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Force on a charge in the space-time of a cosmic string
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%e determine the electrostatic self-force acting on a point test charge in the space-time describing a stat-

ic, cylindrically symmetric cosmic string. %'e find a repulsive interaction.

%hen a point charge is held fixed in a static gravitational
field, this induces specifically an electrostatic self-force act-
ing on this charged particle. This result was first derived in
the case where the gravitational field is weak, ' then extend-
ed to certain space-times in which the global electrostatic
potential generated by a point test charge is known: within
a spherical shell of matter2 and in the Schwarzschild space-
time. 3

The purpose of this paper is to determine the electrostatic
self-force in the space-time describing a static, cylindrically
symmetric cosmic string4 ~hose metric has been recently
found. ' It can be written

ds = —dp —dz —8 pzd$2+ c dr with 0 & 8» 1

in a coordinate system ( t, p, z, Q) with p ~ 0 and 0 «qL
«2n, the hypersurfaces /=0 and /=2m being identified.
Metric (1) has a conical singularity6 and therefore it induces
on the axis p-0 a singular line source of Einstein equations
having the following energy-momentum tensor characteristic
of a static, cylindrically symmetric cosmic string:

T,
' T,'-, d T =Tg=0, (2)
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We are interested in determining the electrostatic poten-
tial V of a point test charge q located at the point p pp,
z-0, and $=n in the background metric (1). From the
Maxwell equations in curved space, we obtain immediately
the potential equation
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where ~p is the permittivity of free space. With the coordi-
nate transformation

Eq. (4) reduces to the usual potential equation, in the sub-
set of Minkowski space-time covered by the coordinate sys-
tem ( r, p, z, e ) with 0 «8 «2n 8, with a point charge located
at p= pp, z =0, and 8=8+. However, the potential must
satisfy the unusual boundary conditions

V(p, z, 0) = V(p, z, 2mB)

where g is the determinant of the induced metric on the
two-surface t-const and z-const. From expressions (2),
w'e see that the linear mass density p, is given by
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The space-time described by metric (1) is locally flat but of
course it is not globally flat.

Such a solution has never been published, so far as we
know. By using some results of Macdonald' on the electro-
statics for a wedge formed from two semi-infinite conduct-
ing planes, we have shown that this solution may be written
in the form

v(p, z, e) = sinh($/28)
( 4s'c )021r 8(2pp )a~ ~ ~ cosh(g/28) + sin(8/28)

sinh(f/28) d(
cosh((/28) —sin(&/28) (cosh( —cosh' ) '~

where g is defined by cosh' = (p'+ po'+ z')/2ppo (7t ~ 0). Consequently, introducing coordinate @ by formula (5), we ob-
tain after some manipulations the following form of electrostatic potential satisfying Eq. (4):

v(, ;e)= sinh($/8) dg
(4m' )mB(2pp )'~' " ~ [cosh($/8)+costi](cosh( —cosh')'~'

We are now in a position to determine the electrostatic self-force. We call VM the solution to Eq. (4), defined outside the
hypersurface @=0, corresponding to the Coulomb potential in Minkowski space-time. We have

v„(p,z, y) =
4~~0[p'+ po'+ z' —2ppo(sin8$ sinBm +cos8$ cosBm ) ]' '

We need to write potential (9) in integral form:

V~(p. z. 4») = sinhgd(
(4meo) m (2ppo) '~2 "~ (cosh/ —sin8$ sinBm cosB@cosB—~) (cosh( —cosh') '~' (10)
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In the neighborhood of the point charge, we can always
write the electrostatic potential (8) in the form

«p, ;~)= I~(p, ;~)+H(~,;~) . (11)
The first term V~ is irregular at the position of the charge,
whereas the second term 0 is regular and is a solution of
the homogeneous equation (4). We ignore the infinite
forces arising from the electrostatic potential V~ because we
are locally in the Minkowski space-time. Consequently, the
potentia1 0may be considered as an "external" electrostatic
potential which exerts a force on the charge q following the
familiar Lorentz force. This electrostatic force applied to it
can be evaluated directly from the electrostatic energy using
the standard procedure. This has the general expression

W-TtqH(Po, o, ~) . (12)

Taking into account expressions (8) and (10), formula (12)
becomes

r

2

(13)
4~&opo

where J.~ is a positive constant, depending on parameter 8
(0 & 8 ~ 1), defined by the integral

sinh(i/8) sinh$ d$
8[cosh($/8) —1] cosh( —1 sinh((/2)

(14)

We deduce from (13) that the exerted force is

L8 q'fP— and f*=fr=0
4n. 47' qopo2

(15)

Hence electrostatic self-force (15) acts on the charge in the
direction away from the cosmic string.

To calculate integral (14) a numerical analysis is neces-
sary. The physically interesting limit is the one 8 1,
where we find approximately
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as p. —0,
4m popo

(16)
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where we have expressed 8 in terms of p, using formula
(3).

In the space-time of a static, cylindrically symmetric
cosmic string, there is no gravitationa1 force acting on a
massive test particle. However, we point out that, according
to formula (15) which reduces to form (16) in the limit

where the linear mass density goes to zero, there is a repul-
sive interaction between a charged test particle and this
cosmic string.
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