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In this article it is shown that the p meson can be included in the Skyrme model in a simple,

chirally invariant way. Solutions are obtained for the static soliton and time-dependent spinning sol-

iton configurations of the coupled p and pion fields. Expressions are derived for the vector and

axial-vector currents, and predictions are obtained for static properties of the proton and neutron.

These predictions are a few percent better than the corresponding predictions of the massive-pion

Skyrme model.

I. INTRODUCTION

Skyrme' has shown that the solitons of a chiral theory
of mesons have many characteristics of baryons. More re-
cently this correspondence between chiral solitons and
baryons has been developed further, and the foundations
of the model in the large Nexp-ansion of QCD have been
explored. Static properties of nucleons obtained by semi-
classical approximation to a SU(2) XSU(2) theory of pions
have been computed. ' Agreement with experiment was
found at the 30% level.

One should ask how much these 30% errors depend on
the semiclassical approximation, and how much is a
consequence of using an incomplete theory of mesons.
This question has been discussed by Witten. Attempts to
improve the lowest-order semiclassical approximation by
including correction terms of order 1/N, have been
made, with some success in the case of three fiavors.
One should also study the solitons of more realistic
theories of mesons. These theories should include not
only pions but also p's, u's, and higher-mass mesons as
well. A model of the pion and co has already been ex-

plored. It was shown that it is possible to use the co to
stabilize the soliton with no quartic pion term. Predic-
tions for physical quantities in this model are improved
slightly over the pure Skyrme model, particularly for
magnetic moments and the axial-vector coupling constant.

A chiral soliton model including the p meson is evident-
ly of great interest. In fact, p's have been included in
chiral models for many years. One idea is that the p is a
massive non-Abelian gauge boson of local chiral symme-
try. This idea, extended to include the Ness-Zumino

term in the Lagrangian, has been used to study anomalous
interactions of vector bosons. ' Other work suggests that
the p is a dynamical gauge boson of a hidden local sym-
metry. " Recently, p's have been incorporated in the
Skyrme model in various ways: as "dormant" Goldstone
bosons in the same SU(6) multiplet as the pion, ' and as
dynamical gauge bosons. '3

In the present work I introduce the p as an independent
Geld, coupled to the pion in a chirally invariant way. The
p-m coupling constant is taken from experiment. The ad-
vantage of this model is simplicity and computability.
The p Lagrangian is quadratic with a constraint, the p-m.

coupling is simple, and it is not necessary to deal with an
axial-vector (A&) meson. Using this model I obtain pre-
dictions for static properties of nucleons. I view this
model as a precursor of a more complete model contain-
ing the eo as well as the pion and p.

This paper is organized as follows. In Sec. II the model
is described. The Lagrangian, the soliton ansatz, and the
numerical methods used to obtain the soliton solution are
discussed. In Sec. III formulas are given for the vector
and axial-vector currents. Numerical predictions for the
static properties are presented and the results are dis-
cussed.

II. THE MODEL

The Lagrangian of a Skyrme-type model must exhibit
global chiral invariance, with the possible exception of
noninvariant mass terms. It should also be invariant
under the discrete transformations P, C, and T. The fol-
lowing Lagrangian for the coupled p-m model has these
properties:

2

tr(B~U 8"U)+
2 trt[(BqU)U, (B„U)U ] J+ —,F~ m~ [tr(U) —2]——,

' tr(R~Q"")
32e2

+ ,' mz tr(R—„R")+a tr(R„„B"U Ud" U+ ) .

(2)

The p field is the 2 &(2 four-vector

The pion is described by the SU(2) matrix U, related to
the plo11 fileld by

U=exp(2ir m/E ) .

R =po+11gpg

where po and p", are real. I also define

Rq„——B„R„—3+q .
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r= 32az mpzk

3m p4 (8)

where

k =[(mp/2)2 —m ]'~ (9)

is the pion momentum in the center of mass. Using the
value"

I"p——154(5) MeV, (10)

one finds

a=0.0444(10) .

The semiclassical analysis of the solitons of this theory
is carried out in the same manner as for the original
Skyrme model. ' First I make an ansatz for the time-
independent soliton configuration

U eiv xF{r)

(12)
R =0, R'=is, e„„x"g(r) .

Transformations of SU(2)r X SU(2)x act on these matrices
according to

U~L UR, 8"~LR"R (5)

The Lagrangian is clearly invariant (except for the pion
mass term) under the transformation (5), as well as under

P, C, and T (Ref. 14). The chirally invariant constraint

0= tr(R~ U) (6)

is employed to reduce the number of degrees of freedom
in the p field to those necessary for unit isospin. ' The
constants appearing in (1} are the pion decay constant
F = 186 MeV, the Skyrme coupling constant e (Ref. 16),
the pion and p masses m = 138.0 MeV, mz ——769.0 MeV,
and the pew coupling constant 0;.

The pmm coupling constant a can be determined by
computing the p~nm decay width. The interaction term
in the Lagrangian is

W~ ——atr(Rq„r)'tU UB"U )

~8a(mz/F ) e,s,p,'ms';n; (7)

for a p at rest decaying the two pions. The corresponding
width is

p, =K'pi(r) +x '(K x)gz(r),

p', =e„„x"g(r)+0 (K),
(17)

with po determined by the constraint. In (17) new pieces
of the p field have been excited by the time-dependent ro-
tation. The new pieces are dependent on the quantity E',
which is defined by

A (tQ,A (t) =i~.K' . (18)

In the 1/N, expansion time derivatives are small, so
terms of O(K) are small, of order 1/X, . The terms of
O(K) in p,

' are in fact not excited, and I ignore them.
The time-dependent rotations introduce two new func-
tions gi(r) and gz(r) into the picture, just as a nonzero
spatial component of the co field was induced in the co

model.
In the presence of the time-dependent soliton the La-

grangian takes the form

x = —M+I tr OA 0A +, 19

where the terms left out in (19) are of higher order in the
time derivatives. The static mass M is given in (13},and
the soliton moment of inertia I is

I'

4m'
2 $4, 2 $

du u' ~ —1+ F''+
6 e g2

In (13) and (14) a change to dimensionless variables has

been made, with

u=F r, g=g/F, p, =m, /F (15)

Primes in (14) refer to u derivatives, s =sin(F) and
c =cos(F), and I have written g instead of g.

Baryon spin and isospin degrees of freedom are
described through collective coordinates describing time-
dependent SU(2) rotations of the soliton. The time-

dependent ansatz is

U=A(t)e" "~A'(t)
(16)

R&=A (t)(po+iw, p,")A (t),
where

This ansatz is consistent with the constraint (6), and with
the pseudoscalar nature of the pion and the vector nature
of the p. The unknown functions F(r) and g(r) are ob-
tained by minimizing the static soliton mass

M= —I dzx &=4mF I du M(u), (13)

where
T r2, 2 $2', S2

M(u)= F' +2 + 2F' +
u~ 2e2 u

+ —g' — a( +I'4 2 16 SC
3 3 Q

OG
t

2 2gi 2 @iz

t Q 2 2

C Q C

(20)

+—p u (1—c)+(uzi +2ug'g+3g +p~ u g )

—8as (ug'+g)F'+g

S C $+ 16a sg'iF'+
Q CQ

(21)
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is the contribution to I from g~ and g2, and where

@=0i+0z
The soliton equations were solved numerically by

minimizing first M and then I . Physical values were as-

signed to the parameters m, m&, and a, while F and e
were chosen so that

08 ' I 1 I 1
1

1 I l $
l

l I I I l
I i0.

0.04

0.00

Mg ——M+ 15

(22)

—0.04

gave the correct nucleon and b, masses. This procedure
results in an F~ that is below its physical value, but it
seems to give the best fit to the physical quantities. There
is in fact some justification to taking F below its physi-

cal value in this model. ' Boundary conditions were

chosen so that the soliton is bounded in space, has unit

baryon number, and so that U and R& are continuous
functions. The boundary conditions are

F(0)=m, g(0) =0,

g') (0)=0, gt(0) =0,
(23}

with all functions vanishing at r = 0o.
The baryon masses MN and Ma are obtained correctly

when F =104.8 MeV and e =4.648. Graphs of F, f, g&,

and gt are shown in Figs. 1 and 2. The only numerical
difficulty occurs in the mimmization of I for gi and gt.
The problem is that I' involves inverse powers of
c=cosF, and F passes through ir/2 in the region of in-

—0.1 2

0 ) 6 I I l 1 I I I i I I I I I I I i i I I

0.0 1.0 2.0 3.0 4.0

RADIAL D(STANCE r {fm )

FIG. 2. Time dependence excites two additional sohton func-
tions, g~(r) and $2(r), related to the time component of the p
field, These dimensionless functions are found by minimizing
the functional I'.

terest. The miniinization technique for gi and gt works,
but requires several times the number of iterations that
were necessary to obtain F and g' to similar accuracy.

DI. PREDICTIONS FOR PHYSICAL QUANTITIES
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Currents are the keys to obtaining many of the predic-
tions for physical properties of nucleons from Skyrme-
type models. In the present model the isoscalar current is

d' ~tr[(Utd„U)(UtB U)(Utt}&U)], (24)
1

where ep/23 —+ 1. %'ith the soliton ansatz this becomes

p
—1 s 2

8 = —I",
27r r

(25)
—1 s8'= F'ejkxjtr(iAtt}oA rk) .
2 r

The vector and axial-vector currents are obtained from
the left- and right-handed currents as

~P'= JF+~t' J~'=JE' JÃ', —
l

o o 1.0 2.0 5.0 4.0 where, for example,

RAD)AL D(S~ANCE r {fm)

FIG. 1. The static-soliton ansatz involves two functions of
the radial distance, F and g. These functions are obtained by

minimizing the static soliton mass M. This is a plot of the
chiral angle F(r), which is related to the pion field, and the di-

mensionless version of g(r), which is related to the spatial com-

ponent of the p field.

W~W+t}„a'(x}Jg(x)

under the left-handed transformation

U~L U, R~ ~LRp,

L =1 ia'(x}(H/2} —.
The currents are

(27)

(28)
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Jv ——K' (5,„—x,x, ) ——F + F' +— +2a 4g + —4 —+gz g—&sF'oF o F 4
s' 2 r g r2 r2

—g (&,„+x'x')——
gg

~ (5,„—3x'x') tr(r, Atr, A),r
L J

$ CJv= ——F '+ F'+ — +—g'+~ —3g
8 r g r r r

sF' e;„,x "tr{r,A r, A),
r

(29a)

{29b)

Jg ——E' F + F'4 $2

4r e r 2

1 $
2$2 2 $ $ t." $C

2—4 g+2a 2g —(s —c ) — —4
z

—gz- z
+(IcF'

2r (t. r r r
A ~ ~

Xe, 'R "tr(~,At~, A), (29c)

T r

$2

Sr r
+2c( g—~(3s —2)—f+~ cF'

$2+~~ —"F ~+ ' F ~+ '
8

8 $2
+ I'

e r

3

+ 2o —3g—z
—2g' —+ f+~ cF' tr(r, Atr, A) .

r r (29d)

c)(Jv=0 (30)

Terms of higher order in K have been neglected in these
expressions for the currents. The currents satisfy certain
consistency conditions, such as vector-current conserva-
tion

emote that to lowest order in E one need not consider the
time-derivative contribution. Also the isospin operator is
obtained by integrating the isovector density

s 3 (h & ~ ~ 8I = d x Jv ———ao —a, —e„"a, . , (3l)aa' 'aa' "' ' gaj

TASI.E I. Predictions of the present model compared against the predictions of the massive-pion

Skyrme model {Ref.5) and against experiment.

Physical
quantity

MN {MeV)
Mg {MeV}
m. {Mev~

m~ (MeV)
F {MeV)
e

((i' ) )E I p (fm)
((& ) )g,i=~ (fm)
((T ) )~I 0 (fm)
({& ) )~,y=~ (fm)

p~ {nuclear magnetons)

p,„{nuclear magnetons)

g~ww

gmNd

PNW

gw

cr {MeV)

Prediction
{This paper)

Input
Input
Input
Input

104.8
4.648

Input
0.70
1.08
0.98
1.06
2.16

—1.38
13.1
19.7
2.50
0.65

38

Prediction
[Skyrme model (Ref. 5)]

Input
Input
Input

108
4.84

0.68
1.04
0.95
1.04
1.97

—1.24
11.9
17.8
2.3
0.65

38

Measured
value

938.9
1232
138.0
796.0
186

0 QAAA{ 10)
0.72
0.88
0.81
0.80
2.79

—1.91
13.5
20.3
3.3
1.23

36{20)



33 RHO MESONS IN THE SKYRME MODEL 197

where use has been made of the canonical quantization re-

lation

(32)

Finally, the axial-vector current satisfies

(33)

which to lowest order in the pion field is the PCAC (par-
tial conservation of axial-vector current) relation

d; Jq —m—(I' /2)e'(x) . (34)

The static nucleon properties are obtained from the
currents in the same manner as in previous work. ' The
results are displayed in Table I. The agreement of the
predictions with measured values in the present model is

somewhat better than in the massive-pion Skyrme model.
Predictions for the magnetic moments are improved by
about 7%, and the nNN and n.NE coupling constants are

improved by about 9%. The charge radii, however, are
3—5% worse in the present model, although the equality
of the electric and magnetic isovector charge radii is bro-
ken in the physically correct ~ay. The axial-vector cou-
pling constant and the cr terms are unchanged.

In this work I have shown that the p can be included in
the Skyrme model in a consistent and simple way. The
predictions for static properties are only slightly changed
from those of the original Skyrme model, mostly for the
better. I believe that the techniques used in this model
can be extended to include the co as well as the p. Such a
model could be much more realistic than the original
Skyrme model or the model considered here, and could
well give much improved values for the static properties.
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