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Color screening and topological index in the classical Yang-Mills theory with sources
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%e reexamine the relation betvreen the topological charge Mand the occurrence of color screening in the
classical Yang-Mills equations ~ith sources. +e find that the M-0 sector allo~s partial-screening solutions
as ~ell as the total-screening solutions.

Several years ago Mandula' sho~ed that for a point
source the Abelian Coulomb solution of the SU(2) Yang-
Mills (YM) equations is stable only when gQ & ~, where g
is the gauge-field coupling constant and Q the external
source strength. As the external source strength increases,
the color components of the gauge-field potential
orthogonal to the source direction in the color space get ex-
cited and instability occurs, suggesting the inflow of color
charge which may lead to color screening of the external
source. Not long after that Sikivie and gneiss and others'
constructed explicit solutions for an extended external
source which exhibit color screening. However, because of
the gauge dependence in the definition of total color used,
Hughes3 demonstrated that screening of the extended exter-
nal source by the YM field does not take place in the so-
called physical gauge. In Ref. 4 we argued that, indepen-
dent of gauge choice, color screening can be realized at the
classical level since a gauge-invariant expression for the
color charge can be written down. 5 Recently, Mandula,
Meiron, and Orszag and Carson, Goldflam, and %ilets6 ob-
tained axially symmetric static solutions for a spherically
symmetric 8-function source specified in the Abelian-gauge
frame. Their solutions indicate that color screening is only
partial, not complete. This is in contrast with the spherically
symmetric solutions' for a spherical shell source specified in

the radial gauge frame which display complete color screen-
ing. This naturally leads one to speculate whether the oc-
currence of color screening is related to the topological
charge value M of the system, since for the complete-
screening spherically symmetric solutions' M 1, whereas
for the partial-screening axially symmetric solution6 M 0.
In Ref. 8 Carson conjectured that when M-0 the external
color source can never be totally screened.

The purpose of this note is to examine this conjecture
carefully. %e find that for M-1 all solutions must be to-
tally screening, whereas for M-0 one can have partial-
screening solutions as well as complete-screening solutions.
This later finding is different from that of Ref. 8 and hence
Carson's conjecture is untenable. %'e shall consider only
static sources and spherically symmetric gauge fields.

The YM equations in the presence of an external source
are

current is gauge-covariantly conserved,

D~n= 0

and for static source j7'-0 this becomes

(2)

As we shall see, the topological charge is determined by the
color direction of j~, and hence that of A0.

Introducing an adjoint-representation scalar field'

si(x) = si'(x)
27

si'(x) vi'(x) - 1

(3a)

(3b)

where

g„=gA„'v)'

the gauge-invariant total color of the external source is

Qs -„d'xfu'n' ~ (4)

and that of the source-field system is

Qr =„,„„,„~snt(n'~"') = Qs+ QF (5)

where n, is the unit vector x'/r, r'=x'x', and Qr is the
gauge-invariant total color carried by the YM field,

Q = dsx(Dsl)'F'to (6)

Total color screening of the external source is attained if
Qr=0 and Qsve0. Because of the gauge-invariant charac-
terization of the total color charge, it is thus meaningful to
discuss color screening of an external extended source. 4

From now on we employ g' to describe the color structure
of the external source~ and we write

il - e(r)~' .

The conserved topological charge of the source-field system
is defined by the Kronecker index, '

dS / nttke(t)iak + Ye 'g t)l ri t)ksi ), (8)1 abc a b

D P'"=j
F„„=1)„A„—8„A„+[A„,A„]

(la)

(lb)

%hen a„ is regular everywhere, the f~rst term of the in-
tegrand gives no contribution and we have

(10)
A =gA„'

27
(lc)

~here o' are the Pauli matrices. The external source
which is an element of the second homotopy group sr2[e'].
Thus, provided that the YM potential has no singularity, we
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AS= ao/g, (12)

provided a„ is regular. Thus the value of Mdetermines, via
condition (2), the form A$ must assume. But the value of
the total charge Qr of the system is controlled by the
asymptotic behavior of q'F~, and hence that of A[[; in this
way we see that Mand Qr are related.

Consider the case M=1. As discussed in Ref. 7, all
spherically symmetric YM potentials can be written as

A, = —n'f(y)p 1

gf
(13a)

A,' = e'"n~[a —(y ) —1]
gr

y = r/rp,

(13b)

(13c)

where rp is an arbitrary length scale. The more general
Kitten's ansatz, " which involves four independent func-
tions of y, is equivalent to Eqs. (13).' The requirement that
the total system has a finite energy necessitates that A„' fall
at least as fast as O(1/r) at large distances. Finiteness of
Qs then implies that either Ao vanishes at least as fast as
O(l/r) and A& at least as fast as O(1/r'+'), e & 0, or Ao
vanishes at least as fast as O(1/r'+') and A, at least as fast
as O(1/r), as r ~. The non-Abelian Gauss's law and
Ampere's law as given by Eqs. (1) warrant only the latter
asymptotic behavior. In other ~ords, for M 1 at large dis-
tances Ap must fall faster than O(I/r) but A, can either
behave as a pure gauge O(l/r) or vanish faster than I/r.
In either case one finds that at large distances

~aFato +1 ~ &iod ~& 1 (14)
y 2+ ~

Thus for M-1, all solutions are totally screening; partial-
screening solutions do not exist. Carson arrived at the
same conclusion by using the AbeBan-gauge frame for the
external source, but then in that frame A&' must be singular.
Examples of the M-1 solutions are the type-I and type-II
YM configurations given in Ref. '7.

%e shall now discuss the M-0 situation. . Here the YM
potentials A$ are given by expression (11). In the event the
YM potential is static, Ampere's law from Eqs. (1) can be
written as

[Ap, [Ap, Ai]] = D,I'o (15)

while Gauss's law is

—V'A, + [A, , [A,,A, ]]+2[8,A, ,A, ]+ [Ao, B,A, ] =~p . (16)

As before, thc finite-energy requirement implies A„must
vanish at least as fast as 0 (I/r ) at large distances. We con-
sider two cases: (1) A;-O(1/r} and (2) A;-O(1/r'+'}.
In the case (1), Gauss's law requires Ap to vanish as

have M -0 for the external source specified in the
Abelian-gauge frame q'=5) and M = 1 for the source speci-
fied in the radial-gauge frame g'=x'/r. Higher M values
will render the external source nonspherically symmetrical.

We now proceed to investigate how the value M controls
the asymptotic behavior of q'F~, and hence the value of
Qr. From Eqs. (2) and (10) it follows that, for M=O,

Af =gfao/g

and, for M=1,

O(1/r'+') although Ampere's law permits Ao to decrease as
O(I/r) T. hus to be consistent in case (1) Ao must tend to
O(1/r'+') and D&F~ must vanish up to O(1/r3). The latter
can easily be accommodated by requiring that A& behave as
a pure gauge up to order I/r. Thus one has g'I"" behaving
as O(1/r2+') for r ~ and all solutions are totally screen-
ing. For the case (2), Ampere's law (15) can be simplified
as

[Ao [Ao Aj ] ] 8 i8 iAJ Bit)JAi (17)

Qr = (4md/p)

Qs- +'(4~d/u) ~

(19a)

(19b)

where d and p, are constants. Thus we have Qs& Qr&0
and partial color screening occurs also for an extended
source.

(b) Examining the argument of Ref. 8 carefully, the as-
sumption that when M = 0, AI can only behave as
O(1/r'+') as r ~ is not completely valid. While it is
certainly true the behavior O(l/r'+') will render M vanish-

ing, it is equally true that as long as AI has no singularity, M
vanishes when the external source is specified in the
Abelian-gauge frame. Hence a complete-screening solution
can exist even though M=O. Thc total-screening solutions
of Ref. 2, wherc M=0, thus counter the arguments of Ref.
8. As mentioned earlier, the objection raised by Hughes
for the extended source is overcome once the gauge-
invariant total color is given.

at large distances. The behavior that Ao= O(l/r ) at large r
is consistent with Ampere's law as well as Gauss's law.
This means the electric field strength q'F'" can behave as
O(1/r'), resulting in a nonvanishing total color of the sys-
tem, QrWO. The partial-screening solutions found in Ref. 6
precisely possess this asymptotic behavior. Ho~ever, in the
case (2) under consideration, it does not preclude the possi-
bility that Ao vanishes as O(1 /r' +') at large r. Gauss's law

certainly allows this behavior and so does Ampere's law.
For example, if A„= O(1/r'), then Ampere's law is satis-
fied if the right-hand side of Eq. (17) vanishes up to order
I/r . In this situation, the solution is again completely
screening. The total-screening solutions of Ref. 2, although
they are time dependent, belong to this subclass. For these
solutions, we found that Qr= 0 and Qs= —Q~e0.~

To summarize, we find that for the vanishing topological
charge M=0, there exist partial-screening solutions as well
as total-screening solutions, whereas for M=1, all the solu-
tions are totally screening. %e conclude with two remarks.

(a) The M-0 partial-screening solutions given in Ref. 6
are only for a spherically symmetric 8-function source. For
an extended spherically symmetric source, a partial-
screening solution can also be found. When the topological
charge M vanishes, the external source density admits the
Hopf index h[q']. For h[q']- +1, one has the non-
Abelian Coulomb solution specified in the Abelian-gaugc
frame. This solution can be derived perturbatively in a
non-Albelian gauge frame,

Ap= ZAp" +Z'Ap" + (18a)

W, - Z2W,~» + Z4Z, ~4~+ (18b)

When the parameter Z vanishes, Ap tends to zero and A;
becomes a pure gauge in the Abelian gauge frame. For the
solution given in Ref. 9 and up to the order Z', we find, us-
ing expressions (4) and (5),
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