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The magnetic moment pq of a baryon 8 with quark content ( aab} is written as

p~ ——4e, (1+S~)eA/2eMq, where e, is the charge of the quark of flavor type a. The experimental
values of 5s have a simple pattern and have a natural explanation within QCD. Using the ratio
method, the QCD sum rules are analyzed and the values of Ss are computed. We find good agree-

ment with data ( = 10%) for the nucleons and the X multiplet while for the cascade the agreement is
not as good. In our analysis we have incorporated additional terms in the operator-product expan-
sion as compared to previous authors. We also clarify some points of disagreement between the pre-
vious authors. External-field-induced correlations describing the magnetic properties of the vacuum
are estimated from the baryon magnetic-moment sum rules themselves as well as by independent

spectral representations and the results are contrasted.

I. INTRODUCTION 8
p,x+ ——T(1+5x+)

2cMg
(1.2)

To explain the experimental value of the magnetic mo-
ment of the proton and neutron has been a long-standing
challenge to theorists. Theoretical explanations in the re-
cent past have ranged from attributing it to the magnetic
moments of the constituent quarks or to the virtual pion
cloud, or to a combination of both. I.ipkin' and Brown
and Myhrer have emphasized that a consistent picture of
the composite nature of the nucleons and the hyperons
should simultaneously explain their magnetic moments.
Since QCD is the underlying theory of hadrons, it is the
natural starting point for a first-principles calculation.
Indeed, using the sum-rule method, Ioffe and Smilga, '

and, independently, Balitsky and Yung have determined
the magnetic moments of the nucleons and hyperons. A
perusal of their work shows several points of agreement as
well as disagreement. The purpose of the present work is
to clarify some of the issues involved and make some ad-
ditional contributions which strengthen the whole frame-
work of the QCD sum-rule approach to this problem.

The experimental value of the proton magnetic mo-
ment is 2.793 nuclear magnetons and has at first sight no
natural explanation. We shall show that from the point of
view of QCD it is natural to regard this number as

sphere 5&
——0.0473 is a small calculable correction. Simi-

larly, the hyperon magnetic moments, whose experimental
values appear to be a melange of arbitrary numbers, as-
sume a neat pattern when viewed in a similar fashion. For
example, writing

lsx
————', (1+5x )

x
(1.3)

the experimental values ' of 5 + and 5x correspond to

5x+ ——0.13+0.01,

5x ——0.06+0.04 .

(1.4)

The experimental values' of six members of the
( —,

' )+ baryon octet which are made from quarks of two

flavors only, i.e., of the type (aab), are summarized in
Table I. Values are given in units of (i) nuclear magne-
tons, (ii) the particle s own natural magneton, and (iii) in
terms of 1+5it where 1+5~ is obtained from (ii) by
multiplying by 1/4ee where ee is the charge of the quarks
of flavor a which occurs twice in the baryon. For the
present paper, quark charges ee's will be given in units of
the electronic charge. To be more specific, for p and X+
the quark structure is uud and uus, respectively, and thus
we multiply column (ii) by 1/4e„= —', . For all the rest,
the n, X, :",and:-o, the doubly occurring quark is ei-

ther d or s and in either case one multiplies by

1/4', ————,'. We shall see in Sec. II that from the point
of view of QCD these factors arise naturally. Notice that
most of the 5's are sma11 so that 1 + 5 is close to unity.

In Ref. 3 the magnetic inoments of the nucleons are
determined by evaluating the baryon current correlation
functions in an external magnetic field. There are, in
principle, three sum rules for the magnetic moment: one
at the odd chiral structure I'""(Ito„„+o&~), where

p =@&yI', and the other two at the even chiral structures
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TABI.E I. Experimental values of baryon octet magnetic moments. Also tabulated are the baryon
masses, the effective-pole positions, and the fiducial regions over which the sum rules will be fitted.

Baryon e6/2M~ c

+ 2.793
—1.913
+ 2.379
—1.12
—0.69
—1.25

sf' j2M&e

+ 2.793
—1.913
+ 3.012
—1.42
—0.97
—1.76

1.047
1.435
1.129
1.063
0.73
1.32

0.94

1.19

1.32

2.3

4, 1

Region

0.9 &M~ & 1.2

1.2 &M'& 1.6

1.6&M'&2.0

F""(p„y„p„y„—)P and F""o'„„.
The F "(per„„+o&@)sum rule, after a trivial normali-

zation, has a close resemblance to the mass sum rule de-
rived by Belyaev and Ioffe' at the odd chiral structure P.
In particular, the leading terms are identical which re-
sults, of course, from the fact that electromagnetism con-
serves the helicity of the interacting quark. This
correspondence enables us to write

s pp =(1+5p) (1 6)

in units of the nuclear magneton, el'/2cM~, and to calcu-
late 5p.

In Sec. III we analyze the sum rule by a procedure
which is different from either Refs. 3 or 5. In particular
we exploit the close similarity between the magnetic mo-
ment sum rule and the mass sum rule and use the ratio of
the sum rules to determine the magnetic moments. Struc-
tures identical to Eq. (1.6) will emerge naturally in our ap-
proach enabling us to compute the various 5's. Our pro-
cedure has the advantage that it does not require an expli-
cit knowledge of the coupling strength P~ of the nucleon
current to the one-nucleon state. In our analysis we have
incorporated additional terms such as g, G"pG" ~F&„
and qg, o"GqF&„ in the operator-product expansion
(OPE). The external-field-induced correlations like
(qo„~), (qG„„q), and d'~(qy5G~q) are estimated
via the magnetic-moment sum rules themselves and in
Appendix A we have reanalyzed the sum rules using the
procedure of Ioffe and Smilga ' to eliminate these
external-field-induced vacuum correlations. In addition
we have, in Appendix 8, extended previous works '" and
computed them using spectral representations.

—M /M=p &2e " +e.s.c. (2.3)

The structure at 1

aM L —
2

—iv„'/m'
4

+ ' ' ' =pN M~e +e.s,c. , (2.4)

where e.s.c. is an abbreviation for excited-state contribu-
tions. Here and in the following

a = —(2~)'(qq ),
b (g 2G&~naP)

am '= (2n)'(qg, —rr Gq),

a.=g. /42

z, =»(M'/A«D2)/ln(~'/A«D2),

P~2 {2n) Agg
——/4, .

where A,~ is defined by

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

terms of physical hadron states, viz. , the proton and its
excited states which have the same quantum numbers
apart from parity. The nonperturbative character of the
QCD vacuum is incorporated by the fact that operators
like qq, g, G"pG" ~, . . . have nonzero vacuum expecta-
tion values (qq), (g, G "pG" ~), . . .. After a Borel
transformation to the variable M, the sum rules read, '

for the structure at P,

M bM 1 2 4/9 ™06 2 2 2

8L 4/9 32L 4/9 6 P4~2
+ +—a L

II. MASS AND MAGNETIC-MOMENT SUM RULES

The nucleon mass was computed by Ioffe' by writing
sum rules for the current correlation function

(0 ( i)(0)
~ p, o ) =A ~u (p, cr ) .

The nucleon spinor normalizat1on is given by

u(p, o)u(p, o)=2M~ .

(2.11)

II(p )=i I d x e'p'(TIi)(x), T)(0)I ), (2.1)

where the current i)(x) with quantum numbers of the pro-
ton is taken to be

ri(x) = [u'( )Cyx„{xu)]y"y5d'(x)e,b, , (2.2)

where a,b, c are the color indices and u (x) and d(x) are
the up- and down-quark fields. The sum rules are ob-
tained on the one hand by computing II(p ) for large p
using the OPE, and on the other hand by expressing it as
a dlspels1on integral with the absorptive part computed 1Il

The chiral-symmetry-breaking correlation a is taken to be
0.45 GeV, the gluon-field value is to be 0.5 GeV and
mo -0.8 GeV in the following. ' ' The renormalization
scale p is taken to be 500 MeV and AQCD is the QCD
scale parameter taken to be 100 MeV.

The sum rules for the magnetic moment were derived
in Ref. 3 by considering the propagation in the presence
of a constant external electromagnetic field

(2.12)

and picking out the terins in II(p ) that are linear in F"".
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In the presence of the external field, not only are there
correlations which are Lorentz-invariant scalars, as in Eq.
(2.5)—(2.7), but also new external-field-induced expecta-
tion values

& qop~ &
=eqeXFp„& qq &,

& qg Gp q &
=eqexFp '& qq &,

& qe,~g.G~rsq & =ie,eg+„.&qq &,

(2.13}

(2.14)

enter the problem. Recall e~ denotes the quark charge in
units of the electric charge e. The susceptibilities X, x,
and g are a priori unknown and can be of arbitrary
strength. Following Refs. 3 and 5, the sum rules can be
written at (Po„„+o„~) as

~4 g21 4/9

SI.'" 72m' [—(2e„+3')+e„(a.—2g) j

e gQ pfto
M —— + (e„+—,

'
eq)12~21 4/27 81 4/9 48I 4/9 " 4

13M Pp, M~2/M i—2

z
+A' e " +e.s.c. , (2.16)

M

at V,r. J.y,)i-as

ed& 2 b aM + +—(e„+—,eg) 1—
241 16/27 24~2 8

7?l o
2

4m'I. '/'

z
+&' e " +e.s.c. , (2.17}

4M'

and at o&„as

e~M Xa +~2 e~+ e„— (1+4&—2()
481 16/27

At first sight, the sum rules involve several unknown
coefficients aside from the fact that one must use some
approximation to include the excited-state contributions
in the right-hand side, and it seems hardly possible to ex-
tract the quantity of interest, namely, pp. However, let us
proceed to multiply Eq. (2.16) by Mi/e„and write it in
the form

M bM 7 aL
8L~r9 + 48L~r9 8 72Mr

gg 2
halo

12~2L 4/27 81 4/9

=P~ ( ', pp+A—M )e " +e.s.c. , (2.19)

using the experimental value pp =2.793 one finds

—,pp =1.0475=(1+5p) . (2.20)

It is now seen that Eq. (2.19) bears a close resemblance
to the mass sum rule Eq. (2.3). Viewed in this light, the
problem of determining the magnetic moment is striking-
ly close to the problem of determining the axial-vector re-
normalization constant' Gz. In the latter problem a sum
rule similar to Eq. (2.19) appears with G„ taking the role
of the coefficient —', pp in the nucleon term and of course
both Gz and —,pz are close to unity.

On the other hand, the even chiral sum rules, Eqs.
(2.17) and (2.18), bear no resemblance to the mass sum
rule Eq. (2.4). Notice, in particular, in Eqs. (2.17) and
(2.18} the leading term arises from interaction of the soft
quark with the external field. Therefore most of our dis-
cussion will be an analysis of Eq. (2.19).

The sum rules for other baryons n, X+, X, :-,and
can be easily obtained from the corresponding currents

eumo
2

+ "
ln

48m2L 4»

P'p Pp, Mgi/M i—
~2 2~2

(2.18)

rI, (x)= (d'Cy„db)y"ysu'e, i

rix+(x) =(u'Cy„u )y"yss'e, b, ,

rex (x) =(d'Crud")yi'yss'e, i

(x)= (s'Cy„s')ypy, u'~.

rI~(x) =(s'Cy„s~)y"ysd'e, & .

(2.21)

(2.22}

(2.23)

(2.24)

(2.25)

Here pp and Lup refer to the total and anomalous mag-
netic moments of the proton in units of eh'/2cM&. No-
tice that in the right-hand side (RHS) the so-called
single-pole terms A' and 8' appear. These are associated
with the fact that in the presence of the external field, for
example, the proton created by the current q(x) can make
a transition to an excited state induecxi by the external
field I'"" before being annihilated by q(0). These are of
course, a priori, of unknown strengths.

In the sum rule (2.16}we have, in addition to the terms
computed in Refs. 3 and 5, also included the contribution
from the oPerator g, G~isG" ~I'P". The calculation of
this coefficient is straightforward and in the interest of
brevity we omit the details. In the sum rule (2.17), we
have incorporated the contribution of the operator
[qcr~~G~p(A, "/2)q]F"" Our calculation . agrees with Ioffe
and Smilga but disagrees with Balitsky and Yung.

m, = 150 MeV, f= &ss & /& uu & =0.8 (2.26)

throughout our analysis. The susceptibilities X, z, and g
introduced in Eqs. (2.13)—(2.15) could, in principle, be
different for the strange quark as compared to the up or
down quarks. We shall use the notation X„~„and g, to
denote these susceptibilities.

The derivation of the sum rules is straightforward and
they are listed below with the substitutions e„= 3,
e~ ——e, = ——,':

For the hyperons we must also take into account the
mass of the strange quark and the difference in the chiral
condensate of the strange quark as compared to that of
the up or down quarks. Following Ioffe and his collabora-
tors'" we take
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M bM 7 aL/
SL, '" 192L'"

point of view it is appropriate to express all magnetic mo-
ments in terms of a standard unit, viz. , the nuclear mag-
neton eiii/2cM~. We also give the corresponding mass
sum rules taken from Bdyaev and Ioffe' '

gg '

2
P2l O

8I 4/9

=P,v e " [(1+5&)+AM ]+e s c. ., . (2.27)

a2L, 4/9 ~'~0'
8I.'" 32L.'" 6 24m'

+ +
—M~ 2/M=P ~ e +e.s.c. , (2.33)

4/9 + 4/ (2)+ [4+(K 2(')]
192L.'"
x"

12I 4/27 8I 4/9

—M ~/M~
=p~ e

~N ™[(1+5„)+AM ]+e.s.c. , (2.28)
=Pz e +e.s.c. , (2.34)

a~L4» a'm p' afm M'

8L / 32L / {) 24~2 4L 4/9

afm4mp

24

M6 g~2 7 2I 4/9

SL4/9+192L4/9 2
+

72 [ +(. ~)]

ga 2 mp

12L 4/27 81 4/9

r

msaf mp2

=Pz e * [(1+5z+)+&M']+e.s.c. , (2.29)

bM' a'L4/9

8L 192L

gg2 2 mo

12L 4/27 SJ 4/9

m, af mp'

8 61 4/9M +

—M ~/M~
=Pz e * [(1+5z )+AM ]+e.s.c. , (2.30)

g 2L 4/9

8L / 1921. /4/9 + 4/9 (5)+ [ 5+(K 2)4 }]
r

+
12L 4/27

M— m4 af
+

—M-2/M2
=P = e = [(1+5 )+AM ]+e.s.c. , (2.31)

the natural unit in which the magnetic moment term ap-
pears is eiii/2cMe, although from an experimentalist's

SI.'" 192I.'» 72„,+ „,(2)+ [4+(~,—2g, )]

Ega i mp m4af mp
4/27 4/9 +

8 4/912L 8L 6L
—M-2/M2=P = e = [(1+5=)+AM ]+e.s.c. (2.32}

It is worth emphasizing the fact that when the ground
state baryon pole term is computed from the term

M bM afL/
8L 4/9 321 4/9

a 2f2mp2 afm, m p

24M
'

24
—M-2/M2=P = e = +e.s.c. (2.35)

III. ANALYSIS OF THE SUM RULES

egX[Eq. (2. 16) for proton]

—e„X[Eq.(2.16) for neutron],

eqX[Eq. (2.17) for proton]

—e„X[Eq. (2. 17) for neutron]

are i~dependent of X and ~—2('. Needless to say, this
procedure weakens the M range of validity of the sum
rules while having the merit of eliminating the unknown
susceptibihties X and ~—2$. The analysis of the sum

It is useful to begin by recapitulating that for any par-
ticular baryon, say the proton, the three sum rules, Eqs.
(2.16)—(2.18), do not have the same range of validity in
the Borel variable M . As pointed out by Ioffe and Smil-

ga, the sum rule at the odd chiral structure (Pcr&„+o'&~ ),
Eq. (2.16), is the most reliable since more terms in the
OPE, viz. , from dimension-2 to dimension-S operators,
appear in the left-hand side while at the even structures,
Eqs. (2.17) and (2.18), one has incorporated only from
dimension-3 to dimension-7 operators. Further the sum
rule (2.18) suffers from the fact that at dimension 7 there
are operators whose vacuum expectation value cannot be
estimated by the factorization hypothesis due to the ap-
pearance of infrared singularities. Omission of these in
Eq. (2.18) further reduces the reliability of this sum rule.

To be able to use Eqs. (2.16) and (2.17) we need to know
the susceptibilities X and a.—2$. However, because of the
assumption that the external-fiel¹induced vacuum expec-
tation values are proportional to the corresponding ~nark
charges [cf. Eqs. (2.13)—(2.15)], Ioffe and Smilga ob-
served that the sum rules for the proton and neutron have
the remarkable property, that the linear combinations
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rules following this procedure, with the inclusion of addi-

tional terms in the OPE, is given in Appendix A.
As remarked above the sum rule Eq. (2.19) is expected

to be more accurate than the even chiral sum rule Eq.
(2.17). In this section we shall focus our analysis on the

proton and therefore use only Eq. (2.27). Consider the

proton magnetic moment sum rule (2.27) and assume to
begin with that the susceptibilities X and ~—2$ are given
at the outset. Let us compare it with the mass sum rule at
the structure P of Eq. (2.33). Using the narrow resonance
approximation for the excited states (only to make the dis-
cussion below clearer) we can write

8L'" 192L'"
PPl o

8L 4/9

—M 2/M2
=PN e " [(1+5p)+ApM ]+g P; e ' (1+5;+A;M ), (2.27')

i~%

M' bM2 a'I. '/'

8L, '" 32I.'/'
~ ~O — —M, '/M2

24M i+%
(2.33')

It is seen that the leading asymptotic terms in the I.HS of these two equations are identical. Since the OPE is the
more accurate the larger is the value of M, it is useful to ask how the same asymptotic term M /8L "/ is reproduced by
the excited-state contributions to the two right-hand sides of Eqs. (2.27') and (2.33'). Since the spectral density of states
and the positive definite coupling strengths P; are the same in the two sum rules it is reasonable to assume that for the
excited states 5; and A; ~0 rapidly with increasing mass of those states. I.et us therefore introduce the ratio function of
the left-hand sides in Eqs. (2.27') and (2.33'):

r

R(M )= M bM aL/ ~~o
8L 4/9 32L 4/9 6 P4~ 2

M6 bM2 7 g2L4/9

8L 192L
[——,

' + (a.—28')

l 2L 4/27

Plo 2

8L 4/9 (3.1)

Computing the ratio in terms of physical intermediate states we can write

OO

(I+5i((+Ai((M )+ g (1+5;+A;M )e

R(M )
i RHs=

P i —(M;2 —~~2)/Mi
1+ e

i~i(( 0 iv

(3.2)

R(M )
I R Hs(1+5s+AaM )+R, ,

where

(3.3)

Z+ZgM
5

—(1+5p+ApM ) (3.4)

Here we denote

Equation (3.2) can be rewritten as the sum of the ground-
state contribution to the numerator function pius
remainder R„i.e.,

Consider the factor (Z+ZzM )/5 in Eq. (3 4). If our
assumption that 5; and A;~0 for high-mass states is
correct, then we expect this factor to be a smoothly vary-
ing function of M and stay close to unity. For large M
the continuum contribution dominates the right-hand
side. By looking at the large-M behavior of the left-hand
side we see that S grows like M6. Taking into account
the general structure of S in Eq. (3.5) and the asymptotic
behavior of S we assume an effective-pole parametrization
for the ratio

and

0 i (hl; Mi ii
2 )(/Mi—

8
Pp/

Z=g (1 5)
i+p P pi

p 2

Z„=g ' Ae
i~p 0 iv

—(M;2 —M~2) /M2

(3.6)

(3.7)

S —(8 '—M„')/M'

1+5 (3.8)

Notice that as M becomes large, both sides approach un-
ity from below. W is the position of the effective pole.
We recall Belyaev and Ioffe' have introduced a cutoff pa-
rameter which serves as the dividing line separating the
ground-state contribution from the continuum contribu-
tion. Since as it turns out that our final results are not too
sensitive to the precise value of W, for definiteness we
identify W'here to be their cutoff value.
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Combining these points, we are led to our ansatz form
for R,

R, =e " [p+cr(W —M~ +M )], (3.9}

where p and o. are parameters to be determined. %ith this
we can write Eq. (3.3)

R(M )
i RHs= 1+5&+A&M

+[p+cr(W M~—+M )]e

(3.10)

If our ansatz for the effective contribution Eq. (3.10) is
good, then we expect the right-hand side and the left-hand
side to match over a large region of M, for M2&M~2.
In fact, if the two sides matched asymptotically then

(&)
I I I I I I I

0 2 4 6 8 10 12 14 16

Iterations

1+5q+p= 1 . (3.11)

(3.12)0+Ap ——0 .
To find the constants p and 0 we proceed as follows. We
fix cr at an initial value, for example, zero, and start with
an arbitrary value of p and compute

8' —M~

M
=F(M ) . (3.13)R(M ) —pexp

The function F(M ) is fitted by

F(M )=y+5M

in the fiducial region

0.9&M &1.2 GeV

(3.14)

(3.15)

If the fitted value y does not satisfy the condition

y = 1+5&——1 —p, then a new value p'=(y+p)/2 is
chosen. Next the left-hand side of Eq. (3.13) is reevaluat-
ed and a new fitted value, y' is obtained. This process is
iterated. After the ith iteration, the acquired value for p
is given by

p;+i =(/;+p;)/2 . (3.16)

The convergence of this iteration for the quantity
1+5&——1 —p, is shown in Fig. 1(a}. We note the following
points. The iteration in p converges rapidly, and more
importantly the final value of p is independent of its ini-
tial value.

We have also tried to satisfy Eq. (3.12) by iterating o.
However, a small nonzero value of A+o persists. It
seems proper to us to choose o =0 and let the constraint
of Eq. (3.12) be mildly violated in the large-M region.
Figure 1(b) shows the match between the function R(M )

and our ansatz Eq (3.10). I.t is seen that our failure to
match Eq. (3.12) has little effect in the mass region of in-
terest, Eq. (3.15). It is, of course, unreasonable to expect a
fit over the entire M region. Therefore, we take our final
value of p& to be the limit to which p converges. Our re-
sults are displayed in Table II.

It is straightforward to extend these calculations to the
hyperons. The fiducial regions we have chosen in each
case is given in the last column of Table I. As remarked

0.0 0.5 1.0 1.5 2.0 2.5 5.0
M (GeV )

FIG. 1. (a) The convergence of the iterative solution for 5 for
two different initial guesses. (1) The matching of the left- and
right-hand sides. The solid curve is the left-hand ratio while the
dashed line is the fitted linear function. The vertical dashed
lines indicate the fiducial region in which the fitting is made.

T ' 2 1/2
pe(expt) —pe(theor)

pa(expt)
(3.17)

The resulting Q', a.—2$) pair will be called the best fit to
data. The second method is the least-7 criterion. %e

earlier, the value of m, is taken to be 150 MeV and

f=0.8.
It is clear from the above discussion that given the

values of the susceptibilities g and a.—2g, the sum rules
yield a corresponding set of values for the six baryon
magnetic moments. Although the values of X and x —2$
can, in principle, be determined by an independent calcu-
lation using once again a new set of spectral sum rules (cf.
Appendix 8 for details), we have preferred to treat them
as free parameters and searched for the "best values" us-
ing the criteria explained below.

The two criteria we use to determine the solution pair
(X,a —2$) are called, respectively, data fitting and X fit-
ting. In the former we merely ask if it is possible to fit
the existing data. That is, we try to find the minimum of
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TABLE II. Numerical results for the baryon octet magnetic moments for various susceptibility solu-

tion pairs. The magnetic moments are in terms of the nuclear magneton.

Type

x'
best fit

VDM 1 pole
VDM 2 poles

Experiment

—1.95
—1.28
—3.3
—4.5

s.—2g

5.73
8.93
1.1
2.0

2.78
2.96
2.72
3.55
2.793

—1.68
—1.77
—1.65
—2.06
—1.913

2.43
2.45
2.52
3.30
2.379

—1.08
—1.09
—1.13
—1.38
—1.12

—0.85
—0.84
—0.89
—0.98
—0.69

—1.15
—1.14
—1.18
—1.27
—1.25

demand that the LHS and RHS ratio functions minimize

the XF' parameter defined as

g [R(Mi}—RRHs(M')]ii[8(M~) V l,g,
particles points

J l

(3.18)

where R(Mz) and RRHs(Mi} are as defined in Eqs. (3.1}

and (3.2) and the sum over points i means sum over a

sample of points within the fiducial region and measure

the deviation of the LHS from the RHS. This method

then predicts both the solution pair (X,a —2() and the

magnetic moments by requiring that XF be minimized.

To find the solution pairs (X,a —2g), we numerically

search the X—tr —2( plane for the minimum of either Eq.
(3.17) or Eq. (3.18) and successively refine the grid on

which we search until we have isolated the minimum to a

desired degree of accuracy. We note that it is possible to
exactly fit a single baryon's magnetic moment by varying

X and lr —2(. We have chosen to exactly fit the proton

magnetic moment and then mininuze its corresponding
XF2. The solution pairs for the proton as well as the two

methods outlined above are plotted in Fig. 2. Also plotted

are values given by Ioffe and Smilgas as well as values ob-

tained by various model calculations. (See Appendix B.)
The band we have put around our values is meant to

imply a region in which to look for solution pairs. Its ex-
istence is obvious if one notes that in each sum rule for
the various baryons the factor

6X
a —2$, M

L

Pl 0
2

8L,'" (3.19)

appears. If one ignores the M dependence for a moment
and just take M = 1 GeV then this factor is just

a —2g —const XX . (3.20)

Obviously there is some value of this constant which will

best fit the sum rules in any one of the schemes given
above. Thus, we see that X and a.—2g are (approximately)
linearly related with a negative slope and this is the origin
of the band drawn on Fig. 2.

It would perhaps be more satisfying if X and v —2(
were determined "from the outside, " for then the sum
rules would make a prediction for the magnetic moments
without qualifications. Such calculations are possible,

again based on a new set of sum rules, and the use of vec-
tor dominance to saturate them. Balitsky and Yung' used
a one-pie approximation to predict a value of X= —3.3
GeV . Belyaev and Kogan" used a two-pole approxi-
mation to obtain a value of X=—5.7 GeV which seems
to be in rough agreement with the value favored by Ioffe
and Smilga of X= —8.0 GeV as giving best agreement
with their method of analyzing the sum rules. We have
followed these ideas and have calculated X, a, and g in a
similar manner in Appendix B. The values obtained,
X= —4.5 GeV and ~ —2/=2. 0 do not lead to values of
p, s in agreement with data (cf. Table II). It is curious that
the values of X and a —2( obtained by one-pole approxi-
mation yield p, it close to experiment and consequently are
close to our values as well.

In Table II all the solutions presented are for X, =X,
z, =a, and g, =g. Notice here our numerical solutions for
the cascade magnetic moments are not in as good agree-
ment with the data as for the other baryons. In our nu-
merical analysis we have also varied the strange-quark

12

&0-

e.EIFD

8 —,

LCS

4—
'. VDM: 2 POLE

2—
VDM: DIPOLE g

0
0 1 2 5 4 5 6

FIG. 2. This plot shows the various solution pairs (X,a.—2g}
obtained from various criteria. BFD stands for "best fit to
data, " LCS stands for "least chi square, " P indicates the best g
fit for the proton and the other two points are the results of
model calculations using the vector-dominance model (VDM) in
a one- and two-pole approximation.
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FIG. 3. (a) Convergence of iterations for the neutron for two
initial values. (b) The fit of the sum rule. The solid curve is the
left-hand ratio function and the dashed line is the fitted linear
function. Vertical dashed lines indicate the fiducial region.

FIG. 4. (a) Convergence of iterations for the X+ for two ini-
tial values. (b) The fit of the sum rule. The solid curve is the
left-hand ratio function and the dashed line is the fitted linear
function, Vertical dashed lines indicate the fiducial region.

IV. DISCUSSION

We have shown that from the point of view of QCD it
is natural to study the baryon magnetic moments in terms
of 5~ defined through the equation

equi

pg ——4e, (1+5' )
2@M~

(4.1)

sllsceptlbllltles by wrltlilg I& =pX, K =pK, aild
In the context of the one-pole approximation of the
vector-dominance model, P is given by mz /m~ although
the situation is more complicated in two-pole approxima-
tion. We have also considered the possibility where P is
less than unity. This extra freedom, however, does not
lessen the cascade discrepancy.

For completeness, the illustration for the iteration of p
and the matching of the RHS and LHS of the sum rule
for n, X+, X, :-, and:-0 for the best fit to data solu-
tion are presented in Figs. 3, 4, 5, 6, and 7, respectively.
As in Fig. 1, again one finds a rapid convergence of the
iteration and the matching of the two sides of the sum
rules is good even beyond the fiducial region indicating
the relative insensitivity to the fiducial regions chosen.

This is to be contrasted with historical approaches which
regard for example the entire neutron magnetic moment
as anomalous or the nonrelativistic quark-model ap-
proaches. While the latter does take into account the
baryon substructure it is to be borne in mind that a non-
relativistic potential model description of up and down
quarks remains somewhat ad hoc with the introduction of
constituent-quark masses. The @CD sum-rule approach
stays close to the basic premises of the theory and in-
volves no arbitrary assumptions. The sum-rule approach
has its own limitations, viz. , the need to have an approxi-
mate expression for the sum over the excited-state contri-
butions. Further with hyperons we must contend with the
definition of the fiducial region over which the LHS and
RHS of the sum rules are to be matched. We have chosen
this region to be centered around the mass of the hyperon
in question.

We have for the most part used only the sum rules at
the odd chiral structure [Eqs. (2.27) and (2.33)] basically
because these, by virtue of incorporating more terms in
the OPE, are expected to be more accurate. The similari-
ty between the sum rules Eqs. (2.27) and (2.33) is traced to
the fact that electromagnetism respects chirality of the
quarks and accounts for the partly kinematical origin of
the structure Eq. (4.1). It is useful to note that the quali-
tative nature of the pattern of 5z which is largest for n
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FIG. 5. Convergence of iterations for the X for two initial
values. (b) The fit of the sum rule. The solid curve is the left-
hand ratio function and the dashed line is the fitted linear func-
tion. Vertical dashed lines indicate the fiducia1 region.

FIG. 6. (a) Convergence of iterations for the " for two ini-
tial values. (b} The fit of the sum rule. The solid curve is the
left-hand ratio function and the dashed line is the fitted linear
function. Vertica1 dashed lines indicate the fiducial region.

(with the singly occurring quarks having the large
charge} is already apparent in the non-leading terms in the
LHS of these sum rules, Eqs. (2.28) and (2.32). We have
used the ratio method to compute the various 5s. Our
procedure has the advantage that the value of the cou-
pling strengths ps is not needed to determine 5s. Our ap-
proximation to the continuum contribution in the ratio
function R (M ) is different from that of Ioffe and Smil-
ga. ' We wish to stress that our iteration procedure for
determining 5ii is independent of the initial value at the
start of the iteration and our ansatz Eq. (3.10) fits R(M )

not only over the fiducial region but over a wider range of
M as well. We have checked that the output values of
5ii are only mildly sensitive to variations in the value of
W', the effective mass used for approximating the excited
state contributions.

The susceptibilities X and ~—2( which determine the
magnetic properties of the QCD vacuum have been
evaluated by two independent methods. In one, we have
looked for the best fit to experimental values of pz and in
the other by requiring the best fit for the sum rules. The
two methods yield results in reasonable agreement with
each other as well as with experiment. Our results for the
cascade magnetic moments are not as good as for other
baryons. In this connection it is worth recalling that the
mass sum rules do not work as well' ' for cascade as

they do for the nucleon.
We have not computed the A magnetic moment in this

paper. It offers no conceptual difficulty; however, since
all its three quarks are dissimilar it is algebraically more
complicated. The X-A transition moment offers an addi-
tional level of complexity due to X,A mass splitting. We
hope to return to these questions elsewhere.
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APPENDIX A MAGNETIC MOMENTS
BY IOFFE AND SMILOA METHOD

In this appendix we repeat the determination of the
magnetic moments of the baryons based on essentially the
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Similarly, one may obtain susceptibility independent
combinations for the hyperons. One must include the ef-
fects of the nonzero mass of the strange quark in the sum
rule at the structure (p&y„—p„y„)p. One obtains the fol-
lowing pairs of sum rules:

eMx /M

6Px 8L
—

2
/L 4» &x++2~x-

CO
1 I I 1 I I I

0 2 4 6 8 10 12 14 16

Iterations /M2X
—Mx af M2-

2P 2

Pal O
2

4I. '/'

+const )&M, (A3)

4 rn, g
+— +m M'E (M')L-'»

= —2+pz+ —pz +constxM2,

M 2/M2
e

a f L +—6m afMiLbM

6p 2 8L 4/9

(A4)

( j
I 1

0.0 0.5 1.0 1.5 2.0 2.5 5,0

M (GeV )

b

FIG. 7. (a) Convergence of iterations for the " for two ini-
tial values. (b) The fit of the sum rule. The solid curve is the
left-hand ratio function and the dashed line is the fitted linear
function. Vertical dashed lines indicate the fiducial region.

=(e~ e„p„)+M (edAp——egA„) . (Al)

For the (p&y„—p„y&)P structure, a similar approach leads
to

2aM~ mo

4I 4/9

=(e„p ' ed@„)+M (e„Bp+e—dB„), (A2)

where p& is the anamolous magnetic moment of the pro-
ton with pp ——pp+ l.

approach of Ioffe and Smilga. ' As remarked earlier in
the text we have incorporated in Eq. (2.16) and (2.17) ad-
ditional terms in the LHS for the OPE and we have also
taken into account the anomalous dimensions. First we
briefly outline the method.

For the (P o„„+cJ&~)structure, taking the linear com-
bination of the sum rule Eq. (2.16) and an analogous one
for the neutron, i.e., exchanging subscripts u~, and di-

—M 2/M2
viding both sides by a factor prize

" oneobtajns

1 2 4» bM M~ IM22

=p —p, ,+const && M', (A5)

M-„2/M2

M=aM-
2P 2

Pl 0
2

41 4/9

m, af
9M

=2+2p +@~+const XM', (A6)

where we have used p + ——p'++ 1, px ——px —1, etc.
The function Eo(M ) is defined by

W~2/M2

P~ ——0.26 GeV

P x ——0.46 GeV

P= =0.62 GeV

Note that p =& /8 to convert Ioffe and Smilga's nota-
tion to our own. The OPE expressions for the individual
magnetic moments are shown as solid curves in Fig. 8.
The dotted lines are the linear fits to the sum rule in the
vicinity of the individual baryon's mass. The intercept on
the y axis is then the magnetic moment in units of its

Eo(M') =1—e

—8'g2/M2
The e part represents the continuum contribution
in Ioffe and Smilga's method of analyzing the sum rules.
%e take their value 8'~ ——3.2 GeV. It is seen that in
Eqs. (Al) —(A6) the RHS's are linear in M . The coeffi-
cients of the constant term (the term of interest) and the
linear term are easily obtained by fitting the LHS of these
equations to a straight line in the fiducial regions given in
Table 1. (Ioffe and Smilga applied the differential opera-
tor 1 —M 8/BM to the right- and left-hand sides of the
sum rules. This has the effect of removing the unknown
single-pole terms. In any event, the two methods are
essentially equivalent. )

%e use here the values * a=0.55 GeV and b=0.48
GeV. The values of the coupling constants for these
values are taken from Ioffe and Smilga and are
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FIG. 8. Plots of the susceptibility independent sum rules. The solid curve shows the left-hand side of the sum rule while the
dashed line shows the fitted linear function. The intercept with the vertical axis gives the magnetic moment in the baryon's natural
magneton. Notice that in Table III the magnetic moments are converted to nuclear magnetons for comparison with experiment.

natural inagneton eR/2cM&. The corresponding mo-

ments in terms of the proton magneton as well as the ex-

perimental values for comparison are given in Table III.
Our results disagree with those of Ioffe and Smilga. 4

The two sources of disagreement between us are first, we

define the anomalous magnetic moment of a baryon 8 of
charge + I to be ps ——I+ys in units of the baryon's own

natural magneton. To convert to nuclear magnetons we

then multiply the entire magnetic moment by mz/mz.
In Ioffe and Smilga's sum rules, only the anomalous mag-
netic moment was converted. Technically speaking, this
is incorrect. The difference between their treatment and

the exact one, however, is small since it is of the order of
SU(3)-flavor-symmetry breaking. The second source of

disagreement affects only the "'s. Instead of Ioffe and
Smilga's value of ,", rn, a f/M —for the contribution of
the nine-dimensional operators contributing to the mass
correction term, we get —,' m, a'f/M .—This correction
term is small and therefore should not seriously change
Ioffe and Smilga's results. [We should mention here, to
avoid confusion, Ioffe and Smilga define

f=((ss)/(uu)) —l while we use f=(ss)/(uu ). Thus,
wherever we have an f one should replace it by I+f in
Ioffe and Smilga's notation. ]

APPENDIX 8: SPECTRAL SUM-RULE
CALCULATIONS FOR THE SUSCEPTIBILITIES

X, a, AND g

Baryon

+ 2.48
—1.67
+ 227
—0.92
—0.92
—0.83
—1.34

Experiment

+ 2.793
—1.913
+ 2.38
—1.12
—1.12

—0.69
—1.25

TABLE III. Sum-rule predictions for the susceptibility-

independent determination of magnetic moments. Magnetic

moments in units of the nuclear magneton.

In this appendix we turn to the estimate of the suscepti-
bilities based on vector-dominance model. Vfe recall that
the quantitative estimates on the baryon susceptibilities
relevant to the baryon magnetic moment problem were
first carried out by Balitsky and Yung. Recently, Be-
lyaev and Kogan" extended their calculation and gave a
presumably improved estimate for the value of X. Below
we review briefly the approach of Belyaev and Kogan and
present our calculations for the susceptibilities a and j in
addition to g.

Following Ioffe and Smilga we define susceptibilities
induced by the electromagnetic field by

& qa„~) =e,eXI'„„&qq),
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FIG, 9. Diagrams used in model calculations for the suscep-

tibilities. (a), (b), and (c) are used in evaluating g while (d) and

(e) are used to obtain a and g.
0.0 1.0

M (Gev )
2.0

& qg, G„„q)=e,e~r„„&qq),

& q.„~g,G~},q) =ie,.g~„„«q) . (83)

(c)

Notice here if one contracts both sides of Eqs. (84)—(86)
by Ai and take the limit q&~0, one recovers the corre-
sponding expressions of Eqs. (81)—(83) with the identifi-
cations

X(0)=X, (87)

To evaluate X, l~, and g one first introduces a set of sus-

ceptibility functions X(q },~(q2}, and g(q ) defined as the
Fourier transforms of various induced vacuum expecta-
tion values. More specifically, to lowest nontrivial order
in the perturbation expansion one has, ' " letting

j (x)=q(x)y q(x),

X(q'}& qq &(g"'q" g"'q"}-
xe'&'" T j x,q "q, 84

(q2)(qq)( pgivqgvi. qp)

~xe'&" T j~ x,qg, G""q, 85

i g(q2)(qq ) (g"~q" g" q")—
4xe'~'" T j"x,qg, ~y5q

0.0
I

t, 0
M (G v )

2.0

FIG. 10. Plots of the susceptibilities as a function of the
Sorel mass parameter M .

while Figs. 9(d) and 9(e) for Q ~ ao give

a(Q )~ 2,2 (811)

2

g(Q )~—
3Q2

(g 2G2)

72Q'
(812)

Notice that the coefficient of the 1/Q term for a'(Q ) is
identically zero. This is due to the vanishing of the trace
of Dirac matrices. All three of these susceptibilities have
an operator-product expansion of the form
A /Q +B/Q . On the other hand, computing Eqs.
(84)—(86) in terms of the physical intermediate states
keeping only the lowest and first excited state (the two-
pole approximation) we can write approximately

«(0) =tc, (88}
B f, f

Q Q Q+M ie Q+M 2 —ip—(813)

P0)=C. (89) Demanding the correct asymptotic behavior for the sus-

ceptibility leads to the condition
The asymptotic behavior of X(q ), a(q ), and g(q ) can

be found as in Ref. 11 using the corresponding diagrams
presented in Fig. 10. From Figs. 9(a)—9(c) we get, for
—q =Q ~oo,2 2

fp+fp™/l

On the other hand, a Borel transform on (813) gives

(814)

2moX(Q'), +
Q2 3Q4

(810)

1 f —Mp2/M~ —M, 2/M~

~2 P

From Eqs. (814) and (815) one gets

(815)
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(816)

from Eq. (87), (810), and (813}

X(0)= 2 + (817)

Balitsky and Yung kept only the ground-state p-pole
term in the right-hand side of Eq. (813) as well as only
the Q term in the left-hand side. Their one-pole ap-
proximation gives

X(0}=—3.3 GeV, «(0) =0.22, g(0) = —0.44, (818)
with A= —2 and 8=2mo /3. A plot of —X(0), «(0),
and —g(0) as a function of the 8orel mass parameter M2

is shown in Fig. 10. The expressions for «(0) and f(0) are
with the replacements of 3 =m~ /6 and 8 =0 for «(0),
and A= —mo2/3 and 8= —(g, G )/72 for g(0). The
values for vector masses are Mz ——0.77 GeV and

Mp ——1.2S GeV.

while the two-pole approximation gives

X(0)= —4.4 GeV, «(0) =0.4, g'(0) = —0.8 (819)

at M =1 GeV . Clearly, other choices of values for M
in Eq. (815) will lead to slightly different values for X, «,
and g.
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