
PHYSICAL REVIE%' D VOLUME 33, NUMBER 7 1 APRIL 19S6

Mass spectrum of low-lying baryons in the ground state in a relativistic
potential model of independent quarks with chiral symmetry
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Under the assumption that baryons are an assembly of independent quarks, confined in a first ap-
proximation by an effective potential U{r)= —,{1+yo){ar+ Vo) which presumably represents the

nonperturbative gluon interactions, the mass spectrum of the low-lying ground-state baryons has
been calculated by considering perturbatively the contributions of the residual quark-pion coupling
arising out of the requirement of chiral symmetry and that of the quark-gluon coupling due to one-

gluon exchange over and above the necessary center-of-mass correction. The physical masses of the
baryons so obtained agree quite well with the corresponding experimental value. The strong cou-

pling constant a, =0.58 required here to describe the QCD mass splittings is quite consistent with
the idea of treating one-gluon-exchange effects in lowest-order perturbation theory.

I. INTRODUCTION

In the study of the mass spectrum of low-lying baryons,
several articles' based on the nonrelativistic quark model
have appeared in the literature. Although the
phenomenological picture is quite reasonable at the nonre-
lativistic level, a relativistic treatment is indispensable on
this account in view of the fact that the splitting among
the baryon masses is of the same order as the constituent-
quark masses. The MIT bag models has proved to be
quite successful in this respect. In its improved versions,
the chiral bag models (CBM's) have included the effect
of pion self-energy due to baryon-pion coupling at the ver-
tex to give a better understanding of the physical masses
of the baryons. However, such models are not entirely
free from any objections due to the assumed static spheri-
cal bag boundary to which they owe much of their success
and simplicity. This is because of the fact that it is diffi-
cult to believe the spherical bag boundary remains static
and unperturbed by the creation of a pion. Furthermore,
in any bag model, to restore chiral symmetry it is essential
to introduce the additional pion field in the region exterior
only to the spherical bag boundary. On the other hand,
exclusion of pions froin the interior of the static bag, for a
number of reasons, may not be correct and reasonable for
which the CBM does not explicitly exclude the pions from
the bag volume. However, the very inclusion of pions in
the interior region is rather more or less ad hoc. If it is
implied by the concept of dynamical symmetry breaking, 6

then instead of treating pions as free particles through all
space, it would have bxn more appropriate to use the ex-
pansion of the pion field in terms of the eigenfunctions of
some effective potential.

However, the chiral potential rn.odels replacing, so to
speak, the rigid spherical bag boundary by an effective rel-
ativistic confining potential for individual quarks are
more straightforward in these respects. The term in the
Lagrangian density for quarks corresponding to the effec-
tive scalar potential being chirally odd through all space
requires the introduction of an additional pionic com-

ponent everywhere in order to preserve chiral symmetry.
The effective potential of individual quarks in such
models, which is basically due to the interaction of quarks
with the gluon field, may be thought of as being mediated
in a self-consistent manner through Nambu —Jona-Lasinio
(NJL)-type models, s by some kind of instanton-induced
effective quark-quark contact interaction with position-
dependent coupling strength. The position-dependent
coupling strength supposed to be determined by the multi-
gluon mechanism is impossible to be calculated from first
principles, although it is believed to be small at the origin
and increases rapidly towards the hadron surface. There-
fore one needs to introduce the effective potential for indi-
vidual quarks in a phenomenological manner to seek a
posteriori justification in finding its conformity with the
supposed qualitative behavior of the position-dependent
coupling strength in the contact interaction.

However, with no theoretical prejudice in favor of any
particular mechanism for generating confinement of indi-
vidual quarks, we prefer to work in an alternative, but
similar scheme with a purely phenomenological individual
quark potential in the equally mixed scalar-vector har-
monic form. Such a potential model has been used in our
earlier works for a reasonable prediction of the core con-
tributions to the magnetic moments of the octet baryons
and the charge radius of the proton as well as the weak-
electric and -magnetic form factors for semileptonic
baryon decays. Then incorporating chiral symmetry in
the SU(2)-flavor sector in the usual manner, we have es-
timated the quark-pion coupling constant' in consistency
with those extracted from experimental vector-meson de-
cay width ratios by Suzuki and Bhaduri. " In the present
work we employ such a chiral potential model to study
the mass spectrum of the low-lying baryons by taking into
account the corrections due to (i) the energy associated
with the center-of-mass motion, (ii) the color-electric and
-magnetic energy arising out of the residual one-gluon-
exchange interaction, and (iii) the pionic self-energy of the
baryons arising out of the baryon-pion coupling at the
vertex. %e treat all these corrections, leading ultimately
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to the baryon physical masses, independently as though
they are of the same order of magnitude.

This model with a harmonic form in particular for the
scalar-vector mixed potential, turns out to be quite simple
and tractable in these respects, yielding very satisfactory
results not only for the physical masses of the low-lying
baryons, but also the electromagnetic properties of the nu-
cleons as weB as the magnetic moments of octet baryons.
In the present work, we focus our attention only on the
physical masses of the ground-state baryons, while prefer-
ring to report our results on electromagnetic properties of
nucleons and the magnetic moments of the octet baryons
in our subsequent papers. In Sec. II we have outlined the
basic framework of the potential model used with solu-
tions for the relativistic bound states of the individually
confined quarks in the ground state of baryons. In a
shell-type approach the binding energies of the individual-
ly confined quarks contribute additively to the physical
mass of the baryon. Such a contribution needs a correc-
tion due to the energy associated with the spurious
center-of-mass motion. The procedure adopted to account
for such a correction is also briefly described in this sec-
tion. Section III provides an account of a further correc-
tion to the baryon mass due to the color-electric and
-magnetic interaction energies originating from the hope-
fully weak resid~!a& one-gluon-exchange interaction, treat-
ed perturbatively. Then in Sec. IV we outline the usual
procedure of incorporating the chiral symmetry in the
( u —d)-flavor sector only with the quark-pion interaction
term in the Lagrangian density taken in the linear form.
Obtaining the general baryon-pion vertex function in the
( u, d,s) sector, we calculate the pionic self-energy for vari-
ous baryon intermediate states contributing to the physi-
cal mass spectrum. Finally in Sec. V we present the re-
sults for the ground-state baryon masses, which come out
in very good agronnent with the corresponding experi-
mental values with a reasonable choice of the quark-gluon
coupling constant a, which is consistent with the idea of
treating the one-gluon exchange in the baryon core in
low-order perturbation theory.

II. BASIC FRAME%'ORK

In this section we outhne the framework of the poten-
tial model used to describe the individual quark confine-
ment inside the baryon core. The binding energies of the
individual constituent quarks contribute additively to the
mass of the baryon core. Such a contribution needs a
correction due to the center-of-mass motion. A brief ac-
count of the procedure adopted for such a correction is
also provided here.

A. Potential model

Leaving behind for the moment, the quark-gluon in-
teraction originating from one-gluon exchange at short
distances and the quark-pion interaction in the (u, d)-
flavor sector required to preserve the chiral symmetry as
residual interactions to be treated perturbatively, we start
with the confinement part of the interaction which is be-
lieved to be dominant in baryonic dimensions. This part
of the interaction which is believed to be determined by

Wq(x)=q(x) y» dq —U(r) —mq q(x) .
2

(2.2)

If we consider all the quarks in a baryon core to be in
their ground 1S~~2 state, then the normalized quark wave
function 4'q(r) satisfying the Dirac equation

[y E» —y.P mq —U(r}—]+q(r) =0

can be written in the two-component form as

igq(r)lr
4q(r) =

V 4m a ffq(r)lr

(2.3)

(2.4)

Taking Eq (Eq Vo/2)~ mq (mq+ Vo/2)~ A, (Eq
+mq), and roq ——(akq) ', it can be shown that the re-
duced radial parts of the upper and lower components of
%q(r) come out as

gq(r) =Nq(rlro }exp( r /2ro ), —

fq(r)= — (re&) exp( —r /2ro ),
A,q Poq

when the overall normalization factor Nq satisfies the re-
lation

Nq'Mero,
=1/(3Eq+mq ) .

The ground-state individual quark binding energy
Eq =(Eq + Vo/2) is obtainable from the energy-eigenvalue
condition

ro (Eq mq )=3;— (2.7)

such a scheme with Vo ——0 has been used successfully in
our earlier work in studying the static electromagnetic
properties of the baryon core. However, for the present
work we prefer to keep Vo&0 in general The solu.tions
through Eqs. (2.4)—(2.7) provide the quark binding energy
Eq which immediately leads to the mass of the baryon
core in zeroth order as

Mg Eg QEq . —— —— (2.8)

$. Center-of-mass correctj.ons

Clearly in our shell-type relativistic-independent-quark
model, the independent motion of quarks inside the

the multigluon mechanism is impossible to be calculated
theoretically from first principles. Therefore from a
phenomenological point of view we assume that the
qnarks in a baryon core are independently confined by an
average flavor-independent potential of the form

U(r) =—,
' (1+y )V(r)

(2.1)

V(r}=(ar +Vie), a &0.
We further assume that these independent quarks obey the
Dirac equation with potential U(r}, which therefore im-
plies a Lagrangian density in zeroth order as
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d'P
i 3q, x& =f e'P *P(P)

i
8(P) &, (2.9)

where the momentum eigenstates
~
8(P) & of the baryon

core are normalized as

& 8(P')
~
8(P) & =(2n )'8'(P)5(P —P')

with

8'(P)=(Mg +P )'i /Ms .

(2.10)

The momentum profile function $(P) can be obtained
from (2.9) and (2.10) as

Q (P)= I(P),
(2n )3

(2.11)

1(P)=
~ f d re ' '(3q, o

~
3q, r)

(2n )

is the Fourier transform of the Hill-Wheeler overlap func-
tion. ' Then the expectation value of any F(P) can be ob-
tained as

baryon core does not lead to a state of definite total
momentum as it should to represent the physical state of a
baryon. The problem appears in the same way in nuclear
physics in case of He and also in the bag model, and
therefore, has to be resolved accordingly. ' The energy as-
sociated with the spurious center-of-mass motion must
provide a correction to the baryon mass obtained from the
individual quark binding energy. To account for this we
adopt here the prescription followed by Wong' and other
workers, which has been described in detail in our earlier
work. ~ However we briefly outline it here in order to
make this paper self-contained.

The static three-quark baryon-core state with the core
center at x is decomposed into components P(P) of
plane-wave momentum eigenstates as

in Eq. (2.8) as

(2.17)

III. ONE-GLUON-EXCHANGE CORRECTION

JI"(x)=g,qi(x)y"Aiq; (x), (3.1)

with A,,' being the usual Gell-Mann SU(3) matrices and
a, =(g~ /4m. ), then the contribution to the mass due to
the relevant diagrams can be written as a sum of a color-
electric and -magnetic part as

(~Eg)s =(~~g)s+(~&g)s (3.2)

The individual quarks in a baryon core are considered
so far to be experiencing the only force coming from the
average effective potential U(r) in Eq. (2.1) which is as-
sumed to provide a suitable phenomenological description
of the nonperturbative gluon interaction including gluon
self-coupling. All that remains inside the quark core is
the hopefully weak one-gluon-exchange interaction pro-
vided by the interaction Lagrangian density
Wf =g, JI (x)A&(x), where A„'(x) are the eight vector
gluon fields and JI"(x) is the ith quark color current.
Since at small distances the quarks should be almost free,
it is reasonable to calculate the energy shift in the mass
spectrum arising out of the quark-interaction energy due
to their coupling to the colored gluons, using a first-order
perturbation theory.

If we keep only terms of order a„ the problem reduces
to evaluating the diagrams shown in Figs. 1(a) and 1(b),
where Fig. 1(a) corresponds to the one-gluon-exchange
part while Fig. 1(b) implies the quark self-energy that nor-
mally contributes to the renormalization of quark masses.
If E; and 8'; are the color-electric and -magnetic fields,
respectively, generated by the ith quark color current

&3q, O
i
I'(P)

i 3q, O& =f d3PI(P)E(P) . (2.12)
when

3

I(r)= ff(1—Cr /ro )exp( —r /4ro ) (2.13)

For the three 1Si&2 quarks in this model the Hill-Wheeler
overlap with C =(E& —m~ )/6(3E~+m~ ),

(~Es) = y y f ' ' (8
~
J; (r;)J, (rj) ~8&,

(3.3)

permits a ready estimate of the center-of-mass momentum
P through Eqs. (2.11) and (2.12) as

(2.14)& P'& =g&p'&, ,
q

where (p &~ is the average value of the square of the indi-
vidual quark momentum taken over the 1Si&i single-
quark states and is given by

& p'&, =(11E,'+m,')(E —m,')/6(3E,'+m, ) . (2.15)

drdr~g g f ' (8
~
J';(r;) J,'(r;) ~

8 & .

(3.4)

In the same manner one can get

(M, '/E, '& = 1 —g&p'&, /E, ' (2.16)

which provides the energy correction to the baryon mass FIG. 1. One-gluon-exchange contributions to the energy.
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Here we have not included the self-energy diagram in the
calculation of the magnetic part of the interaction, which
contributing to the renormalization of the quark masses,
can possibly be accounted for in the phenomenological
quark masses. The exclusion of this diagram, however,
requires that each 8'; should satisfy the boundary condi-
tion VXB,'=0, separately at the edge of the confining re-
gion, which is a possible case. On the other hand, as the
electric field E'; is necessarily in the radial direction, it is
only possible to satisfy the boundary condition
1 (Q,.E';)=0 for a color-singlet state

~
8} for which

(g, A,i ) =0. Therefore, in order to preserve the boundary
conditions we are forced to take into account the self-
energy diagrams in Fig. 1(b) in the calculation of the elec-
tric part only.

Now from Eqs. (2.4), (2.5), and (3.1) one finds

g, A,; Ãi
Ji~(r, )= -' '

'2 (1+r,2/~, 2r, 4)exp(-r, 2/r, 2),
rog

R,J
——3

(E —mi ) (EJ' —mj' )

(3.12)

«Ea)g =ac(buuI-+&~I~+4I »
(bE ) =a, (a„„I„„+aI +a I„),

(3.13)

where a,j and b;~ are the numerical coefficients depending
on each baryon and are listed in Table I and the quantities
IE'~ areii

a; =1/A, ;(3E +m ) .

Finally taking into account the specific quark flavor and
spin configurations in various ground-state baryons and
using the relations (g, (A,;}) = —", and (g, A,;AJ. };+J.

for baryons, one can write in general the energy
correction due to one-gluon exchange as

g, A,; N~ 2 2J;(r;)= . (a;Xr;)exp( r; /rp—; ) .
21T gg rpg

Using Eq. (3.5) together with the identity

1 1 d k
exp[ik (r; —ri)],

Iri —rj I
2ir k2

Eqs. (3.3) and (3.4) become

g +c Ã~ Eq

g,j gg ~oi ~oj

X N

817 ( J g Agrpg A)rpj

(3.5)

(3 6)

3~g~i+E.
iJ

256 1 1 1

9~m' Rij (3E/ +mg') (3EJ'+mj )

(3.14)

(3.15)

One can note from Table I that the color-electric contri-
bution for the baryon masses vanishes when all the
constituent-quark masses in a baryon are equal, whereas it
is nonzero otherwise. However, even in the case of
strange baryons it would be seen subsequently, that the
color-electric contribution is quite sinall. Therefore the
degeneracy among the baryons is essentially removed
through the spin-spin interaction energy in the color-
magnetic part.

IV. CHIRAI. SYMMETRY
AND PIONIC CORRECTION

M .pM (3.7)

where

exp( krp; /4), —

/2 5

F& (k)= — (crXk)exp( —k rp; /4) .
l Toi 2 2

(3.8)

(3.9)

(3.10)

(be)s =a, g gA;'A~a; oj , (3E +m )

X(3EJ +mJ )Rij. (3.11)

Then after some straightforward integrations one can find

Coming back again to the zeroth-order Lagrangian den-
sity W~ described in Sec. II, which takes into account the
nonperturbative gluon interactions including gluon self-
couplings through the phenomenological potential U(r),
one can note that under global infinitesimal chiral
transformation at least in the ( u, d)-flavor sector,

q (x) +q (x) i y-—q (x),
2

(4.1)

the axial-vector current of quarks is not conserved as the
scalar term proportional to G(r) =[m~+ V(r)/2] in W~
is chirally odd. The vector part of the potential poses no
problem in this respect. But in view of the experimental
success of the partial conservation of axial-vector current
(PCAC) and hence the fact that chiral SU(2)XSU{2) is
one of the best symmetries of strong interactions, it is
desirable to conserve the total axial-vector current at least
in the (u, d)-flavor sector. This is usually done at a
phenomenological level' by introducing an elementary
pion field that also carries an axial-vector current such
that the four-divergence of the total axial-vector current
satisfies the PCAC condition. Though this consideration
can be generalized to include the strange-flavor sector for
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TABLE I. Coefficients appearing in the calculation of the color-magnetic and -electric energy correc-
tions due to one-gluon exchange.

Sary ons

—3
3

—3
1

0
1

0
0

0
0
0
4
4
2
2
0

0
0

—2
—2
—2
—2
—2

0

a chiral SU(3}XSU(3) symmetry, we would ignore it be-
cause of the large mass of the kaon involved in the pro-
cess.

Therefore, we introduce in the usual manner, an ele-
mentary pion field P(x) of small and finite mass m = 140
MeV with the quark-pion interaction Lagrangian density

denotes the Hermitian conjugate. Vi (k), representing
the baryon-pion absorption vertex function in the point-
pion approximation, is obtained as

Vi (k)= — (2wq )

G(r)q(x&ys(r P)q(x) (4.2)
rG r exp i r

which is linear in the isovector pion field P(x). Here

f =93 MeV is the phenomenological pion-decay con-
stant. Then the four-divergence of the total axial-vector
current becomes B„A"(x)= —f m iP(x) yielding the
PCAC relation. Consequently, the pion coupling of the
nonstrange quarks would give rise to pionic self-energy of
the baryons which would ultimately contribute to the
physical masses of the baryons. This aspect can be stud-
ied in the usual perturbative approach, 's with the Hamil-
tonian constructed in the subspace of nonexotic color-
singlet baryons, a brief account of which is given below.

p 8' qry5qre~ 8
e

(4.6)

XI(k)(8' g(~, t)r) 8), (4.7)

Assuming that for the 88'm vertex, the spatial orbits of
all the quarks in the initial- and final-baryon state are the
same 1Si/i, one can use Eqs. (2.4) and (2.5) to obtain

V, (k) = (2wk) ' '

Ho=+ ~
8 }(8

~
Ms ——g b s ban, (4.3)

A $where b s creates a three-quark baryon state with quan-
tum numbers of N, b„etc. Similarly with ak and a k as

the pion destruction and creation operators and
wk=(k +m )'/ as the pion energy, the Hamiltonian
for quantized free pion field PJ(x) becomes

H =g Jd kwkak ak . (4.4)
J

Finally the interaction Hamiltonian corresponding to
Wi(x) becomes

Hi ——— i g J d k[Vg (k)bs b a s+kH. ]c,
(2m) / ss i J

A. Baryon-pion vertex function

If one considers the color-singlet nonexotic baryon
states

~
8) to be the eigenstates of the Hamiltonian H,

[obtained from Ws(x) in the canonical way] with masses

Ms, then in the nonexotic baryon subspace one can write
in a conventional second quantized language

Now using the stand~ad integral result for I(k} and the
values obtained for the axial-vector coupling constant
gA(8) in the prMent m~e1, 9 the expression for Visa'(k)
can be simplified further.

As for example, we consider the NN m-vertex function
V& (k) with the axial-vector coupling constant gz(N) ob-
tained in this mode19 as

to get

5 5E„'+7m„'

3E„'+rn„'
(4.9)

Vi (k)= (2wk ) '/ g„(N)ku (k)(cr k)Pi (4.10)

Here the form factor u (k) with

EN —m„'

2(5' +mg )

where

I(k}=2J dr r G(r)J3/i(kr)exp( r /rQq } (4 8)

(4.5) comes out as

where j corresponds to the pion-isospin index, and H.c. u (k) =(1—Aro„k )exp( —ro„k /4) (4.11)
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which reduces to one for k ~0 as expected. Finally using
the familiar Goldberger-Treiman relation which estab-
lishes a connection between the pseudovector nucleon-pion
coupling f~~ and the axial-vector coupling g„ in the
orm

F488' EBB'
5M' X——g(Eg ——Mii ——Mg )= —g

k,a
(4.16)

Now using the explicit expressions for V (k) as in Eq.
(4.14), one gets

few g~(»
4m (4.12)

5MB = —YI~Q CBBfBB~

one gets

V~~(k) .~~fsxn ku (k)
(

~N ~k)~~
m~ v 2wk

(4.13)

when

In the same manner the general baryon-pion vertex func-
tion can be written as

1 f ~dkk u (k)
~ping ~ 0 Wk

(4.18)

VJ (k) = i3/4m (cr k)HJ . (4.14)
Using Eq. (4.11) for u(k) and substituting z=-,'m 2ro„,
the integral I~ can be written in the form

The pseudovector baryon-pion coupling constants fez„
are summarized in Table II in relation to f~z~. Now with
the vertex function VJ (k) on hand, it is possible to cal-
culate the pionie self-energy for various baryons with ap-
propriate baryon intermediate states contributing to the
process.

8. Pionic self-energy

The coupling of the pion field to the nonstrange quarks
in a minimal way, as given by the single-loop self-energy
diagram shown in Fig. 2, causes a shift in the energy of
the baryon core. From the second-order perturbation
theory, the pionic self-energy is usually given by

@AM' yM'
Xg(Eg)=g g (4.15)

k 8' EB +k ~B'

when gk ——QJ fd k/(2n)and .8' is the intermediate

baryon state. For degenerate intermediate states on mass
shell with Mz ——Mz, the self-energy correction becomes

I = (I4 2Aro 3I—e+A2rou Is) (4.19)

when the reduced integrals

dkk "
lan= exp( —zk 2/m „)

k 3+m
' n —1/2

2z

~0
2

( —1)"—exp(z)
2

1(n+ —,
'

)
+ F(1,—', n, z) —. (4.20)

F( l, b,z) =1+ F( l, b + l,z—) (4.21)

one can finally get

Now substituting Eq. (4.20) in (4.19) and using the identi-
ty that

(1+4Az+4A z ) —exp(z)+ z / — z / F(l, —,,z)22 —3/2 ~~ —i /2

2 4 2

15~17 3/2 3~5 i/2 3Wil 3/2

4 2 2
(4.22)

For the intermediate baryon states 8', we consider only
the octet and decouplet ground states. Using the values of
f~~ ~ and C~ii summarized in Table II according to Ref.
1, the pionic self-energy for different baryons ean be com-
puted as

and of course, 5Mn ——0, since the strange quarks in 0
have no interaction with the pion. The self-energy 5M&
calculated here contains both the quark self-energy [Fig.
3(a)] and the one-pion-exchange contributions [Fig. 3(b)].

1715M~= —
25 I fivN '*
995M' = —
25 I.fm
108 25MA =
2s IafNÃ~

5Mx ——5Mx* ———,
' I f~~—

5M==5M ~= —, I f3/N—
(4.23)

FIG. 2. Baryon self-energy due to coupling with pion.
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order of magnitude, one can obtain the physical mass of a
low-1ying baryon in its ground state as

MB EB——+(&R'B), m +(EEB)g+(EEB)g +5MB (5.1)

FIG. 3. One-pion-exchange contributions to the energy.

V. RESULTS AND CONCLUSION

We have shown in the previous sections that the
zeroth-order mass MB EB ——of a ground-state baryon,
arising out of the binding energies of the constituent
quarks confined independently by a phenomenological
average potential U(r) that presumably represents the
dominant nonperturbative gluon interactions, must be
subjected to certain corrections due to the residual quark-
gluon and quark-pion interactions together with that due
to the spurious center-of-mass motion. Treating all these
corrections independently as though they are of the same

when (&&B) is the energy associated with the spurious
c.In. IIlotloll [Eq' (2' )l (/1'FB )g +(~+B)g 1s the co101'-

electric and -magnetic interaction energies arising out of
the residual one-gluon-exchange processes [Eqs.
(3.12)—(3.14)], and 5MB is the pionic self-energy of the
baryon due to pion-coupling of nonstrange quarks in the
baryon.

For quantitative evaluations of these terms in Eq. (5.1)
we have first of all considered the potential parameters a
and Vo in Eq. (2.1) as flavor independent and taken the
quark masses as m„=md&m, . Then for convenience,
absorbing Vo appropriately in E» and m» of Eq. (2.3), we
have obtained the solutions leading to individual quark
bound states in terms of E» = (E» —Vo/2) and

rn» ——(m»+ Vo/2) through Eqs. (2.4)—(2.7). Then for a
suitable choice like a =0.017166 GeV', m„'=md =10
MeV and m,

' =247 MeV, the eigenvalue condition in Eq.

TABLE II. Baryon-pion coupling constant and spin-isospin reduced matrix elements for various
baryon states.

Baryon

Baryon
intermediate

baryon states

BB' fBB'e
(&BB'.~B' ) ( QB QB }'. '

6v 2/5

15 15 225

0
—21/3/5

—2~3/5
—2V 3/5

2
5 15 30

—21/ 3/5
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TABLE III. Energy corrections and physical masses of ground-state baryons (in MeV).

Baryon (~g),

1413.75 —202.694
—112.5 —159.5

Present
work

939.056

Experiment

1533.5 —196.835

+ 112.5
—112.5
—93.48

+ 103.0
—101,722

—92.34
—100.7
—56.0
—56.0
—25.2

1231.216
1131.965
1195.685
1392.165
1334.328

1232
1116
1193
1385
1321

1653.25 —192

1773
94.748
87.774

—25.2
0

1539.298
1672.939

1533
1672

(2.7) yields E„' =Ee ——540 MeV and E,' =659.75 MeV.
Now it is straightforward to calculate the various quan-

tities IP~'~ from Eqs. (3.13) and (3.14) which are necessary
for evaluating (Alii }sE~. We find that

(Ig„,I~,I )—:(597.194,644.852, 707.22 MeV),
(5.2)

(I„„,I,I }—=(64.6812,56.4575, 50.317 MeV) .

Then with z = —,
'

m~ r0„-0.1, the integral expression I
in Eq. (4.22) is calculated as I =291.493 MeV which en-
ables one to obtain the pionic self-energies of various
baryons through Eqs. (4.23}. The values of 5Mii so ob-
tained with f~tt —0.08, for vario—us baryons are provided
in Table III. Now referring to the physical masses of N
and b„which are

' 1/2
Ma= EN —g&p &e +3a,I„g+5Ma,

1/2
M~= EN' —g&p'&e 3aeI.a+5—MN

{53)

we find that

6a,I~g ——(Ma —M~ )—(5M' —5M' ) . (5.4)

Since (Ma —M~)=292 MeV and (5M' —5MN) 67 MeU
as seen from Table III, we observe that the QCD splitting
among the N and 6 masses (i.e., 6a,I„„}is only 225 MeV.
Therefore, one does not need anywhere near as large a
value of a, as in the original MIT work, where, without
including pionic corrections the QCD splitting was equat-
ed with {Ma—M~)=292 MeV. In fact, a, of the order
0.5—0.6 is sufficient here. We take a, =0.58 which is
comparable with 0.55 found by DeGrand et al. and is
not too much different from the value 0.3—0.4 obtained in
CBM.'6 Again from Eqs. (5.3} one can fix the potential
parameter Vc independent of a, using the combination

' 1/2

{M,—5M, )+(M„—5M„)=2 E„'—g&p'&,

(5.5)

Finding Ett —3(E„' ——Vol2) from Eq. (5.5) we fix the po-
tential parameter as a value Vo ———137.5 MeV. Now us-

ing all these results one can calculate all the individual
terms leading to the physical masses of various ground-
state baryons. These quantities for various baryons con-
sidered here are provided in Table III. Consequently we
find the physical masses of baryons like N, 5, A, X, :-,
and:" in very good agreement with the corresponding
experimental masses. The strong-coupling constant
a, =0.58 used in our calculation is quite consistent with
the idea of treating one-gluon-exchange effects in lowest-
order perturbation theory.

So we found that in the first step the SU(3)-breaking ef-
fect due to the quark masses m„=meum„ lifts the de-
generacy in baryon masses through the energy term
LE&+(Arz}, ] among the groups (N, h), (A, X,X'),
(:-,:-'), and Q . Then in the second step, the constraint
of chiral symmetry imposed on the baryon core removes
the degeneracy partially through the spin-isospin interac-
tion energy 5Mtt between X and 5, A and X, whereas X'
still remains degenerate with X and:-' with:". However,
the color-electric and -magnetic interaction energy arising
out of the one-gluon exchange with the dominant color-
magnetic part giving a spin-spin contribution removes the
mass degeneracy completely among these baryons.
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