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Chiral model of the nucleon: Projecting the hedgehog as a coherent state

Michael C. Birse'
Institute for Nuclear Theory, Department ofPhysics, FM l5,-

Uniuersity of Washington, Seattle, Washington Ygl95

(Received 10 May 1985)

The construction of baryon states with good spin and isospin is studied in a chiral model. This is

a Bncar cT model, describing quarks interacting with pions and 0' Incsons. It has previously bccn in-

vestigated in the mean-field approximation (MFA), using the hedgehog ansatz. The ansatz corre-

sponds to a mixture of spin-isospin eigenstates. A coherent state is used to provide a quantum

description for the mesonic part of the wave function. The hedgehog baryon is projected onto states

with good spin and isospin. The Peierls-Yoccoz projection is used, in analogy with the treatment of
deformed nuclei. As well as X and 6, a J=T =

2 baryon state is obtained. The wave functions are

varied after projection. For the N and h, , the resulting field distributions are fairly similar to those

from the MFA. Various nucleon properties are calculated. These include proton and neutron

charge radii, for which reasonable agreement with experiment is obtained. Results for other proper-

ties are similar to those obtained with an approximate projection method, and indicate the need to

extend the present approach to include vector mesons and the effects of vacuum polarization. Com-

parisons are made with wave functions used in the cloudy bag and Skyrmc models.

I. INTRODUCTION

Although quantum chromodynamics' (QCD} is now be-
lieved to be the underlying theory of the strong interac-
tion, its long-distance, nonperturbative regime has so far
defied solution. Lattice gauge calculations~ have provided
some information on this regime. However, the restric-
tions imposed by available computers make this approach
best suited to calculating bulk properties of the QCD vac-
uum and phase transitions. The best hope of relating ha-
dronic properties and interactions to QCD continues to be
the use of models or effective theories containing degrees
of freedom appropriate to the long-distance regime. Such
degrees of freedom include "constituent quarks, " meson,
and "glueball" fields. Eventually, one would like to deter-
mine the parameters of these models from first principles,
for example, from lattice gauge calculations. For the mo-
ment, these parameters must be fixed phenomenologically.

Recently there has been much interest in so-called soli-
ton models. Many of these models are similar in spirit to
the Lee-Wick model of abnormal nuclear matter. The
solitons are stabilized by coupling to fermion fields. They
consist of quarks interacting with various phenomenologi-
cal boson fields which are introduced to describe the long-
and intermediate-range properties of QCD (Refs. 5—12).

An alternative type of soliton model, first proposed by
Skyrme, "is based on the nonlinear tr model and does not
include explicit quark degrees of freedom. ' ' Instead
the model has a conserved topological winding number
which is interpreted as the baryon number. Stability is
achieved with higher-order derivative interactions' *' or
by coupling to vector mesons.

Most existing calculations in these models use the semi-
classical or mean-field approximation (MFA}. This treats
the boson fields as classical and neglects the effects of
quantum fiuctuations. In models with quarks, only

valence quarks are included, but these are treated quan-
tum mechanically. This approximation is, in many
respects, similar to the Hartree-Pock approximation used
in nuclear and atomic physics.

The static, localized solutions to the resulting nonlinear
field equations are referred to as solitons. ' ' Since they
are localized, these solutions break the translational sym-
metry of the corresponding field theories. Models with
chiral symmetry are generally studied using the
"hedgehog" ansatz. ' This violates the rotational and iso-
spin symmetries of the model as well as the translational.

The symmetries of the model which are broken by the
semiclassical solution correspond to degeneracies of the
soliton. Each degeneracy gives rise to a spurious zero-
energy state in the excitation spectrum built on the soli-
ton. These "zero modes" give rise to infrared divergences
in the loop diagrams used to evaluate fiuctuations about
the mean field. Analogous problems with spurious states
occur in Hartree-Fock calculations of nuclei.

Another way of seeing the problem is to consider the
generators of the symmetries broken by the soliton. For
example, in a hedgehog state the expectation value of the
total angular momentum vanishes:

(H
i JiH&=0. (1.1)

The quarks, if present, are in states which contain an
equal mixture of spin up and down (see Sec. II for details)
and there is no contribution to (1.1) from the static mean
pion field. Since the hedgehog is not an eigenstate of total
angular momentum, both quarks and pions can contribute
to the expectation value of I via quantum fluctuations.
Hence we have

(H
i
J )H))0.

Similar results hold for the linear momentum because a
localized sohton breaks translational invariance. '
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Ideally, one would like to separate the collective degrees

of freedam (conjugate variables to the generators of the

broken symmetries) froin those describing the intrinsic

motion. However, even in many-body systems, such a
separation is by no means trivial, and is often not very
useful since the collective and intrinsic motions remain
strongly coupled. Various similar approaches have been
used to describe soliton motions in qu intum field theories
but, even for simple one-dimensional models, these
methods become very complicated.

The most practical way to handle collective motions
(both in many-body and field theories) seems to be the use
of generatar coordinates. As applied to the construction
of states with the correct symmetries this is usually
known as the Peierls-Yoccoz projection. i5 It involves tak-
ing linear combinations of all the degenerate, broken-
symmetry states obtained from the MFA:

~

4) = I da f(a)
~
4(a)), (1.3}

where the
~

4(a) ) are the degenerate states, labeled by a
set of continuous "generator coordinates" a. With an ap-
propriate choice of the weight function f(a) the state

~
4) will be an eigenstate of the generators of the sym-

metries which are broken in the soliton states
~

4(a) ).
In order to use the generator-coordinate method we

need a complete wave function describing the soliton
state. But the MFA provides only classical field configu-
rations for the bosan fields; these are interpreted as the ex-
pectation values in the state of interest. The simplest
choice of wave function which reproduces many of the
features of the MFA is the coherent state. s This is
essentially a Gaussian wave packet in the function space
of the quantum field theory, and is peaked at the field
configuration which corresponds ta the classical mean
field. The detailed form of such a state is described in
Sec. II.

This method (construction of a coherent state and pro-
jection) has previously been used ' ' to obtain ei~enstates
of linear momentum in the soliton bag modeL ' Here I
apply it to the construction of states with good spin and
isospin in a chiral soliton model~ 9 (with quarks). Recent-
ly, two groups have made similar calculations3' in the
cloudy bag model.

It should be noted that this method can anly be applied
to models in which the boson fields are canonically quan-
tizable. Hence it carmot be used in the Skyrme
model. '3 '6 The nonlinear constraint on the pion fields in
this model means that it is defined over a curved function
space. Thus it cannot be quantized in the usual canoni-
cal way, except in the linearized approximation used in
the cloudy bag model. The evaluation of loop dia-
grams~ is much more complicated than in the linear o
model and, of course, the model is nonrenormalizable.
The projection technique described here introduces into
the wave function large amplitude fluctuations associated
with the rotational degeneracy of the soliton. In a non-
linear model it would be essential to take account of the
curvature of the function space. The simple Gaussian
coherent state, which could be used to describe small am-
plitude fluctuations in the linear approximation, is thus
not an appropriate starting point for projection in this

model. In the absence of a suitable wave function, Adkins
et at. ' assume that the hedgehog can be regarded as the
intrinsic state of a rigid rotor and they treat quantum
mechanically only the rotational motion. This approach
will be discussed again in Sec. VII.

The model ' which I use here is based on the linear 0
model of Gell-Mann and Levy." It describes an isospin
doublet of qimrks interacting with pions and scalar, iso-
scalar mesons. The quark-meson coupling maintains the
(approximate) SU(2) XSU(2) chiral symmetry of the
underlying theory, @CD. The self-interactions of the
mesons are chosen so that the chiral symmetry is realized
in the hidden mode (also known as the spontaneously bro-
ken or Nambu-Goldstone mode). The o field has a
nonzero vacuum expectation value, which gives the

quirks a large dynamical mass, while the pions are mass-
less Goldstone bosons (or are light if the symmetry is only
approximate).

The motivation for this model is described in Ref. 8. It
is based on the idea of a separation of roles between the
forces which bind quarks into hadrons and those which
lead to confinement. The running coupling constant
in QCD is expected ta be strong enough an length scales
-0.2—1 fm to produce strong binding between quarks
and to lead to dynamically hidden chiral symmetry. The
confining forces are expected to operate on scales ) 1 fm
and so have little effect on low-lying bound states. The o
meson and pions are introduced to describe the bound
states in the channels in which the gluonic forces between
quarks and antiquarks are most attractive, as well as the
resulting hidden symmetry.

The Lagrangian density for the model is

W(x) =f(x) ti y 8+g[tr(x}+is $(x}ys]I Q(x)

+,'a„~( )xa ~(-x)+-,'a„y(x) a y(x)
2

[cr(x)t+$(x)2—v ]z—F m to(x) . (1.4)

The coupling between the quarks and mesons is chirally
symmetric, as is the quartic "Mexican hat" potential for
the mesons. The classical minimum of this potential
occurs for a nonzero value of the cr field, F, where—
F =93 MeV is the pion decay constant. The final term
in .(1.4) is introduced to explicitly break the symmetry and

give the pions their observed mass, m = 139.6 MeV.
In this model the quarks have a finite dynamical mass,

Me =gF~. This is lausibly identified with the
constituent-q~~k mass, 3 which is believed to be about
300—500 MeV. Since the model has no confining force,
free-quark states can appear. This should not be a prob-
lem for the ground-state baryon, which is strongly bound
in this model. However, the model cannot be used in its
present form to describe excited states.

The other adjustable parameter is the o-meson mass,
m =(2AF„2+m )'~, On the bas. is of the Nambu-
Jona-Lasinio (NJL) model, m is expected to be of the
order of twice Me. In the MFA to the ehiral model,
reasonable agreement with observed nucleon properties
was obtained for Me=500 MeV and m =1200 MeV.
This value for rn is consistent with the observed e(1300}
resonance, which is plausibly identified with the o meson



MICHAEL C. BIRSE 33

of the model.
In Sec. II the definition and basic properties of a

coherent state are reviewed. The wave function for the
hedgehog state is introduced in Sec. III, and its relation to
the MFA is displayed. The projection onto spin-isospin
eigenstates is given in Sec. IV. Details of the evaluation
of matrix elements between these states can be found in
the Appendix. Variation of the projected wave functions
is described in Sec. V and the resulting nucleon properties
are presented in Sec. VI. In Sec. VII the results are com-
pared with the cloudy bag and Skyrme models. Section
Vill contains a brief summary and outlines possible im-
provements on the present calculations.

II. THE COHERENT STATE

Before presenting the full hedgehag baryon state, I re-
view the definition and basic properties of the coherent
state ' for a single real scalar field. Such states are
used here for the parts of the baryon wave function
describing the o field and each af the components of the
pion field. In the general discussion, the generic scalar
field will be denoted by a

The approximations to be used here are most easily ob-
tained in the Hamiltonian formulation of the field theory.
All operators are in the Schrodinger picture and so are
time independent.

A general Fock-space representation of the field theory
is obtained by expanding a and its conjugate momentum

o(r)= g 1 (a„+a„)P„(r),
~n

{2.1)

(2.2)

where, for the moment, the (I)„(r) are any complete set af
normalized real functions and the frequencies, co„, are ar-
bitrary, nonzero numbers. The "vacuum" state for this
basis is defined by

a„~0&=0 for all n, (2.3)

~

F&=%exp i f d rF(r)m—(r) ~0& . (2.4)

The expectation value of o(r} in this state is just F(r). It
is convenient to cwork with an un-normahzed state, and to
rewrite (2.4) in the more familiar form

(2.5)

where the (un-normalized) creatian operator A is defined
by

and can be regarded as an infinite-dimensional Gaussian
wave packet whose principal axes are specified by the
functions (()„(r), and whose widths are inversely propor-
tional to the corresponding +co„.

A coherent state is defined by translating this wave
packet in function space, so that it is centered on some
nonzero field configuration, say, F{r):

(2.6)

and the f„are the expansion coefficients of F(r) in terms
of the P„(r).

The generator-coordinate method leads to states which
are hnear combinations of coherent states centered on dif-
ferent field configurations. To evaluate expectation values
in the projected states, we need overlaps and matrix ele-
ments between different coherent states. The overlap of
two such states,

~
F& and

~
G &, is

(F
~
6&=exp g "f„g„ (2.7}

Matrix elements of normal-ordered products of field
aperators can be written as

(F ~:cr(r}:( 6& =o(r) (F
~
6&,

(F [:1r(r):
~

6 & =Tr(r) (F [ 6 &,
where

F(r}+6(r)err=
2

(2.8a)

(2.8b}

(2.9a)

(2.9b)

Sa far, the basis used to expand the field operators (2.2)
and (2.3) has been left unspecified. In principle, if one
were to solve a field theory exactly, the results would not
depend on the choice of basis. However, in the coherent-
state approximation, the basis defines the fluctuation
structure of the trial state, via (2.5) and (2.6). Hence re-
sults will be basis dependent.

The simplest choice of basis is the one which diagonal-
izes the noninteracting part of the Hamiltonian for small
oscillations about the classical vacuum field configura-
tion. In the MFA, the classical vacuum is assumed to ap-
proximate the expectation values of the fields in the true
vacuum. Hence the basis for small fluctuations about this
approximate vacuum signs to be the most appropriate, if
one sticks closely to the spirit af the MFA; it will be used
in the present work. In this basis, normal ordering a
product of field operators corresponds to subtracting off
its expectation value in the physical vacuum.

The creation operators for the o field will be denoted by
ao(k), those for the pion field by a (k), a=1,2, 3. The
corresponding frequencies in the free-field basis are
co k =(m~ +k )'~ and co k ——(m i+k )'~ .

The use of the plane-wave basis means that the vacuum
is both translationally and rotationally invariant. The
translational invariance is unimportant for the present
calculations but it will lead to substantial simplifications
in the projection onto momentum eigenstates and the cal-
culation of center-of-mass corrections, as in Ref. 21(a).
The evaluation of matrix elements and overlaps in the
projected states is simplified by the invariance of the basis
under spatial and isospin rotations.

It is possible to improve on this approximation and still
use a coherent state. For example, the one-loop and
Hartree approximations ' treat the fluctuations as in-
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I now turn to the construction of the trial wave func-
tion for the hedgehog baryon. In principle, one would like
to avoid the use of this ansatz and work directly with

eigenstates of spin and isospin. The isovector, pseudosca-
lar nature of the pion makes this difficult. For example, a
possible generahzation of the coherent state is42

T

I
N) =exp g A~iT~Jg I 3l7) (3.1)

where the A; are creation operators for the nine com-
ponents of an isovector, p-wave mode of the pion field,
and T and J are the total quark isospin and angular
momentum operators, respectively. If the bare three-

quark state
I 3q ) is a spin-isospin eigenstate then so is the

state
I
N ). However, as noted by Bolsterli, 4~ the algebra

associated with states of the form (3.1) is exceedingly
complicated. An alternative approach is to neglect com-

ponents in the wave function with two or more pions. In
the one-pion approximation it is then simple to ensure

that states are coupled to good spin and isospin.
Here I will follow the approach used in the MFA and

introduce the hedgehog ansatz. The coherent state con-
structed with this ansatz provides a quantum description
of the mesonic part of the baryon wave function. It in-

cludes multipion components in a tractable way. It also

tests earlier calculations, based on the MFA, which used

an approximate pro)ection method.
The full hedgehog trial state is of the form

I
H ) cr Abtbtbt

I
0) (3.2)

l

dependent modes, and so lead to Gaussian trial wave
functions. In the one-loop case, the fields are expanded in
terms of the normal modes for small oscinations about the
soliton, rather than about the vacuum. The Hartree ap-
proximation corresponds to the use of the most general
Gaussian trial function: ' both the modes and the corre-
sponding frequencies are determined variationally. Both
of these approaches are considerably more involved than
the calculations presented here. They require renormali-
zation and lead to highly nonlocal integral equations for
the mean fields in solitons. In addition, the projection
procedure will be complicated by the need to evaluate
overlaps between "vacuum" states defined for the expan-
sion bases about differently oriented solitons. Some steps
toward extending this method to include distortion effects
can be found in Ref. 21(b).

The quark field is expanded in a basis which includes
distortion of the orbitals. The corresponding vacuum is
thus not rotationally invariant. However, as in the MFA,
the effects of this are neglected. This is consistent with
the neglect of contributions of the distorted quark sea to
the energy (full one-loop diagrams). For more discussion
of one-loop effects, see the end of Sec. III.

III. THE HEDGEHOG BARYON

The bt's create three quarks in the same space-spin-
isospin state. They have different color quantum numbers
in order to satisfy the Pauli principle. The quark state is
a nodeless s-wave valence orbital:

i4 (r)X„
q(r)= 1

~48' 1 cr '% (r )Xs

where the spin and isospin are correlated in the spinor

Xs —— (X„X,—XgX, ) .=1
This spinor satisfies the condition

(3.3)

(3.4)

(rr+r)Xs ——0 .
The pion coherent state is constructed using a p-wave
creation operator with a similar correlation:

(3.5)

' 1/2

As =i f dsk h(k)k at(k} .
2

(3.6)

An s-wave coherent state is used for the o wave function.
This is constructed with the creation operator

' 1/2

F(k)at(k) . (3.7)A'. = f d'k
2

The correlations in (3.5) and (3.6) mean that the
hedgehog baryon is a mixture of states with equal total
spm and ssospm:

(H I«r}IH)
H H

(H I P(r) I H) (3.10)
(H I

H )

~h~~~ the radial functions F(r) and h (r) are the inverse
Fourier transforms of the functions used to define the
modes (3.6) and (3.7).

The model Hamiltonian, corresponding to (1.4), is

(3.9)

IH)= g ( —1} + Cg5M I I JMMr), (3.8)
JMkfg

where
I
JMMz ) denotes an eigenstate with T =J. The

hedgehog is analogous to the deformed states obtained in
Hartree-Fock calculations for nuclei. It should be a use-

ful ansatz to the extent that the energy differences be-

tween the states in (3.8) (mainly N and 5) can be regarded
as small compared with single-particle excitation energies.
Fiolhais, Urbano, and Goeke, have shown that the
hedgehog configuration minimizes the energy of a system
of qu~~ks and non-self-interacting pions in the mean-field
(or coherent-state) approximation. This correlation be-

tween spin and isospin also occurs in the intrinsic wave
functions of static-source models with strong cou-

phng 45,46

The expectation values of the a and pion fields in the
state (3.2) are

H= f "'" & ')l —'~ ~—g&[«r)+i&'&«»s&l«r)+-'[~o«)'+ I
~~«) I'+

I
~«) I'+

I &W(r) I'1

A,
2

+ [«r) +f(r) —v ]2+F m 2«r) —Uo (3.1 1)
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where the constant

Pl
Uo= —— +~ 'm

4A,
(3.12)

go—p(u
' U'—) 2g—huu

op Bh 2 h2
Br Br r2

A,
2

+ (op +h v)2+F—m iop —Up

(3.13)

where u(r) and u(r) are the components of the quark
function (3.3), op(r) and h (r) are the mean fields defined
in (3.9) and (3.10). The expression (3.13) is identical to the
energy of the MFA (Refs. 8 and 9). Variation with
respect to u(r}, u(r), F(r), and h(r) yields the saine
dynamical equations as the semiclassical approximation to
the Euler-l. agrange equations obtained from (14). Nor-
mal ordering subtracts off the (divergent) energy of the
vacuum,

~
0), in the coherent-state approximation. Since

the quantum fluctuations in the state (3.2) are the same as
those in the vacuum, this leaves an energy which depends
only on the mean fields in the soliton and not on the fiue-
tuations about them.

The fact that the coherent state provides a complete
wave function means that it is now possible to calculate
quantities which were unobtainable in the MFA. In par-
ticular, the average numbers of o mesons and pions are
given by

N =2m f k co kF(k) dk,

N =2m f k co kh(k) dk .

(3.14)

(3.15)

These numbers can be calculated from the MFA solutions
obtained in Ref. 8. The results, for the parameters
m~=1200 MeV and M& ——500 MeV, are X =1.85 and
X~= 1.18.

Note that the MFA is not a zero-quantum approxima-
tion, as it is sometimes described. Fluctuations about the
mean field must be present, by the uncertainty principle.
The approximation is to neglect the effects of these on the
dynamics of the system (loop diagrams). The fiuctuations
still can give nonzero expectation values to the meson
number operators, as mell as contributing to the total
momentum and angular momentum [cf. Eq. (1.2)]. Note
that these properties (3.14) and (3.15) depend on the func-
tions and frequencies used in the expansion of the field

ensures that the energy density vanishes in the vacuum.
With the approximations described above, the energy of
the hedgehog baryon is just the expectation value of the
normal-ordered Hamiltonian in (3.2}. This can be evaluat-
ed with the help of the coherent-state properties to give

3 BU Bu 2uUE=4n r dr Q —U
4m Br Br r

operators, as well as on the mean fields. Hence they can-
not be calculated in the MFA without additional assump-
tions about the normal modes of the system.

The projection method used to calculate nucleon prop-
erties in Ref. 8 assumed that the pions did not contribute
to the total spin and isospin; hence it cannot be exact. In
the present work, I use a projection method based on the
coherent state. This takes into account the angular
momentum and isospin of the pion quanta.

The MFA also neglects contributions to the energy
from the quark Dirac sea of negative-energy orbitals. The
nodeless s-wave orbitals (3.3}can, for certain values of the
model parameters, become bound to negative energies. '

It is still convenient to classify these orbitals as valence
orbitals, since the occupation of these levels by quarks
gives the system its baryon number of one. Also, as the
parameters are varied, there is no discontinuous change in
the properties of the baryon state at the point where these
orbitals pass through zero energy. s If MsR is large
enough (where R is the soliton radius) then "vacuum po-
larization" of the negative-energy continuum leads to a
baryon-number density which is more diffuse than that
obtained from the orbitals (3.3) alone. In the limit
MsR »1 (in practice for MsR &2.5) the method of
Goldstone and Wilczek can be used to calculate this
density in terms of derivatives of the pion fields. This ap-
proach leads to an expression for the baryon-number den-
sity which is identical to the topological charge density in
the Skyrme model. ' The solitons studied here and in
Ref. 8 have M~R —1—2, and so vacuum polarization ef-
fects are likely to be significant, although the calculations
of Ripka and Kahana ' indicate that the qualitative
features of the sohton should not be affected.

IV. PROJECTION

(J+T) ~H}=0. (4.2)

Hence separate projections for spin and isospin are not
necessary. Other authors ' have suggested the use of
more general coherent states without this property. These
would include admixtures of states with T&L Since
T&J resonances generally lie well above the nucleon in

The hedgehog baryon defined in the previous section is
not an eigenstate of spin or momentum. Eigenstates are
obtained from it using Peierls-Yoccoz projection, s by
analogy with the treatment of deformed nuclei. The
projected states are constructed in the "collective sub-
spaee"i~ spanned by all states of the form R(&)

~
~)

where R(Q) is a spatial rotation through Euler angles 0
(Ref. 51}. The appropriate weight functions for angular
momentum projection are the D functions; the spin-
isospin eigenstates are thus

~
JMM, ) =X,sr, f d'&D~J ir, (&)'R(I})~H) . (4.1)

The third component of the isospin, Mr, phys a role
analoIIous to the band quantum number in a deformed nu-
cleus. '

The correlations in the hedgehog mean that it is invari-
ant under combined spin and isospin rotations:
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energy, such admixtures are likely to be small in intrinsic
states corresponding to the N and b, .

It is simplest to work only with states for which
M =—Mr, since these can be obtained from the hedgehog
with the projection operators

hedgehog is related to Cq by

(2J+ 1)Cg

(HlH)
where

(4.7)

PI~ —— f d QDsr~(Q)'R(Q) .
8

(4.3) (HlH)= (4.8)

These have the basic properties of projection operators,
name1y,

(~mr) =Plier

(Peer )'=Pm .

(4.4a)

(4.4b)

If the projected states are normalized to unity, then
(4.1)—(4.4) can be used to obtain an expression for the

The expectation value of a scalar operator S in one of
the projected states is

(JM —M ls lJM —M)

(HlP SP lH) . (4.9)
Sir'

2J+1

This can be simplified, since S commutes with the rota-
tion operators, and hence with Pqsr. Using this, along
with (4.3) and (4.5), the matrix element can be written as a
ratio of two angular integrals:

8
((H

l Pgsr lH))

f d QDsrsr(Q)(H lR(Q) 'lH)

( JM M lS —
l
JM M)—

f d~QDsisr(Q)(H lR(Q) 'S lH)

QD~~Q H RQ ' H
(4.10)

(4.5)

The coefficients Cq in the expansion (3.8) are given by

C,'=&H lP,si lH&

f d QDsrsr(Q)(H lR(Q) ' lH) . (4.6)
8

The probability of finding a state of spin J in the

R(Q) 'Vi R(Q)= gD' (Q)'Vi~ (4.11)

and so do not commute with Plier. Using (4.11), the defi-
nition (4.3), and recoupling the D functions gives

Similar manipulations can be performed on the matrix
elements of vector operators. These operators transform
under rotations as

PqsrVi~Pgsr (——JM lm
l
JM) g (JMlm'

l
JM') f d'QD~ sr(Q)R(Q) 'V, ~ .

Srr t

Hence the expectation value of V3 in the state
l
JM —M ) can be written as

D~~~ 0 H R 0 V~~ H
(JM —Ml V,

I
JM M&=&JMIO—

I JM& g &JMlm
I
JM )

M'm AD~MA H RQ ' H

(4.12)

(4.13)

The Appendix contains details of the evaluation of (4.11) and (4.13) for various operators corresponding to terms in
the energies and other properties of baryons. It is straightforward to generalize these results to include transition matrix
elements between states of different J, although I have not done so here.

The energy of the projected state with spin J is

Z, =&JMM, l:H:l JMM, &

3 Bv Bu 2uu 2 2
Bo'0

=4n r2dr ' u —u + —goo(u —u ) 2ghuu-
' 4n Br Br r 2 Br

'2

+ i-h +m h Co(J;N )+ (oo —v ) + (oo F)h C2(J;N~)—

2.2+ h Cg(J;N )+F m 'era Uo— (4.14)
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This differs from the unprojected energy (3.13) because of
the projection coefficients C;(J;N ). These depend on
the spin of the state and on the average number of pions
in the unprojected state (3.15). Their full forms are given
in the Appendix.

Since the cr mesons are isoscalar and in s waves, their
average number is unchanged by projection. The number
of pions in the projected state is related to N by

(N )J N——CO(J;Ã ) . (4.15}

The numbers presented in Table I are obtained by vary-
ing the field functions to obtain a stationary value for the
energy of the hedgehog, (3.13), and then projecting. A
better procedure is to look for stationary values of the en-

ergies of the projected states, (4.14), since it is these states

Table I gives the energies and average numbers of pions
for projected states obtained from the MFA field distribu-
tions for the parameters m =1200 MeV and Me =500
MeV. Also listed are the probabilities of finding each of
the states with good spin in the unprojected hedgehog.
The largest probabilities are those for states with J(—,.
The 5 lies —120 MeV above the nucleon, and a J= z is
-300 MeV higher still. However, these energies should
not be taken too seriously, since they have been obtained
by variation before projection. In the next section I dis-
cuss the better procedure of variation after projection.
The average number of pions increases with J; at least one
pion is needed to form a state with J= —,', at least two for
J=—,, etc.

The energies of the states with J~ —,
' increase rapidly

with J. These states are very small components of the
unprojected wave function and so should be regarded as
artifacts of the approximations.

Finally, the numbers of Table I provide several numeri-
cal checks on the calculations: the probabilities Pq add up
to one, as they should; the averages of the Ez and the
(N }q, weighted with these probabilities, reproduce the
energy (1119 MeV) and number of pions (1.18} for the
unprojected state.

V. VARIATION AFTER PROJECTION

1

2
3
2
5
2
7
2

9

0.293

0.452

0.200

924

1041

1355

1839

0.70

1.02

1.SO

2.69

that are to be treated as approximate eigenstates of the
Ha~iltonian. Note that the spectrum of the Dirac equa-
tion is unbounded from below, and so the "best" value for
the energy is only a stationary point, not a minimum with
respect to all variations.

Variations of (4.14) with respect to u (r), v (r},and no(r)
l~d to the coupled equations

Bu
dr

+(e gcre)v —+ghu =0,
BU 2U+ —(e+gov)u —ghv =0,
Br r

8 O'U 2 Bo'U —g(u —U )+A(o'0 v, )cro-
Qri r dr

(5.1a)

(5.1b)

+F~m +A. ovh Cq(J;N )=0, (5.1c)

where e is the Lagrange multiplier for the quark normali-
zation condition:

r g +v r=l . (5.2)

These nonlinear differential equations are similar in form
to the MFA equations, except for the presence of the pro-
jection coefficients. Through their dependence on Ã~,
these coefficients are functions of the pion field h(r).
Their appearance in (4.14) leads to a nonlinear integrodif-
ferential equation when the energy is varied with respect
to h (r}:

TABLE I. Decomposition of the hedgehog wave function in

terms of eigenstates of spin and isospin. The wave function is

constructed vrith the fields obtained from a MFA calculation,
for the parameters M~ =500 MeV and m =1200 MeV.

Eg (MeV}

+—h+m h Co(J;N )+A, (oo —F )hC2(J;N )+A, h Cq(J;Ã~) — guv+h (r) =0,
r dr ri 4 aÃ.

(5.3)

where

dEJ
=4m. r dr

BN~

dh 2
h h

dCO(JS ) g2 dC2(J& ) gi dc (JN )

(5.4)

(5.5)

and h (r) is defined by
5N

h„(r)=
4v.r' 5h(r)

" 1/2

f k a) kh (k)J i (kr)dk .
I

The solutions to these equations should satisfy the

boundary conditions, for r~ 00,

u (r}-—exp[ —(M —e )' r],r
]. —EN ~fov(r)+F ——e

—m rh(r)- —e

(5.6a)

(5.6b)

(5.6c)
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as in the MFA.
Fortunately, the final term in (5.3) is relatively small

for the range of parameters studied here. A simple itera-
tive procedure is thus sufficient to solve the coupled equa-
tions (5.1) and (5.3). Initial forms are guessed for the
functions M (r}, U(r), ere(r}, and h (r)—the MFA results
provide a suitable starting point. These are used to calcu-
late the C~(J;N ), h„(r), and dEqldN, which are then
kept fixed. The resulting coupled, nonlinear, differential
equations are then solved using the package coLSYs (Ref.
52). The quark eigenvalue s is iterated on until (5.2) is
satisfied. The new field functions are then used to recal-
culate the C;(J;N ), h„(r), and MqldN, and the pro-
cedure is repeated until adequate convergence is achieved.
The whole process takes -20—25 min on a VAX 11/780.
This time could be reduced by combining the iteration on
e with the main iteration, or by using the method of
Koppel and Harvey, '3 which determines the coupling g at
the end of the calculation.

The N and 5 energies and average numbers of pions are
shown in Table II, for three values of Ms, all with
rn =1200 MeV. The energies decrease with increasing

M& because of the increile in the attractive quark-pion in-

teraction. The dependence on m is much weaker: the
nucleon energy ranges from 828 to 919 MeV as m is
changed from 600 to 2000 MeV (with Ms =500 MeV).
This is similar to the results in the MFA (Ref. 8). Both
the unprojected and projected wave functions are dom-
inated by field configurations in which o(r)~+(()(r)2 is
close to Ii . This can be seen from Fig. 1, which shows
the functions pro(r) and h (r). These field configurations
correspond to the peak, in function space, of the
coherent-state wave packet. Since the fields he close to
the circular minimum of the Mexican hat potential [see
(1.4}], the energy of the system is relatively insensitive to
m~, which determines the curvature of the potential at
the minimum. In general, the differences between varia-
tion before and after projection are relatively small, as can
be seen from Figs. 1 and 2.

The N-5 mass splitting is, in all cases, about half the
observed 300 MeV. This may, in part, be due to the
hedgehog ansatz, and the restrictions it imposes on the tri-
al states used in variation after projection. It is also likely
that additional spin-dependent interactions between the
quarks are needed. These would correspond to residual
gluonic interactions, which are not included in the collec-
tive effects modeled by the pions and o meson. Similar
interactions are needed in the cloudy bag model, in order
to fit the N-6 splitting.

The parameter set M~=450 MeV, m =1200 MeV

04

02

I

05 10 l5 20 25
t (frn)

FIG. 1. Meson field distributions obtained by variation after
projection. The solid lines are oo(r) and h(r) for the nucleon;
the long~shed lines are for the h, . For comparison, the unpro-
jccted MFA results (Ref. 8) are also shown, by the short-dashed
lines.

gives an average of the N and b, masses which is in good
agreement with its experimental value, 1080 MeV. This
set will be used in the rest of this work.

The average numbers of pions in the N and 6 wave
functions are close to one, while the average numbers of o
mesons are 1.7 and 1.9, respectively. Table III lists the
probabilities P(nm) of finding n pions in the projected
baryon wave functions. These probabilities are calculated
using matrix elements of the appropriate projection opera-
tors in (4.11). They show that the N and 4 wave func-
tions contain significant two-pion components, in addition
to those with zero and one pion.

As well as the N and 5 states, a baryon state with
J=7=—, is obtained by variation after projection. For
the parameters Mz ——500 MeV, m~ = 1200 MeV, this state
lies at 390 MeV above the nucleon. No such state has
been observed, although it would be experimentally diffi-
cult to detect, due to its isospin of —,. The pionic content
of this state is much larger than that in the N or 5: its
average number of pions is 2.4. Although this state is a
significant component of the unprojected hedgehog (cf.
Table I), it still may be an artifact of the approximations,
and not a feature of the model. It lies above the Nnn.

TABLE II. Dependence of M~ of the X and 6 energies ob-
tained by variation after projection. Also shown are the average
numbers of pions in these states. The cr mass was 1200 MeV in
all cases. All energies and masses are in MeV.

1108
1000
871
726

0.82
0.89
0.93
0.96

1238
1141
1023
891

1.12
1.23
1.31
1.37

05 )0 ).5 20

FIG. 2. Quark wave-function components, u (r) and U (r), ob-
tained by variation after projection. For notation see Fig. 1.



33

TABLE III. Probabihtics of finding n pions in the X and 6
wave functions. The results are for the parameters M~=450
MeV, m =1200MeV.

ment is given by

p~= —, pt r rgJ&M r, pt

and its mean-square charge radius by

(6.5)

0
1

2
3

&5

0.445
0.323
0.157
0.055
0.015

g 0.01

0.270
0.391
0.220
0.086
0.026

& 0.01

rp' —pt d'rr'ZO~M r pt

The axial coupling is

gz ——2 pt 3rA3 r pt

(6.6)

(6.7)

As a matrix element of the pion field, the m-N coupling is

threshold, and so it is possible that coupling to the contin-
uum would be so strong as to give no clear resonance.

=m '(nt f d3rzg~(r) mt), (6.8)

UI. NUCLEON PROPERTIES

The wave functions can be used to calculate a variety of
baryon properties, in addition to their energies. In this
section, results for nucleon electromagnetic properties, ax-
ial coupling, and n-N coupling are presented. Also, I
compare these results with those obtained in Ref. 8 by an
approximate projection method.

Electromagnetic properties, such as magnetic moments
and charge radii, are calculated by taking the appropriate
moments of matrix elements of the electromagnetic
current:

~5M =fr"( g + 2 &iV+&3«pP"0p (6.1)

A"= '4r"r5%-+~&4 (6.2)

The m-N coupling constant can be calculated in two ways:
as a matrix element either of the pion field P or of the
pj.on-source current

j =(CI+m i)p

=igA'sW ~'(~'+O' I'.')4 . — (6.3)

Finally, the o commutator, extracted from s-wave m-N
scattering, "' is given by the matrix element of the expli-
cit symmetry-breaking term in the Hamiltonian (3.11):

H,b ——E m~ r 0 r+F~ (6A)

These properties should be evaluated by taking matrix
elements between nucleon momentum eigenstates. In a
coherent-state treatment, such states can be constructed
from the localized soliton by using Peierls-Yoccoz projec-
tion. This procedure has been carried out in Ref. 21 for
the soliton bag model. It will be more complicated in the
model studied here, due to the need for projection onto
eigenstates of both angular and linear momentum. In the
present work, I follow the approach used in bag models
(and in Ref. 8) and interpret the localized state as a nu-
cleon wave packet. Nucleon properties are then evaluated
assuming that the momenta in the packet are small
enough to be treated as nonrelativistic.

%'ith the above assuxnptions, the proton magnetic mo-

The axial couphng constant, measured in neutron p decay,
is a matrix element of the space part of the isovector
axial-vector current:

while the alternative expression, in terms of the pion-
source current, is

)at rZJ~3 r (6.9)

The o commutator is defined by

N ——pt 3r ur+F. pt . 6.10

Details of the evaluations of these matrix elements can
be found in the Appendix. The numerical results are
displayed in Table 1V. In general, the agreement with ex-
periment is reasonable. The major differences are for
g~/g~ and n N, but Broniowski and Banerjee'0 have
shown that the extension of this model to include vector
mesons leads to a significant improvement in these num-
bers. The n-N coupling is also significantly larger than
its observed value. However, this is not an entirely in-
dependent quantity since, in a self-consistent solution to
the model, g N~ and gz are related by the Goldberger-
Treiman relation.

As noted in Ref. 8, gz and cr ~ are the only observables
which depend directly on the n field. The large meson
piece of gz in this model is due to the large deviation of
the mean a field from its vacuum value, E(see Fig. 1—).
In the cloudy bag model, 3z there is no such mesonic can-
tribution, at least to lowest order, since the cr field is
essentially fixed to its vacuum value. The model of Ref.
10 uses a smaller value for the quark-scalar-meson cou-
pling g. This leads to a mean cr field with a radius -0.4
fm, as compared to -0.6 fm in the model without vector
mesons. The meson pieces of gz and o' z are correspond-
ingly less. The smaller value for g also leads to a smaller

g ~~, as required by the Goldberger-Treiman relation. It
should be noted that the inclusion of vacuum polarization
effects may also tend to reduce the cr radius, and weaken
the effective quark-pion coupling.

For comparison, Table IV also contains the results of
Ref. 8. The quark pieces of these were calculated neglect-
ing the meson contributions to the total spin and isospin
of the nucleon. The meson pieces were obtained in a
coherent-state-type approximation, which is identical to
the present method for operators linear in the pion field
(see the Appendix). In general, the present results are
somewhat smaller than those of Ref. 8. There is little
difference in the meson pieces, but the quark piaxs are re-
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TABLE IV. Nucleon properties. Those shown are the proton and neutron magnetic moments {in nu-

clear magnetons n.m. ) and mean-square charge radii, the axial-vector coupling and its mean-square ra-
dius, the fr N-coupling constant, calculated using Eqs. (6.8) and (6.9), and the mean-square radius of the
pion source, the cr commutator, and the mean-square radius of the quark density. %'here relevant,
quark and mean contributions to the properties have been separated. The parameter set used is

M~ =450 MeV, m =1200 MeV. The numbers in parentheses are the results of the MFA calculations
of Ref. 8 (with numerical errors corrected as in Ref. 10), for M~ =S00 MeV.

p~ (n.m. )

p„(n.m. )
r~~ (fm~}

ro, ~ (fm~}

gg ~gv
r~' (fm')

8)

g~N~ (6.9)

r 2 (fm2)

o ~ (MeV)
rqi (fmi}

1.38
—1.03

0.39
0.09
0.98
0.20

1.20
—1.20

0.16
—0.16

0.81
0.21

0.41

2.58
—2.23

O.SS
—0.07

1.78
0.41

0.93

1.28

0.93
86
0.48

Total

(2.87)
( —2.29}

(1.86)
(0.42)

(1.06)

(1.S3)

(0.8S)
(92}
(0.47)

Experiment

2.79
—1.91

0.70
—0.12

1.26
0.S2+0.17

1.00

35%10

duced by —15—20%. The reduction in the quark pieces
is due to the qtMuitum treatment of the pions. This allows
mixing of various qu~~k spin-isospin states inta the nu-
cleon wave function. For example, a spin-up proton is
sometimes three quarks with the quantum numbers of a
spin-down proton (or a neutron or a b, ) plus one or more
pions. In the perturbative language of the cloudy bag
model, z the reduction of the quark piece would be
described as a combination of wave-function and vertex
renormalizations.

Another consequence of the quantum treatment of the
pions is that they can carry electric charge, and hence
they can contribute to the nucleon charge radii. The cal-
culated values for these radii are in reasonable agreetnent
with experiment.

Although the calculated proton magnetic moment is in
good agreement with experiment, the ratio of proton and
neutron moments is rather poor. The present results give
p~/p, „=—1.16. The experimental value is —1.46, close
to the pure quark model result of —1.5. This suggests
that the pionic component of the wave function obtained
here is too large to be reahstic. As well as contributing
directly to the isovector moment, the pions reduce the
quark pieces of the moments as described above. Both ef-
fects reduce the isoscalar moment relative to the isovector,
and so bring @zip,„closer to —1. Another constraint on
the number of pions in the nucleon wave function is pro-
vided by the ratio of strange to nonstrange sea quarks ob-
served in deep-inelastic scattering. Thomas has used the
results of deep-inelastic neutrino and antineutrino scatter-
ing to obtain an upper bound of about 0.5 pions per nu-
cleon, although the uncertainties are rather large. On the
other hand, the number of pions catmot be too small, as it
is then difficult to get agronnent with the nucleon charge
rgrill.

The two calculations of the ir %coupling, (6.1-0) and
(6.11), differ by about 35%. The difference between them
corresponds to a virial theorem of the kind discussed in

Ref. 21. These virial theorems are time derivatives of ex-
pectation values of various operators. They should vanish
for an exact eigenstate of the Hamiltonian. In the
Schrodinger picture they can be evaluated in the form

i—(0)=([o,a]) .. d
dt

(6.11)

(6.13)

a„A"=Z m iy, (6.14)

the vanishing of (6.9) in an exact eigenstate leads to the
usual re1atioo

(6.15)

where the couplings are both evaluated at zero three-
momentum transfer, (6.7)—(6.9). The values for g„calcu-
lated using (6.15) and the results of Eqs. (6.8) and (6.9) are

The extent to which an approximate solution satisfies
these virial theorems provides a test of the approximations
used. Of course, their satisfaction is only a necessary, not
sufficient, condition for an approximate solutian to be a
good one.

In the present case, the difference between (6.8) and
(6.9) is the time derivative of the expectation value of

0= J d rzm&(r), (6.12)

where i'(r) is the conjugate momentum to Pi(r}. The
corresponding Eq. (6.11} is an integral of the Euler-
Lagrange equation for the pion field. The analogous viri-
al theorem for the o field is automatically satisfied, since
it is a consequence of the variational equation (5.1c).

Another useful virial theorem is provided by the
Goldberger-Treiman relation. This is obtained by consid-
erI.Qg

0= J d rzAi(r} .

Fram the PCAC (partial conservation of axial-vector
current} equation
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1.24 and 1.70, respectively. These are to be compared
with the directly calculated value 1.78. The agreement be-
tween the number from (6.9) and g„ is very satisfactory.
However, the 35% discrepancy between (6.8) and (6.9) is
disturbing and suggests that the present calculations need
to be improved on.

The experimental value of g ~z is obtained not at zero
three-momentum transfer but at q = —m . For small
q2 the difference between g ~~(q ) and g ~pg(0) can be
estimated from

g Nn(q')=g N~(0)(1 ——'& 'q'» (6.16)

where r~ is the mean-square radius of the pion-source
current:

r ~= nt f d~rr'zj, (r) nrI,
g m(0)

(6.17)

where g ~N(0) is given by (6.9). The calculated r~ corre-
sponds to a value for g ~~( rn —) which is 5% larger
than g N~(0). This is comparable with the -7%
discrepancy in the Goldberger-Treiman relation for the
experimentally observed values of gz and g ~~.

VII. COMPAMSONS %PITH OTHER MOlMLS

It is interesting to compare the nucleon wave function
obtained in the present approach with those used in other
models. Here I consider two models which also include
pionic degrees of freedom and (approximate) chiral sym-
metry: the cloudy bag model and the Skyrme model.

The cloudy bag model describes hadrons in terms of
massless quarks confined inside a bag. To maintain
axial-vector-current conservation, the quarks are coupled
to the pion field at the surface of the bag (or through an
equivalent pseudovector coupling in the bag interior). The
pion field is described by a nonlinear cr model. For large
bag radii (&0.8 fm) the quark-pion coupling is weak
enough for a perturbative treatment to be justified. The
pion field can thus be quantized using the linearized ap-
proximation for small oscillations about the vacuum.
This is in contrast with models with small bag radii,
where the pion coupling is too strong for perturbative
methods to work.

Despite the differences in their physical motivations,
the linear cr model studied here and the cloudy bag model
lead to surprisingly similar nucleon wave functions. Both
are in good agreement with observed nucleon electromag-
netic quantities and both give quark wave functions with
rms radii -0.7 fm. If the pions are treated to first order
in the cloudy bag model, the average number of pions in
the nucleon wave function is between 0.3 and 0.5, for bag
radii between 1.0 and 0.8 fm. When components with
more than one pion are included, an upper bound of 0.9
pions is obtained, for a bag radius of 0.8 fm. This is com-
parable to the average number of pions per nucleon ob-
tained in the present work, which includes multipion com-
ponents via the coherent state. Deep-inelastic scattering
results suggest that a smaller number of pions may be
more realistic, corresponding to bag radii of about 0.9 fm
or larger.

Another approach, which has received much attention

recently, is the Skyrme model. ' '6 By contrast with the
model studied here and the cloudy bag, this model does
not include explicit quark degrees of freedom. Instead it
is based on a nonlinear cr model with a fourth-order
derivative interaction {or coupling to vector mesons' ) to
produce stable sohtons. These are known as "Skyrmions. "
The solitons with a winding number of one are identified
with baryons, since topological arguments show that they
can be quantized as fermions. ~9 ~ The hedgehog ansatz is
used, and the field distributions in the resulting solitons
are qualitatively similar to those shown in Fig. 1, except
that they satisfy the nonlinear constraint cr +P =F . In
fact, a Lagrangian very similar to the one proposed by
Skyrme can be obtained from the present model by in-
tegrating out the quark degrees of freedom. In the limit
where the quark-meson coupling is large, the resulting ef-
fective Lagrangian can be expanded in powers of deriva-
tives of the pion field and the leading terms include the
Skyrme fourth-order interaction. ' In this large-g limit,
the identification of the topological winding number with
baryon number can be understood in terms of the
deeply bound quark orbitals discussed in Sec. III.

As originally described, the Skyrmion is a hedgehog ob-
ject. Before its properties can be compared with those of
a real nucleon, some way must be found to quantize it and
project out spin-isospin eigenstates. However, as noted in
Sec. I, the nonlinear constraint on this model means that
it cannot be quantized in the usual canonical way. Hence,
for example, the methods of the present work cannot be
applied to it. At present, there is no way to quantize all
the model's degrees of freedom in a manner which can
handle large-amplitude fluctuations, such as collective ro-
tations of a Skyrmion. (Numerous authors have used
linearized approximations for small-amplitude oscilla-
tions, to study vibrational excitations and m-N scattering
in the Skyrme model. )

In lieu of a complete quantization, Adkins, Nappi, and
Witten have proposed a semiclassical approach. '~ This
quantizes only the collective coordinates associated with
rotations of the Skyrmion, treating it as a rigid rotor. It
leads to a Hamiltonian which has a local dependence on
the collective coordinates [the Euler angles describing the
relative orientation of the spin and isospin axes in the
hedgehog, cf. Eq. (4.1)]. Hence this approach implicitly
assumes that the overlap between rotated and unrotated
hedgehog states is essentially a 5 function of the Euler an-
gles:

(7 1)

Such an assumption should be good in a situation where
the nucleon wave function contains a large number of
qu"mta. This would be the case in the limit where the
number of colors is large (a limit often used in motiva-
tion for the Skyrme model ) or if the nucleon were a
strongly coupled source for the pion field. Neither of
these cases corresponds to the real world with three colors
and, at most, about one pion per nucleon. This is illus-
trated in Fig. 3, which shows the dependence of the over-
lap [see Eq. (A3)] on one of the Euler angles, for various
numbers of quarks and pions. For the soliton studied
here, the overlap has a width -m/3, which is not much
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FIG. 3. Dependence of the overlap (H
~
P(Q } '

~

H } on the
Euler 4 [cos4/2=cos(P/2)cos[(a+y)/2j). The solid line

carresponds to the soliton studied here, with N, =3 quarks and
7 =1.5 pions in the unprojected hedgehog. The long-dashed
lines show the results for N, =1, 11, and 101, all with F =1.
The short-~@shed lines are for N =0 and 10, both with N, =3.

smaller than far a bare three-quark hedgehog.
Because of its assumption of a large number of quanta,

this method predicts an infinite rotational band of J ='1
baryon states. No such states have been observed for spin
—,
' or greater. Also, it is difficult to obtain a better than

qualitative description of nucleon properties in this ap-
proach. In particular, rather poor agreement with experi-
ment is obtained when F is fixed to its measured value.
A further problem is that the semiclassical quantization is
not a projection method (such as the one used in this
work). Hence "variation after projection" is dangerous:
Braaten and Ralston s have shown that the Skyrmion
tends to collapse if such a procedure is attempted. This is
due to the fact that the semiclassical rotor can radiate
pion waves unless the pion mass is larger than the fre-
quency of rotation.

VIII. SUMMARY

The coherent state2 9 provides a full quantum
description for the bosonic parts of saliton wave func-
tions. It has many features of the mean-field approxima-
tion for localized states which break the translational, and
other, symmetries of Geld theoretic models. It can be
used for projection of these states onto eigenstates of the
appropriate symmetries, and it can also provide a starting
point for descriptions of the scattering of solitons. The
generator-coordinate method, which has been widely
used in nuclear physics, is thus an attractive alternative
to collective coordinate approaches in field theories. In
some cases, the collective methods become very compli-
cated; in others they rely on semiclassical assumptions
which may not be justified.

Here I have applied this method to a chiral model ' of
the nucleon and h. A coherent state is used to describe a
hedgehog baryon, and this is projected onto spin-isospin
eigenstates. The N and b, wave functions are varied after
projection. The resulting N-5 splitting is about half the
observed value, suggesting the need for residual, spin-
dependent gluonic interactions. The calculated nucleon
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APPENDIX

In this appendix I give details of the calculation of ex-
pectation values of various operators in the projected
states, using the formulas (4.10) and (4.13).

The normalization integral in those expressions is

Jd QDJ J(Q)(H——i
R(Q) '

i
H } . (Al)

The overlap between the rotated and unrotated hedgehog
states can be calculated using (2.7)„ the definition (3.2),
and the overlap between rotated hedgehog spinors:

XsR(Q) Xs =cos eas
t" i LJ ~+y

2 2
(A2)

This gives

properties are in reasonable agreement with experiment,
and are similar to those obtained in earlier MFA calcula-
tions. The quantum treatment of the pions means that
their contributions to charge radii can be calculated in the
present approach. The model nucleon wave function con-
tains about one pion on average; this is comparable to the
cloudy bag inodel. Because of the small numbers of
quanta in realistic nucleon wave functions, semiclassical
methods, such as used in the Skyrme model, ' ' are ex-

pected to yield poor results.
The coherent state can also be projected onto eigen-

states of hnear momentum. This needs to be done, since
there may be significant center-of-mass corrections to nu-

cleon properties. (Such calculations have already been
made in the soliton bag model. ') One should also explore
more general trial functions, which do not rely on the
hedgehog ansatz. The present calculations need to be ex-
tended ta include vector mesons, since these have been
shown to have important effects on some nucleon praper-
ties in this model.

Finally, the effects of vacuum polarization needed to be
studied. The work of Ripka and Kahana~ sc has shown
that inclusion of the Dirac sea can significantly change
the detailed forms of the quark density distributions and
contributions to the total energy in this type of soliton.
Also, the noninteracting basis used here to expand the
meson fields needs to be improved on: a one-loop calcula-
tion should be done to investigate the effects of distortion
af the meson vacuum.
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(H (R(Q)-'
i
H &

where a, P, and y are the usual Euler angles. 5' The D
function has the form"

cos cosP a+y
2 2 D~~(Q)=e ' +r'(cosP/2) (A4)

(A3)
and so the integrand in (Al) does not depend on a —y.
Hence the integration over a —y is trivial. The integral
over P can be done analytically, and leads to

1
~ 2% 2J+3 4—

~q=4rrexp(N~ —,N—) dacos(2Ja)cos aI; Nc—os a
0

(A5)

where
'2n

P 2p d" e' —1I(n;a):——, d13sinP cos— exp a cos—
0 2 da"

(A6)

The integral over a must be done numerically. In the
present calculations 20 points were used, equally spaced
between zero and ir/2 (due to the symmetry of the in-
tegral}.

Using the form of the quark single-particle wave func-
tions (3.3},the quark pieces of the mean-square charge ra-
dii can be written

where the total quark spin is

&S=—,
' f d'rg og,

and the "Gamow-Teller" operator is

G, = —,
' f d'rq'or, q.

(A12)

(A13)

(IMMq J d re ~JEM jhlM~)

P P g +U 2+ JMM& g3 JMMP

(A7)

where &Ts is the third component of the total quark iso-
spin operator:

(lTq ———,
' f d r /trig. (AS)

The quark pieces of the expectation values of various
vector operators are

jMM~ J d r —,(rx&JEM)* JIM')
r r uU JMM~ —,~S,+63 JMM~, A9

JMMg r A3 JMMg

= f dr(u ,'U )(JMM—r ~

~Gi—~JMMr), (A10)

jMM~ J d'rx~j, jMMr)

From the definition of the hedgehog spinor (3.4), one
finds that

XsR (Q) 'rs}j'.s —— i sin — cos—,a+y L3

2 2
'

and so the total quark isospin is found to be

(A14}

(JM —M) ~T,
~

JM M&—
f d QDiir~(Q)tan

2.+"g 2

X(H iR(Q)-'iH&. (A15)

The integral over Euler angles can be done in a similar
manner to the normalization integral.

The total quark spin can be calculated using

in (4.13). After recoupling the D functions, one obtains

+„R(Q) ', X„= g (-, 1
)

—,
' ')D„„(Q)',

p~p

(A16)

1/2
3(2J + 1)

2
(JM —M

i
~Si

i
JM M)=—

2.A J

1
1 1

, 2 2

(JM—,
' —p,

~

J'M') ( —1)
p,J',M'

(Q) (H i R(Q) '
i H)

cos cos2' 2

(A17)
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The expectation value of the Gamow-Teller operator can be evaluated similarly, using

XtsR (Q) 'cri g ( —I)'"-~&-,'i lm
~

—,'i &D„".'„{Q)'. (A18)
|M~@

This leads to an expression for & JM —M
~

~63
i
JM —M & which is almost identical to (A16), differing only by a factor

of ( —1}' " in the sum over )u.
In calculating the energy of a projected state, it is convenient to group the pionic terms into the free pion Hainiltonian,

a second-order, and a fourth-order interaction. Terms which do not involve the pion field (such as the quark and o ki-
netic energies) are not affected by projection. The pionic terms can be evaluated using the analogues of (2.8) and (2.9) for
rotated and unrotated hedgehog states:

&HIR{Q) '4'«) IH&= zP+O{Q} '&]Ii«)&HIR{Q) 'IH&

&H )R(Q) 'sr(r) [H&= —i—,'[9+O(Q} ~r]h„(r)&H (R(Q) ' iH&, (A20)

along with similar expressions for higher powers of the field operators. Here h (r) is defined by (5.5), and O(Q) is the
SO(3) matrix representation of R(Q).

The quark-pion coupling term involves

& H
I

R(Q}-'ik{r)~ $(r)ysf(r) I
H & = — "(")"(r)" {r)XsR(Q) (9 cr) TP+O(Q} r] rXi,

6 &HiR(Q) 'iH&
4m a+ycos cos

2 2

Using (3.S) and the analogous relation for R (Q)Xi„

[O(Q) 'u+r]R(Q)Xi, ——0,
(A21) can be written as

(A22)

&H
~

R(Q) 'iit)(r)r P(r)y&g(r)
~

H & = u(r)u(r)h(r)&H
~

R(Q) '
~

H & .
4n.

This shows that the quark-pion term also is unaffected by projection, as noted in Ref. 67.
Since the cr part of the wave function is unaffected by projection, the o field can be treated as a c-number function.

Using (A19), the second-order interaction term can be written

JJ—J f drr a(r) d(r): JJ—J)= f drreo(r) h(r) f d'QDrr(Q) ,'[ +r)Q( )r](Q—()(J(JQ) '(JJ)
J

=Cz(J;N )4n J r drao(r) h(r)

where the projection coefficient is defined by
2

(A24)

C2(J;N )
—= f 1 Q DJ J(Q) 1+2 cos—cos

J
&HiR(Q)-'iH& .

The fourth-order interaction term can be evaluated similarly to get

(A26)

where
2 4

C4(J;N„)= d3QDJJJ(Q) 3+4 cos—cos +8 cos—cos +y1 &+1' CX+ |J
15M' 2 2 2 2

&HiR(Q)-'iH& . (A27)

The noninteracting term is most easily evaluated by using the fact that it is diagonal in the basis used tp expand the
pion field:

:Ho'= J d kco kat(k) a(k)

This term in the energy can be written
h

$ 2+~ 2/2
Bl' y

(A28)

(A29)
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'2

Co(J;N )= f d QDJz(Q) 4 cos —cos —1 (H iR(Q) ' iH) .
1

(A30)

The pion number operator has the same form as (A28) (without the factor of co «). Hence the average number of pions
in the projected state, Eq. (4.15), is also multiplied by Co(J;N„).

The pionic contribution to the charge density operator [the time-component of (6.1)] is

J~aM =:[4Xir]~: . (A31)

Hence, from (2.19) and (2.20), the meson contribution to the mean-square charge radius is

(
JM M —f d rr JrM dM —M)=i f d rr h(r)h (r) f„d QDrrrr(QVr'XO(Q) 'r(H(R(Q) '(H)

J

where

=C,h(J, M;N—H) f r drh(r)h„(r),C

'2

(A32)

C,h(J, M;N —): i ——f diQD~sr(Q)sin cos cos— (H
i
R(Q) ' iH) . (A33)

The simplest vector operators to consider are ones which are linear in the pion field. These are of the form

V= rr r 3r (A34)

where f ( r) is either a spherically symmetric c-number function, or depends only on the o field. In evaluating matrix ele-
ments of vector operators, it is convenient to rewrite (A19) in spherical notation:

(H iR(Q) 'pi~(r) iH) =—ri + yr, D' „(Q) (H iR(Q) ' iH) . (A35)

Hence the matrix element of V between rotated and unrotated hedgehogs is

(H iR(Q) 'Vi iH)= f r dr f(r)h(r}[5 0+(—1) D' 0(Q))(H iR(Q) 'iH) .
3

(A36)

Using this in (4.13) and recoupling the D functions, one finds that both terms of (A36) give the same contribution.
Hence the expectation value of V& in an eigenstate is

( JM M
i Vi i

JM ——M) = (JM10
i
JM) f r dr f (r)h (r) .

3
(A37)

This is the form used for the calculation of mesonic pieces of vector operators in Ref. 8 [see Eq. (3.13) of that paper].
The axial-vector coupling constant can be calculated using f(r)= 82o /Der in (A37). The pion coupling (6.8) is ob-

tained for f( r) =r, and the first-order piece of (6.9) for f ( r) = —A, (oo —F ).
The calculation of g zz from (6.9) also involves a term which is third-order in the pion field. This can be evaluated

from (4.13) and
I 3

ri~ r'+ gr, „D„'„(Q)(—1)"ri
PhP

r,o+ g ri~„'0(Q) (H
i
R(Q) '

i
H)

V

f r'drh(r)' 65,+6(—1) D', (Q)

+8,y D„' „(Q)+(—1) D', (Q) g D„' „(Q)

+ D' (Q)+( —1) yD' „(Q)D„,O(Q) (A38)
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After recoupling, and using the fact that f d QDsr M(Q)(H
~
R(Q) ' ~H) is independent of M, one obtains

dM M —f dzrz4(r)' JM M—j
r

2 2J'+ 1=(JM10~ JM} jt r drh(r) 12+ g +(—1) (2J'+1) '
'15 ' ~ ~+1 — J J1

X f d'QDf:, .(Q)&H ~Z(Q)-'~H& . (A39)

Finally, the meson pieces of the magnetic moments are obtained from

—H R(fl) ' f d rz~ (r)(rXV), „dr(r) H)

jt rsdr h (r)~( —1) g (lyly, '
~

lrrt )(lvlv'
~
10)[5& p& ~+5& +'

& ~(Q)
p.p ~+s~

+5q gD' q „(Q)+D' q „(Q)D' „g(Q)] . (A40)

Inserting this into (4.13), and recoupling, gives

JM —M r r~ JpM JM —M

= —(JM10
~

JM )t f r2dr h(r)~
3

1 1 1
X 1+ g(2J+1) 'J J J

' f d QDz g(Q)(H ~R(Q) ~H), (A41)
MJ Jl
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