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Quantum-chromodynamic evolution of the baryon system
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We present a general method for solving the @CD evolution equations which govern relativistic

multiquark wave functions. In the case of three-quark systems, we generate a light-cane basis of
completely antisymmetric wave functions. This provides a general covariant classification of
baryonic states. We then calculate the spin-orbit mixing generated by the QCD evolution kernel in

the basis of completely antisymmetric representations. %e are consistent with previous results, but

additionally, we obtain a distinctive classification of nucleon and delta wave functions. The corre-

sponding Q dependence of the baryon distribution amplitudes distinguishes the nucleon and delta

form factors.

I. INTRODUCTION

The form of the short-distance behavior of a baryon
wave function can be computed systematically in pertur-
bative quantum chromodynamics (QCD). ' The leading
behavior of the baryon three-quark wave function at large
momentum transfer or short distances is controlled
through an evolution equation with an irreducible hard-
scattering kernel which, in lowest order, is identical to the
gluon-exchange potential. Since the runnin~ coupling
constant tx, (Q )=An/[Pln(Q jA )] (P=11—, nf, w—here

nf is the number of flavors) is small for large momentum
transfer Q, a perturbative calculation of the short-distance
part of the wave function can be justified. The anomalous
dimensions of the three-quark amplitude can also be
predicted by the operator-product expansion and the re-
normalization group. z

A particularly convenient and physical formalism for
studying processes with large momentum transfer is
light-cone quantization, as discussed in Ref. l. A sys-
tematic analysis of exclusive processes and hadron distri-
bution amplitudes has been given, including solutions of
the evolution equation of the three-quark system. Thus
far the analysis of evolution equations has not been suffi-
ciently detailed to give a complete classification of the
proton, neutron, and delta states. In particular, the dis-
tinction between QCD predictions for the baryon wave
functions and form factors needs to be clarified.

In this paper, we develop a systematic basis for the
baryon system by constructing completely antisymmetric
three-quark representations. The calculation of the QCD
evolution kernel matrix in the basis of completely an-
tisymmetric representations is given by a straightforward
method. The solutions obtained by the present method
are consistent with the preceding results, ' but additional-
ly me obtain a distinctive classification of the X and 5
wave functions and the corresponding Q dependence
which discriminates the N and 5 form factors.

The methods used in this paper have general applicabil-
ity to the problem of analyzing the short-distance dynam-
ics of multiquark systems. The analysis for four-quark
systems in SU(2)c and six-quark systems in SU(3)c will

presented in subsequent publications.
In Sec. II we classify the baryon state constructing

completely antisymmetric representations. In Sec. III we
describe several properties of the three-quark evolution
equation associated with the various quantum numbers
and match the antisymmetric representations with the
evolution equation.

To construct a basis of completely antisymmetric repre-
sentations, we define products of spin and orbit represen-
tations in analogy to nonrelativistic wave functions. Mix-
ings of spin and orbital representations are described in
Sec. IV. The results for the anomalous dimensions and
the eigensolutions are presented and discussed in Sec. V.
Conclusions follow in the last section.

II. ANTISYMMETRIC REPRESENTATIONS

Two identical fermions cannot occupy the same physi-
cal state; thus one describes interacting fermions in terms
of antisymmetric wave functions. The systematic classifi-
cation of the bound states of a fermion (including the
baryons} is generated on the basis of antisymmetrized con-
stituent representations. In order to describe relativistic
systems we always refer to the valence Fock component of
the bound-state wave function defined at equal light-cone
time in the light-cone gauge. Further details may be
found in Ref. l.

A fermionic system in QCD is classified by the assign-
ment of four quantum numbers: color (C), isospin ( T),
spin (S), and orbital (0). Each quantum sector of the
wave function can be classified using irreducible represen-
tations vnth permutation symmetry denoted by Young di-
agrains. " The explicit construction of totally antisym-
metric representations in terms of an orbital index-power
basis will be described in the next subsection.

A. Color ( C), isospin ( T), and spin ( S) states

%e can classify the quantum numbers of C, T, and S
by the group of 6=SU(3)cXSU(2}rxSU(2)s without
loss of generality. Each quantum state assigned by C, T,
and S is the irreducible representation of 6, and each ir-
reducible representation is denoted by the corresponding

33 1951 1986 The American Physical Society



STANLEY J. BRODSKY AND CHUENG-RYONG JI 33

Young diagram. Once a Young diagram is given, the ex-

plicit representation can he constructed from its permuta-

tion symnMtry and Schmidt orthogonalization.
All physical baryons are color-singlet states. The corre-

sponding Young diagram is given by

The spin states of the three-quark system are classified

by the Young diagrams for S=—, and —', . The explicit
representations are obtained from the isospin representa-
tions with the replacement of u and d by t and t.

8. Orbital (0) states

in SU(3)c. Thus the explicit color representation of the
baryon is fixed:

1

6
(ryb +ybr +bry byr —rby —yrb —)

$(x;,Q)
' -3CF/2P

The orbital states are normally defined by the quantum
numbers of angular momentum L and Lz. On the light
cone, the quark distribution amplitude P(x;,Q) is defined

by

(2.1)

where the completely antisymmetric Cartesian tensor e,jk
(i, j, and k correspond to one of r, y, and b) defines the
color-singlet representation. The quantum state (color in
this case) of the first, second, and third quark is represent-
ed by the first, second, and third location of every term in
Eq. (2.1). Hereafter, we will use this convention for each
quantum number unless we specifically denote the particle
number.

The classification of the baryon into N and 6 is given
by the isospin label: i.e., T=-,' and —,', and the corre-

sponding Young diagrams are

for N and b„respectively. The mixed symmetry

has two orthogonal permutation symmetries, represented
by two different Yamanouchi labels

12 d i3
2

(2.3)

where f'~'(x;, ki;) is the wave function of three quarks
which have longitudinal-momentum fractions

x; =k;+/(g, . ik;+) =(k; +k; )/[g, ,(k; +k; )] and

transverse momenta ki;. In this definition, the Lz ——0
projection defines the amplitude for finding the constitu-
ents collinear up to the scale Q. We will use as a basis for
the orbital dependence of P(x;,Q) the index-power space

representations x~ 'x2 'x3 ' with n=nj+nq+n3. The
total power is analogous, as far as permutation symmetry
is concerned, to the angular momentum L for the nonrela-

tivistic system. In the QCD evolution equation the
minimal anomalous dimensions y„which determine ha-

dronic amplitudes at very short distances are associated
with small values of n; only the smallest powers of x; are
important for probing the short-distance behavior of
P(x;,Q). Thus, we consider the "orbital" symmetry on
the index-power space (n=n, +n2+n3) which deter-

mines the power of x i, x2, and x3 such as x
&

'x2 'x& '.
In this power space, the orbital states are determined by

filling up the possible Young diagrams with the powers of
x;. For example, if we consider n=n&+nz+n3 ——0 case,
then the only possible Young diagram

As an example, we present the explicit representation of
Tz ———for T=—and —:. 1 1 3

2 2 2' gives the representation
i 3
2

1
(duu —udu),

2 000 (2A)

1
(duu +udu —2uud ),

For n =1 case, the possible diagrams and representations
are

(T,T )=(—,', —,'), (2.2a}

u u d = (uud+udu+duu),1

1
0 0 1 = ~ (Xi+X2+X3),v'3

is (X i —X2),
V'2,

(2.5)

(2.6a)

(T,Tz)=( —,', —,), (22b)

where (T,Tz)=( —,', —,') and ( —,',—,') correspond to p and
6+, respectively.

0 0
1 i 2 (x i +xi —2x& ) .

v6 (2.6b}
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However, the representations given by Eq. (2.5) are not in-

dependent of the representation given by Eq. (2.4) because
of the conservation of momentum g, ,x;=1. General-

ly, the orbital representations can overlap each other be-

tween the same diagrams. Thus we use the Gram-
Schmidt orthogonalization procedure and normalize the
states by the following rule between the orbital representa-
tions (I)„(x;,Qo) and P (x;,Qo) with the same Young dia-

gram:

((t) (;,Q )
~ y„(;,Q ))

X Q)Xi ~ Xi, O ~ Xi, O

(2.7)

where

3

[dx ]=dx!dx g dx 35 1—
i=1

and r0(x;) =x!xzx3.
After orthonormalization, we obtain the basis set of or-

bital states. The explicit representations and Young dia-
grams up to n =2 are presented in Table I. %'e note that
the orbital representations in power space are independent
of any dynamics, and any model-dependent representation
can be projected onto our representation. A state which

has arbitrary angular momentum I. can be projected on
the corresponding index-power space.

C. Antisymmetrization

In Secs. IIA and IIB, we showed that the quantum
states for each C, T, S, and 0 quantum number are expli-
citly represented by the permutation symmetry of the
Young diagrams. In particular, the completely antisym-
metric representation of a quark system is obtained by the
inner product of C, T, S, and 0 quantum states represent-
ed by the corresponding Young diagrams. As an example,
let us construct the antisymmetric representation of the
excited state of the proton with (S,Sz)=( —', , —,

' ). For this
state, C and T representations are given by Eqs. (2.1) and
(2.2a), respectively, and the S representation is given by
Eq. (2.2b) with the replacement of u and d by t and L.

To construct the completely antisymmetric representa-
tions, we combine the possible orbital symmetries as given
by the Clebsh-Gordan series of the permutation group S3.
In this case, the only possible orbital Young diagram is

The lowest state is 0 1(n =1) and the representation is
given in Table I. If we consider the Clebsch-Gordan coef-
ficients of the permutation group

TAB&K I. The orbital representations in the index-power space for the baryon system; the normalization constant is multiplied by
the representation for the correct normalization.

Index-
Power Young Diagram and, Representation Normalim ation

~0 0 0

3

0 0 ~21 x ~SI

1
(xg + xg —2x3)

1 1
4

(*s s — * ) + - ( — s) )
6~2s x ~s!
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(2.8)

then we can obtain the completely antisymmetric representation

r

C5

7 t I x 0 0
1

Q

E,yk( t t l + t t t + L t t )is

X [duu(2xi —x2 —x3)+udu( xi+2x2 x3)+uud( —xi —x2+2xi)], (2.9)

where N=21X5! and e,p is defined by Eq. (2.1). In a
similar way, we can classify all possible three-quark states
and obtain the explicit antisymmetric representations. In
Table II we present the classification and the representa-
tions of the baryon system up to the power n =2.

3CF
xix2xi + P(x,g)

[dy] V(x,y)P(y, g), (3.1)

where the reduced amplitude $(x,g) and the variable g
are defined by

and

P(x, g ) =x ixqxi/(x, g ),

III. THE BARYON EVOLUTION EQUATION

The three-quark evolution equation for the three-quark
distribution amplitude!(i(x, Q) with Lz ——0 is given by

where 5& ~
——l(0) when the helicities of quark pairs i,j are

J
antiparallel (parallel). The infrared singularity at x;=y;
is canceled by 6$(y, g)=(!)(y,g) —$(x,g) reflecting the
fact that the baryon is a color singlet.

We use the following general properties of the kernel.
(a) The color states are evolved by the operator

i(A,,/2)(A. , /2) [the 1,, are the Gell-Mann matrices of
SU(3)c group]. Under the action of this operator, the an-
tisymmetric color-singlet representation does not change.
The color factor Cs is then fixed as —', for the baryon.

(b) QCD evolution conserves isospin.
(c) The helicity of the quarks is conserved. However,

the evolution kernel given by Eq. (3.2) has the 5& ~ term,
J

which means the spin evolution operator is not diagonal
for spin multiplets classified by total spin while it is diag-
onal for Sz components.

(d} For the orbital evolution, the total power n of orbi-
tal representation [total power of P„(y) before gluon
exchange and P„(x) after gluon exchange] is conserved
upon integration [dy]. However, many different rep-

0
resentations can have the same power n. Thus we must
allow mixing between different orbital states under evolu-
tion. The evolution equation Eq. (3.1) has a general solu-
tion of the form

0

ln(Q /A )

ln(go /A )

P(x, g)=xix2xq g W„P„(x) ln
n=0 A

where y„and (!)„satisfy

(3.3)

The color factor Cii (n, +1)/2n, =———', is fixed. The
evolution kernel V(x,y} is the sum over interactions be-
tween quark pairs i,j due to exchange of a single gluon:

3' Cg
x,x,x, —y„P„=,[dy] V(x,y)P. (y) .

(3.4)

V(x,y) =2xix2xi +8(y; —x;)5(xk —yi, )

PJ h-K-5
X +

XJ XI +XJ- PI. —XI.

= V(y, x), (3.2)

The y„are the anomalous dimensions corresponding to
the three-quark eigensolutions P„.

The calculations of the y„and P„were already given in
Ref. 1 for the proton (h = —,

' ). However, the complete
classification of all baryon states was not given. To do
this, we use the basis elements in Table II to diagonalize
the three-quark evolution equation, Eq. (3.4). In general,
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TABLE II. Completely antisymmetric three-quark representations for (A) the N system and (B) the 6 system. For all representa-

tions, the color-singlet representation factor e~q /~6 given by Eq. (2.1) is abbreviated and the orbital normalization constant given by
Table I must be multiplied for the correct normalization. Even though ere present the representations for positive Tz and Sz values,

those for negative Tz and Sz values can be simply obtained by the replacement of u~ and &~&, respectively, for the corresponding

representations of positive Tz and Sz values. For example, Tz ———
2 representation is obtained by the replacement of u~ in the

Tz ——
2 representation.

A. N system (T = 1/2); Tg = 1/2 is axed for convenience

Representation of the Three-Quark System

(S, S&) = (3/2, 3/2)

0'0
1

(7 tt) [ duu(2yx —ys —ys)
3

+ udu(-yt + 2ys —ys)

+ uud(-yg —ys+ 2ys) )

0

1 1

s~r. (ttf) [ du»{(2ysys —ytys —yty2) + —(2yi —y2 —ys}}4
1+ «u{(-ysys + 2y). ys —yeys) + —(-yi + 2y2 —ys) }

1
+ uud{(-ysys —ygys + 2ytys) + —(—yg

—y2 + 2ys) })4

2. (S, Sg) = (3/2, 1/2}

0 0 3
[(ttl) + (tlt) + (lt t)) [ duu(2yi —y2 —ys)

+ udu( —yt + 2y2 —ys)

+ uud(-yg —» + 2ys) )

0 1,

1 [(ttl)+ (flT)+ (lTT)) [«u{(2ysys —yiys —yiy2) +
4

(2y~ —y2 —ys)}
1

1
+ »du{( y2ys + 2ygys ygy2) + —(—yy + 2y2 y3))

1
+ «d{(—ysys —yxys+ 2yiy2) + —(—yi —y2+ 2ys}} )4

3. (S, S&) = (1/2, 1/2)

1
[ (l 7f)(2duu —udu —uud)

8
0'0 0 + (7 l 7) (-du» + 2»du —uud)

+ (7fl)(—duu —»du+ 2»ud) ) x 1

1
[ (lTT) {«u(—2yx+ y2+ ys) + udu(y~+ y2 —2ys) + u»d(yi —2y2+ ys)}

3

+ (tlT) {duu(yi+ y2 —2ys) + udu(yx —2y2+ ys) + «d( —2yi+ V2+ ys)}

+ (tfl) (d»u(y~ —2y2+ ys) + «u( —2yi+ y2+ ys)+ «d(yi+ y2 2ys}} ]

011
1

[ (l f f)(2duu —»du —uud)
3

+ (tlf)( —«u+ 2«» —«d)
2+ ((1()(-&""— ~ + 2 &) l " (un + v v + v v* ——
7
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TABLE II. (Continued).

Ind. ex—Poorer Representation of the Three-Quarh SystemSymmetry

0 1

(
1 1

(Lff) [ d«{(—2ysys+ y1ys+ y1y2) + —(—2y1+ y2+ ys)}4
1+ udu{(ysys + y1ys 2yly2) + (y1 + y2 2ys) }
1+ «d{(ysys —2y1ys+ y1y2) + -(y1 —2y2+ ys)} [

1+ (TLT) [ d«{(ysys+ y1y3 2yly2) + (y1+ y2 2ys)}

1+ udu{(y2ys —2y1ys + y1y2) + —(y1 —2y2 + ys) }4
1+ «d{{—2y2ys+ y1ys+ yly2)+ ( 2yl+ y2+ y3)} [4
1+ (TTL) [ d«{(ysys —2y1ys + y1y2) + —(y1 —2y2+») }
1+ &d&{( 2y2ys + ylys + yly2) + ( 2yl + y2 + ys)}
1+ «d{(ysys+ y1ys 2y1y2) + (yl + y2 2ys)} [

B. b, system {T = 3/2); for Tg = 3/2, u«, and for Tg = 1/2, uud
[(1/~3) (uud + udu+ duu)] are factors for ali representations.

Index-Po~er Represent, ation of the Three-Quart System

(~, Sz) = (~/2, S/2)

0 0 0 (f'ff) x 1

1 2&
(fTf) ysys+ ysy1 + y1y2 ——

[~3 7)

(S, Sz) = (3/2, 1/2)

000 [(TTL) + (TLT) + (Lf I)[ x 1

— [(TTL)+ (TLT)+(Lff)[ ysys+ysy, + y, y, ——1 2

0 0
[(LIT) (2y1 —y2 —ys)

1

+ (TLT) (—y1+ 2y2 —ys)

+ (TTL) (—y1 —y2+ 2ys) [

0 1

1 1

3~2 (Lff) {2ysys —y1ys —y1y2 + —{2y1 —y2 —ys)}
1+ (TLT) {—ysys + 2y1ys —y1y2+ —( y1 + 2y2 —ys)}
1+ (TTL) {—ysys y1ys + 2y1y2+ —(—y1 —y2 + 2ys)} [4
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the eigensolutions (()„are linear combinations of antisym-
metric representations. As a result, we find different y„
for the nucleon and isobar states. %'e present the general
solutions for each baryon in Table III.

For specific calculations, one does not always have to
use the full antisymmetric representation since we can use
an effective representation in which the helicity configu-
ration is fixed. As an example, we can choose an fit
term for Sz ———,

' state as an effective representation. We

can also narrow the effective representation by fixing the
isospin configuration: e.g. , choose the used term for
(T,Tz)=( —,', —, ) and Sz ———,'. The orbital wave-function
coefficient then provides a practical representation. How-
ever, we must choose a proper term in order to calculate
the mixing coeNcients. If we use an iinproper term (such
as the udu term in the above example), then we cannot
represent the eigensolution because the mixed states
(S= —, and —, states) have the same orbital representation.

TABLE III. Eigenvalues and eigensolutions for (A) N system and (8) 5 system: the anomalous dimensions are related to b by Eq.
(4.4), i.e., y =(2bCq+3C~/2)/P. The normalization factor )/ X for the effective representation is also given.

A. N system (T = 1/2); Tg = 1/2 is Sxed.

Spin
Con6g-
llr8 tlon 5

Spin
x Orbital $(y) (Effective Representation)

1
[ d««(2!n —its —vs)

3

+ «du( —Vi + 2tts —its)

+ uud( —th —ss+ 2Vs) ]

6~28 x ~5!
[ du«((2tts Vs —Vi Vs —Vi Vs)

1+ - (2!n —its —Vs)}

+ «du( 1 ~ 2 ) + ««d( 1 ~ 8 ) ]

1 (-du»+ 2«d» —uud) x 1

T t+ + x
0 0

~21 x ~5! 1—(duu —uud) (yi —!Is)
2

t t+ x
0 0

~21 x ~5! 1—(duu —2udu+ uud) (—y, + 2vs —ys)6

+ TLl x1 0 1

$0

x o » e~Zax ~St7 l
l

L 1
1

1
(duu —2udu+ uud)

6

( as'sos Qv&vs sv& vs

1+ — (Qsi+6~+ 9Vs) )
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TABLE III. (Continued).

1 T t+ . x

1
(d«« —««d)

2
1

X pg $fg
—pg pg + — pl —Q3

Tl t x

ff 0 42x 011 ~5!
15

f f 0 1
X

1

1
(d«« —2ud«+ uud)

3

(—~ttsVs + 3» Vs —3»his

2 1 1+ ———»+ps ——its )7 2 2

p. / system (2' = 3/2); for Tg = 3/2, « 'u 'u = ««u, an& for &s = 1/21

[(1/~3 (««d + «du + d««) j are factors for the eifective representations.

Spin
Config-
uration b

Spin
X Orbital g(y) (Effective Representation)

Ttt x

TTT x
2l

g3 1I,
-1 5bgs + Vs» +» ps 7)

Tlt x

0 0
X

1

tlf x 0»
6~14 x v5!

0 1

1

T lf x

14 f f 01+ —— X
15

42 x ~5! 2
3!I&mls + 3»lls 3»hb +

7

——»+Id ——vs
12 2 )
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IV. MIXING AND DIAGONALIZATION

The lowest-power orbital state (0 state) of each baryon
is unique. These special states are eigensolutions by them-
selves, giving the eigenvalues yo by Eq. (3.4). However, as

the orbital power becomes larger, the number of different
representations is increased and the mixing between the
different representations occurs as described in the last
section. Here we describe the mixing of different spin
representations for the example given at the end of the
last section. We define

4,3/2 x x TTI x (4.1)

which is the state (T,Tz}=(—,', —, ), (S,Sz)=( —,, —,'), and n =1, and

0 0 (4.2)

2'—bg(x) = V(x,y)P(y), (4.3)

which is the state (T,Tz)=( —,', —,
'

), (S,Sz)=( —,', —,
'

), and
n = 1. For convenience, we rewrite Eq. (3.4} as

ancl

r

y 3/2(y) T~
6 y 3/2( )

5 &y
y i/2( )

I 2
y ]/2( )

(4.6)

where b is defined in

y„:(2b„Ca—+ ,
'

CF )IP—
and V(x,y) = Vs(x,y)+ Va(x,y) is defined by

Vs(»y)= f [dy)+e(y x)5—(xk yk)
0

l+J

(4.4)
y 3/2(y)

Va(x,y) —,/2
0 y 3/2(x)

y ]/2(x)
r

which gives the eigenvalues and eigensolutions after diag-
onalization as

PJ hg KJ
X

XJ Xg +XJ

1

V~(x y)= I [dy]+ (((y —x (5(xa —Xa)
0

g+J

(4.5) b=l for (}I(=—
2 2

(4.7}

+i PI +&I

Setting the y representations of (}6(
/ and (t]'/2 [see Eqs.

(4.1) and (4.2), and Table II) into the three-quark evolu-
tion equation [Eqs. (4.3) and (4.5)], we find

This gives the expected mixing between (}}
/ and (}I('/

through the QCD evolution.
For the antisymmetric representations given by Table

II, we find the mixing between the following states: for
the nucleon case, n =1 mixes (t( and (}}' (the previous
example), and n =2 mixes

T I T x

For the 6 case, n =2 has mixing between V. RESULTS AND DISCUSSION

tlt x 01

As in the previous example (P / and (}](' ), we can diago-
nalize the mixing matrix V= V~+ V~ and find the eigen-
values b and the eigensolutions (t( for all antisymmetric
representations as given in Table II. The results for b and

P are given in Table III.

%'e have presented the antisyrnmetric representations
for the three-quark system and shown the action of the
three-quark evolution equation. We have used the follow-
ing properties of the evolution kernel.

(1) The unique color-singlet state of baryon is preserved.
(2) The isospin state is preserved.
(3) Sz components of the spin state is conserved but

different spin multiplets (S=—, and S=—,
' states} can mix

with each other.
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(4) I.z ——0 is fixed on the light cone and n value is con-
served, but different orbital multiplets (corresponding to
different Young diagrams) can mix with each other.

After the diagonalization of the mixing matrix
V= Vs+ Va, we find the eigenvalues and the eigensolu-
tions as summarized in Table III.

The method by which we obtain the above results is
sufficiently straightforward that we can find the basis of
the eigensolutions before solving the evolution equation
and sm the evolution of each state explicitly. Further-
more, we can check every step of the calculation explicit-
ly. For example, the symmetry of the evolution potential
given by Eq. (3.2) can be checked by obtaining the matrix
representation such as Eq. (4.6) for the mixing of P~ and

(Note that the matrices Vs and Va are symmetric
separately. )

From Table III we find that the eigenvalues and the
eigensolutions are consistent with the previous results, but
we have the classification in terms of physical baryons.
The eigensolutions of the proton with the Sz ———,

' case
coincide with the result of Ref. 1 for the distribution am-

plitude for the proton (h = —,):

d, (1)u, (3)+u, (1)d,(3)
6

—( —, )' u, (1)d, (2)u, (3) P (x;,Q)

d, (1)u, (3)—u, (1)d,(3)
+ u, (2) P"(x;,Q)

+(1~2)+(2~3), (5.1)

where P~ and P" are symmetric and antisymmetric under
the interchange xi'& and the color-singlet representa-
tion e,jk/v 6 is understood. The representation inside the
large square brackets turns out to be the same as our ef-
fective antisymmetric representation given by Table III.
Furthermore, we can give the general distribution ampli-
tudes for the other bai7ons such as the excited proton
P~~, and isobars Pa,Pa ..

, (d, u, u, -u-, d, u, )P (x;,Q}3/2

1+ (d, u, u, +u, d, u, —2u, u, d, )$~(x;,Q),
2&3

(5.2}

where P~ and P~ have the symmetry represented by the
Young diagrams

+(1~2)+(2~3),

where P is symmetric under the interchange x &~x&, and

Pa (Tz ———,)=u, u, u, Pr(x;, Q),3/2

4'a (Tz= i )= (uiuidi+u, d, u3/2

3

+d, urus }Jr(xi'~Q) ~

(5.4)

where the P" are totally symmetric under any interchange
between x&, x2, and x3.

As stated in the Introduction, we can apply the above
method to multiquark systems which have several color-
singlet representations. In this case a much richer
phenomenology of QCD states exists including hidden-
color configurations. We can also combine this approach
with the fractional parentage technique to predict the ef-
fective interaction between baryonic clusters within a mul-

tiquark system.
In conclusion, we have presented a general technique

which combined with evolution equations predicts the
short-distance behavior and classifies the spectrum of rel-
ativistic many-fermion systems. This approach thus pro-
vides a fundamental method for studying short-distance
dynamics even in the domain of the multiquark systems
of nuclear physics.
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respectively,

Pa (Tz ——, )=—u, u, u, ((} (x;,Q)+(1~2)+(2~3),
(5.3)

(Tz =
2 ) = ~ (uiu gdi +uydgu t +diu)u ) )f (x(,Q)
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