our equations required to study such "gluon-exchange ef-
fects" are given in Appendix D, where the additional cou-

pling constant and cutoff required are specified. The re-

sults of this study are given in Tables III and IV. We note
that we now require larger constituent quark masses and
we also find smaller values for the baryon-density and
scalar-density radii. Again we see a discrepancy between
m and mrs. For objects of the same size, however, the
difference between m and mls is essentially the same in
the calculations reported in Tables II and IV, that is, for
those results with and without the gluon-exchange poten-

tial.
Note that the strength of the gluon-exchange force is

fixed such that the mass difference between J/+1S) and

X,(lS) is given correctly (see Table III). Once this
strength is fixed we have the following prediction for
mass splitting in the Y system:

m[Y(lS)]q, —[Y(1S)]q u
—-35 MeV .

The splittings of the Y(2S) are Y(3S) states given in
Table III are quite small and probably not significant,
given the numerical accuracy of our calculation.

In Figs. 2 and 3 we show some typical coordinate-space
wave functions obtained for p, r0, X,(2980), J/f(3100),
Y(1S), Y(2S), and Y(3S) in these calculations. These

3 i8-
4- T(2S)

IO

-IO

i0-

iO

0

FIG. 2. Coordinate-space wave function for the p meson,

g, (2980), and J/+3100). Both upper and lower components
are shown.

FIG. 3. Coordinate-space wave functions obtained here for
Y(1S), Y(2S), and Y(3S). Both upper and lower components
are shown.
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0.5—
T {lS)
T (2S) —A-

T {5S)

Fl(q )

6O )2O
-qs [fm-sj

F80

F&(q~)

-0.5

FIG. 4. The scalar form factor for the ground state of char-
monium [1',(2980}].

0.5-
Ps as)

J/v ".

wave functions are obtained by Fourier transformation of
the momentum-space wave functions [see Eqs. (4.13}and

(4.14)] in the meson rest frame. We may note the de:reas-
ing importance of the lower component as we move to the
description of the more massive mesons.

In Figs. 4—6 we exhibit some typical values for various
form factors: Fq{q ) is obtained in the calculation of the
praperties of X, (2980) and Fi(q ) and F2(q ) are ob-
tained when studying the dynamics of vector mesons.

Finally, we note that the model, extended to include
gluon-exchange effects, leads to quite a strong attraction
in the pion channel of the qq system. Indeed, we were not
able to find a stable solution of our equations when we

studied the pion channel with the gluon-exchange poten-
tial included. (The pion state did move down in energy in

our calculations and the pion became very small, but the
numerical results were not stable. ) It is not clear whether
our formahsm, in its present form, can describe the pion
which is (most likely) the Goldstone boson associated with

the breaking of chiral symmetry.

FIG. 6. Vector form factors„F~(q ) and F2(q ), for states of
the f system.

VI. DISCUSSION

Clearly there are two major limitations of this analysis.
We have nat as yet extended this theory to include a
model of confinement. The secand major limitation is
that we do not have a good model for the structure of the
pion. Clearly, a satisfactory model of pion structure re-

quires some understanding of the breaking of chiral sym-

metry in QCD. Indeed, the effective Lagrangian of Eq.
(1.1) does nat exhibit chiral symmetry. Therefore our
model is based upon the fact that chiral symmetry is bro-
ken and the assumption that we may write an effective
Lagrangian, which does not exhibit chiral symmetry, but
which is useful in the broken-symmetry configuration. If
we were to understand how chiral symmetry is broken we

would, of course, have a better understanding of pion
structure, as noted above.

In a future publication we will extend our analysis to
include a theory of solitons with relative p-wave motion
of the quark and antiquark. We will discuss electromag-
netic decays of mesons, described as nantopological soli-
tons.

F {q2)

F&Cq )

-0.5

~ ~ ~ ~ ~ ~ ~ ~ ~ ~

60 ..-.""'jj0"
l80

- qs [fm-s3
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APPENDIX A: CHARGE CONJUGATION

In the following we use the notation of Bjorken and
Drell. In deriving Eq. (2.6) from Eq. (2.5} and Eq. (2.14}
from Eq. (2.13) we have used the following relations:

FIG. 5. Vector form factors, FI(q } and F2(q }, for the p
meson and for J/+3100}. Cq {0)C '=C pqp, (0), (A1}
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( kst
i
C ' = (ks t—

i ri, ,

C
i p, TMT ) = ( —1)

i p, T M—r ),

(A2)

(A3)

C
~ p, s'A, TM7 }=(—1) r

~ p, s'A, T M—r ) . (A4)

Here C is the charge-conjugation operator and
~

kst) is
the antiquark state. The difference between Eqs. (A3) and
(A4) is due to the fact that the neutral pseudoscalar
mesons and vector inesons are eigenstates of the charge-
conjugation operator with eigenvalues + 1 and —1,
respectively.

APPENDIX 8: NORMALIZATION CONSTRAINTS

We may check our choice of normalization by calculating the charge of a meson with Mr ——+ 1 or —1:

&»&~rlQl», T~r&=~2~&'+r' —&&(&', &M~:e +»"y
—.+

2
qe+&: v ~MT))

ab

=Mr5~, I 5(p' —p) .
T T

(81)

We find

Mr5, =(22r) g f dk (pTMr iq(0) ikst)y —+—(kst iq(0) i pTMr)

—(pTM'
i q(0) i

kst )y —+—(kst
i
q(0)

i
pTM )

6 2
(82)

We evaluate this expression in the frame where p=0 and find

Eq(k) mq
Mr5~ ~ =Mr 5~ ~ J dk [E2(k )+F2(k )] —2E(k )F(k )Mrhfr MrMr (2 )3 mq 2m' k

(83)

and in the case of vector mesons, we have

™T
o I k +R

In Eq. (83) the quantity k'=
~

k'
~

is the momentum of
the meson or of the off-shell quark in the frame where
k=O. We have k'=mklmv, a relation which follows
from evaluating the invariant

1/2
(p.k)

2
—m

m&

(k,s
i q(0)

i p, SA, ) =
' 1/2

l

(2n )

mq

2 k
x tt, (k) A i 1+

mq

in the frame where p=O and in the frame where k=O.
[In the frame where p=O we have p.k =mE~(k), while in
the frame where k=O we have (p.k)=to(p)m~. ] This
analysis is appropriate for the vector-meson normalization
also.

For a pseudoscalar meson and quark of zero isospin we
define

For pseudoscalar mesons we define

R„(k)= 4~
1/2

[E(k')—F(k') ],(2~)' m E, k

(85)

(ks q(0) p) =
[2 ( )]1/2 E (k)

X i7, (k) E—+ y5

1

(2m)

(86)

Rt(k) = — [E(k')+E(k')]4~
(2~)' m E,(k) eq(k)

'

while for vector mesons we have
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kr(k)=

(87)
k[/I(k')+B(k')]

(2~)3 m Eq eq k

eq(k)
R„(k)= — [A (k') —B(k')],

(2ir)3 m Eq(k)

Again we use the normalization condition

(88)

The expression for the form factors and for mH reinain
the same as in the case of mesons of isospin unity.

APPENDIX C: CALCULATION OF FORM FACTORS

In this appendix we discuss the calculation of various form factors. For a pseudoscalar meson we have,

(p', TMT i:q(0)q(0): i p, TMT)

y=f d& [(»',T~ilqN& I

«. &(«
I
q(0&

I
»TMr & (p'&M—T I

q(0& I
«&1«

I
F(0& I », ~Mr &1 (c»

r r

r [4cu(p)er(p')]'/ (2m) (2n ) Eq(k)

+ ~+a~ ~+
m m

=5, 4™
Fs(q ) .

MrMr (2~)3 [4 (p)~(pi)]1/2

We obtain from Eqs. (C3) and (C2),

T 'k
F ( 2)= It EE'+FF' E'F ——EF'

2m " (2qr)3 Eq(k) Pf /Fly Ptl7tf
q

where
1/2 '

P e

—Jg'+ mq

2@iq

Irr+ mq

2m'

(C4)

P' (C5)

with similar expressions for F and F'. (One can understand the appearance of the different arguments in E and F and in
E' and F' by making reference to Fig. 1. We see that E and F parametrize the vertex where the meson has momentum

p =[ro(p),p] and (E',F') parametrize the vertex where the meson has momentum p'= [r0(p') p']. )
For vector mesons the form factors are somewhat more complicated. Using the same procedure as used to obtain Ea.

(C3), we find

( p', SA, 'TMr ~:q(0)q(0):
~ p, SiLTMr) =5MM M r(2r~ )3 [4'�(p )~(p~ )]1 /2

Now if we define

q"=(p' —p)r /2m

and

n "=(p+p')"/2m,

we have

Fi(q')+ 4"4F2(q') (C6)

(C7)

2 2 1 mq fi (8"k)' (q.k)
F1 q

m (2~)3 E (k) 4 2(-2)2 '(q')'dk — + (%"k) (q k)
m (K) m q

1 1

f2+
P71

q.k f3 8"k q.k
-2 + -2+ -2 +5

mqq 2 mq7T mqq
(C9)
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dkm, (p kp
E (k) f4+ z-2

(q k) f)
m if

(C10)

Here the invariant functions f„f2, f3, f&, and fs are
functions of p.k and p' k. They are given as

We obtain the following equations of motion:

p k p k p p
mom mmq m

(A')B+A)B '),
m

—A)A —A)A '

(C 1 1)

(iQ m—q)q(x)= gxq(x)X(x)+gy" q(x)A„'(x),
2

GA„'(x) =gq(x)y" q(x ),
2

(CI+mr )X(x)=—grq(x)q(x) .

(D2)

(D3)

(D4)

f2 —A)B ——B'A —A)A,
mmmm

%e can now introduce the amplitude
(C12)

(k, ,st, a Iq b(0) Ip, TMr&,
—,kgf3 ——A)B ' —BA ' —A iA ',

mm&
(C13)

fs ——BB'. (C15)

Further details concerning calculations of the type report-
ed here may be found in Ref. 1.

I ~ ~ ~ I

fg —AA '———BB' +A 'B P +B'A P, (C14)
m mme

where t) and b are color labels, i is an isospin (fiavor) la-
bel, and a is a Dirac index. We now form matrix ele-
ments of Eq. (D2) between quark and meson states and
use the procedures described in the main text.

We can write, upon using Eq. (D3),

(k,s, t, b
I
A„'(x)

I
k', s', t', b'&

= g(k, s, t, b
I
q(x)y)' q(x) I

k', s', t', b'&
2

APPENDIX D:
SINGLE-GLUON-EXCHANGE POTENTIALS

In this appendix we consider the modification of our
analysis required to include the effects of gluon exchange.
If we add this effect to our model we can fit the observed
splitting of the X,(2980) and Jjg(3100) states of char-
monium, for example. We neglect the self-interaction of
the gluons and consider the following Lagrangian, with

W(g)= q(x)[iq) grX(x—) mq]q—(x)

+-,' [ap(x)a X(x)—m, 'X'(x)]

—gq(x)y)' q(x)A„'(x) ,'FP(x—)E—„'„(x) (Dl)
2

Here a is a color index (a = 1, . . . , 8) and g is a (new) pa-
rameter of the model.

(D5)

(
a

ks)bq(0))" , , q, (0) b', s', b)', '

fG(q2) mq

bb (2~)'

1/2
mq

Eq(k')

' 1/2

X [U(k', s')y"U(k, s ) ] . (D6)

Here fG(q2) is a new cutoff function needed to regulate
the high-momentum behavior of the model.

The analysis of Eq. (D2) then yields

where q =(k —k') . We can also write an expression for
the quark color current taken between on-shell antiquark
states,

(p i)t mq)(k s —t
I
q—(0)

I p. '1M'&= gx Xdp'&k s t
I
q(0)

I

p' ~Mr&& p', ™rI&(0)
I p ™r&

m ' G(q')——', g'& dk
[E (k)E (k')]' (2~)

x(k', s', t
I
q(0) I p, TMr &, (D7)

where we have performed the color-index sums to obtain a factor of ( ——', ).
Once we have obtained the ( ——, ) color factor, there is no need to make further reference to color dynamics, except for

a minor modification of the normalization of the amplitudes noted below.
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1. Pseudoscalar mesons

Again we consider the amplitude (k,s. ,t,a ~ q a,(0)
~ p, TMz ) and write

( k,s, t,a
~ q «(0)

~ p, TMr ) = a«1 1
u(k, s) A+

3 [2co(p)]'~ (2ir)3
)'s

N1
(DS)

This expansion is the same as that used previously except for the (5,«/v 3) factor. This factor appears here because we
need to keep track of the color indices in the extended model which includes "gluon-exchange" effects.

Again, it is useful to develop our equations in the antiquark rest frame where k =0, we obtain
r

R„(p) d 4 y (q ) 1 (} R„(p')

&z(p& i (2r)' [4u(p)a&(p')]'" m„' —p' () —p' p az(p'&
L r

p' k'

dp' fa(q')
(22r)' [co(p)co(p'}]'/2

m, '(~+co'}2
—q (coc(l +m +p'p ) k'p -,.-+ p 'p'k'

meee(k )
p p+

Ãt(p')

The first term on the right-hand side of Eq. (D9) is
identical to that given previously for the case of pseudo-
scalar mesons. The new term in Eq. (D9) corresponds to
an attractive potential since —q &0. The appearance of
the momentum k' in this equation can be understood by
recalling the structure of Eq. (D7}. We see that k' is an
intermediate momentum of the on-shell antiquark in the

frame where k=0. The structure of the second term in

Eq. (D9) follows upon expressing the meson decay ampli-
tude in the frame where the intermediate antiquark has
momentum k=0. In that frame the meson momentum is
p'. We have made a change of variables in Eq. (D9) in or-
der to perform our integration over p' rather than over k
as in Eq. (D7).

2. Vector mesons

We now consider the amplitude

&k,s, t,b Iq.„(0)I p,S
ala«1 mq 1

3 [2co(p)]'~2 Eq k (2ir)'
r r

4k
u(k, s) A, 1+ +f2. A+&

m& Nl Ptl
(X,r e«t );,A

a
(Dlo)

where we have again made the color indices explicit and therefore have included a factor of (1/v 3) on the right-hand

side of Eq. (D10). We again obtain an equation in the antiquark rest frame:

d ' 4 1 1

~t(P } (2') [2co(P)2co(P')]'+ 3 mr 2 q—
r

~i2' Vi2' ~.(p'}
2 2

V 1 V 2 +l(q )+
V 2 V 2 +2(q } g ( I)21 22 21 22

dp' 1 1 fa(q'}
g (2ir)' [co(p)co(p')]' 3 —q

m '(~+co')2 Vii Vi2 ~.(p')

(coco +m +p p ) V2i V22 ~t(p )
(Dl 1}

Again, the first term on the right-hand side has been given previously [see Eq. (3.14}]. Further, V, i', Vi2', V2i', and
V22' were defined in Eqs. (3.15)—(3.18). The new terms, V», Vi2, V2i, and V22 are given by
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V„6=2+——
m

«'p)'
2+ 2+

mq mq m mq

p'k co

mq m

p.k'+
I p I

mq m
(D12)

lp'I E~ +p'k' ~'
m mq mq m

I
p'

I (D13)

I

1+
m

lpl Es

mq

p'k co

mq m

Ee +
mq m m

(D14)

~22 =—6 lpl Ee p'k' ~
m mq mq m

+q OP

mq m

ro'
I pl + p k'

m m mq
(D15)

with ai =to(p) and co'=to(p').
Again, we solve Eq. (Dl 1) by iteration and obtain a co-

variant self-consistent solution. Note that if only the
gluon term were present, Eq. (Dll) would be a linear
equation, which could be solved directly, without any
need for iteration of the solution.

At this point we turn to a specification of the new cut-
off introduced into the formalism. We set

3. The Hamiltonian

The addition of gluon exchange to the model leads to
an additional term in the Hamiltonian:

F,""(x)Fq„(x)
Ha ——f " —F+(x)A p(x) dx . (D17)

fG(q')= —q
2 2 (D16)

with n =6 and A, =30 fm '. We then fixed g by fitting
the splitting of the X,(2980) and J/g(3100) states, and
adjusting the charmed-quark mass so that the mass of the
Jlf(3100) was given correctly. We found g~=6.08 or
a, =g2/4rr=0. 48. The results of these calculations are
presented in Tables III and IV.

As noted in the main text, the gluon-exchange potential
is very attractive in the qq channel with the quantum
numbers of the pion. We were not able to find a stable
solution describing the pion using a value of the quark
mass (ni& ——619 MeV) which led to a satisfactory descrip-
tion of the p and c0 mesons.

A„'(x)=g f D(x x'j)„'(x')d —x',
with

CID(x —x')=5' '(x —x') .

(D18)

(D19)

(We recall that we have dropped all gluon self-interaction
terms in this analysis. }

%'e can write H =Hp+HG where Hp is the Hamiltonian
in the absence of gluon terms. We may obtain the expec-
tation value of HG between states of a meson using the
techniques introduced previously. In performing that cal-
culation, it is useful to eliminate the gluon field A, (x) in
favor of the color current source. Thus we write

We find, with q=(k —k')

( p', TMr
I
Ha I p, TMz )

a. Pseudoscalar mesons

2
= (2n. )'5(p —p') f dkdk'

2 ( —q')' (2~)'

' 1/2
mq

Eq(k')

' 1/2

fa(q')

y(2) g & p, TMz I q(0)
I
k,s, t)y"u(k', s')y„u(k, s)(k', s', t

I
q(0)

I p, TM&)
gs't

2 m2
M&ht& 3ni (2 )6 Eq k Eq k q

(D20)

=8~ ~ @p—p'~o

EE
k.k'

mq

2E E'
+ EI"

mq mq

—2Eq Eq 2EqEqq + q +++ q

mq mq mq

(D21)

(D22)
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where E'=E(p k') and E=E(p k), etc. Further, E=E(mk /ms) and E'=E(mk'lms). The factors of 2 in Eqs. (D21)
and (D22} are included since there is a similar contribution from the quark intermediate states which are not written ex-

plicitly. The quantity I'g is given in Table IV for the various pseudoscalar mesons considered here .

In this case we find

& p', SA,'TMr
I Hg I p,SATM, 7 }

b. Vector mesons

2 2 2( 0)2 2

=(2n )'5(p —p') g f 1kdk'
2 4

—8

(2) gq

' 1f2

g &p', SX'rM,'I q(0) I k, s, t&

x y~u(k', s')y„u(k, s ) & k', s', t
I q(0) I

p~~~T'Mr & (D23)

1 16=5(p —p')5~ ~, 5~ ~ J k'~dk J ksdkd(k k') fg(q2)

x (488' —AA ')kk'k k'

1 — (k.k')2
A A

t

+ —1 (8+8) A
' —8'

m&

—1 (A '+8') A —8
mq

+3 A —8
m~

A' —8'
mq

(D24)

=5st,M,4x 5(p —p') I'g .

The quantity g('g is given in Table IV for the various vector mesons studied in this work.
In Table IV, the quantity mH is given by

mH 2( m —
&
——Eq ) )+8'r+ 8'g

for pseudoscalar mesons, and by

mH ——2(m —
& Eq ) ) + 5'r+ I'g

(D25)

(D27}

for vector mesons.
%'e remark that the gluon-exchange potential is attractive for both pseudoscalar and vector mesons. It is somewhat

more attractive for pseudoscalar states, leading to the mass splitting of 0 and 1 states with the same number of nodes,
as shown in Table III.
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