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Static quark-antiquark potential with renoriiialization-group-improved lattice action
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The expectation values of Wilson loops are calculated with a renormalization-group {RG)-
improved lattice action on a 12 lattice for 2. 1&@&2.7 with steps EP=0.1. Then the quark-
antiquark static potential is calculated by a fitting procedure directly to the logarithms of the expec-
tation values of Wilson loops rather than Creutz ratios. The inverse of the lattice spacing a at
P=2.4 turns out to be a '=1470(30) MeV by inputting the string tension cr=(420 Mev}~. This
value is in remarkable agreement with the value a ' = 1460{60)MeV which has been obtained from
the meson spectrum calculated on an 8 X 16 lattice at p=2.4 with the same RG-improved lattice
action. The scaling behavior of the string tension and the problem of universality are also investi-

gated.

I. INTRODUCTION with

One of the fundamental physical quantities which can
be derived from lattice gauge theories' is the string ten-
sion. After Creutz calculated the string tension in the
SU(2) gauge theory by Monte Carlo (MC) simulations, a
lot of works, for the string tension have been done. Re-
cent works, among others, have observed the follow-
ing: (i) When extracting the string tension from the ex-
pectation values of Wilson loops, one has to take into ac-
count the effect of a Coulomb term in the quark-
antiquark static potential; (ii} the string tension does not
satisfy asymptotic scaling up to the coupling constants
where MC calculations have been done so far.

Because of these facts it is not so easy to derive the nu-
merical value of the string tension which is free from pos-
sible systematic errors. In this paper we would like to cal-
culate the string tension as well as the quark-antiquark
static potential with an effort to reduce possible systemat-
ic errors. In particular, to reduce the systematic errors
due to finite-lattice-spacing effects, we take a
renormalization-group (RG) -improved lattice action. We
also propose a fitting procedure directly to the logarithms
of the expectation values of Wilson loops in order to
reduce the systematic errors due to the process of extract-
ing the potential from the MC data. (See below for more
details. )

The organization of the paper is as follows: After the
action is introduced in Sec. II A, the results of the calcula-
tion of Wilson loops are presented in Sec. IIB. In Sec.
II C, a fitting procedure is introduced and finally the po-
tential is derived. Section III is devoted to discussion. An
algorithm of the updating of link variables for a vector
processor is given in the Appendix.

ci ———0.331, co ——1 —8cl, (2.2)

the form of which has been determined by a perturbative
block-spin RG study and by the analysis of instantons on
the lattice. s In the sum over loops, each oriented loop ap-
pears once. We expect that short-distance lattice artifacts
are reduced with this RG-improved action. Our earlier re-
sults in the two-dimensional O(3) e model have indeed
confirmed that short-distance lattice artifacts are reduced
with a RG-improved action.

(r(I,J)= —,
'
(Tr 11((),

C
(2.3)

S. Calculation of Wilson loops

We take a four-dimensional hypercubic lattice with
periodic boundary conditions. The lattice size is 12. To
generate gauge configurations we use the algorithm by
Cabibbo and Marinari, 'o modified slightly for vector pro-
cessors (see the Appendix for details). The p range
(p=6lg ) investigated is 2. 1&p& 2.7 with steps
bp=0. 1. The MC simulation is done as follows: Start-
ing from a completely disordered configuration, we per-
form 3000 iterations at p=2. 1. The final configuration is
then used as the initial condition for the simulation of
2500 iterations at p=2.2. In a similar way we perform
2500 iterations at each P from P=2.3 to P=2.7. We
disregard the first 1000 iterations at p=2. 1 and the first
500 iterations at p=2. 2—2.7 for thermalization.

We measure the Wilson loops of size IXJ with
1&I,J&6 every ten iterations: The expectation value of
the Wilson loop of size IXJ is defined by

II. CALCULATIONS

A. Action

%'e take a RGr-improved action

1S= co g Tr(simple plaquette loop}
g

2

+c, g Tr(1 X 2 rectangular loop) (2.1)

where gc U means the ordered product of link variables
around the loop with size Ig J.

The mean value of the expectation value of the Wilson
loop and the statistical error for the mean value are es-
timated by the standard method, after checking the sta-
tistical independency of the data for each configuration.
We present the mean values and the statistical errors of
W(I,J) for 2. 1&P&2.7 in Table I.

%e make one more independent run on a 12 )&24 lat-
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TABLE I. Mean value and statistical errors of 8'(I,J) for 2. l ~p ~ 2.7.

0.566 S46
0.000066

0.3104S4
0.000095
0.097 658
0.000098

=2. 1

0.172055
0.000094
0.033050
0.000066

0.007 533
0.000057

0.095 489
0.000082
0,011479
0.000046

0.001 812
0.000037

0.000 305
0.000046

0.052 990
0.000069
0.004014
0.000041

0.000427
0.000035

0.000037
0.000034

—0.000023
0.000046

0.029 406
0.000059
0.001 424
0.000039

0.000095
0.000033

0.000005
0.000034

—0.000083
0.000031

0.000076
0.000045

0.595 769
0.000062

0.348759
0.000094

0.129713
0.000 100

P=2.2

0.207 423
0.000097

0.052 377
0.000078

0.015 878
0.000064

0.123 602
0.000087

0.021 617
0.000058

0.004991
0.000044

0.001 306
0.000048

0.073 696
0.000073

0.008 953
0.000046

0.001 561
0.000036

0.000 381
0.000036

0.000010
0.000049

0.043 921
0.000062

0.003 657
0.000040

0.000 512
0.000037

0.000036
0.000037

0.000022
0.000034

—0.000017
0.000050

0.619201
O.OOOO54

0.380702
0.000086

P=2.3

0.23S 384 0.149 553
0.000 106 0.000099

0.093 883
0.000088

0.058 919
0.000075

0.159029
0.000 119

0.072 326
0.000094

0.026 346
0.000071

0.033 644
0.000074

0.010058
0.000052

0.003 155
0.000051

0.015 668
0.000056

0.003 929
0.000042

0.001 046
0.000037

0.000230
0.000046

0.007 323
0.000046

0.001 533
0.000036

0.000 336
0.000032

0.000026
0.000036

—0.000052
0.000048

0.638 740
0.000054

0.407791
0.000086

P=2.4
0.265 465 0.173 180
0.000092 0.000089

0.113087
0.000082

0.073 837
0.000075

0.185297
0.000 112

0.091 674
0.000 101

0.037 879
0.000086

0.046 364
0.000077

0.016345
0.000061

0.023 633
0.000059

0.007 164
0.000049

0.012050
0.000049

0.003 092
0.000038
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TABLE I. {Continued).

0.006 237
0.000063

0.002455
0.000041

0.000 856
0.000051

0.000923
0.000037

0.000231
0.000034

0.000070
0.000050

0.655 698
0.000053

0.431 599
0.000084

0.209 204
0.000107

=2.5

0.289 619
0.000093

0.110095
0.000097

0.049 745
0.000088

0.194763
0.000093

0.059 199
0.000081

0.023 446
0.000067

0.009 918
0.000064

0.131 116
0.000089

0.032001
0.000066

0.011 150
0.000049

0.004 333
0.000045

0.001 649
0.000048

0.088 307
0.000083

0.017 330
0.000057

0.005366
0.000044

0.001 963
0.000037

0.000 653
0.000034

0.000266
0.000046

0.670777
0.000046

0.453 049
0.000081

P=2.6

0.311707 0.215 050
0.000099 0.000 104

0.148 465
0.000099

0.102 520
0.000090

0.231 197
0.000 116

0, 127 848
0.000 111

0.016899
0.000 104

0.072260
0.000096

0.031 304
0.000081

0.014 548
0.000066

0.041 027
0.000079

0.015 989
0.000059

0.006 899
0.000049

0.003 047
0.000057

0.023 330
0.000065

0.008 184
0.000050

0.003 263
0.000039

0.001 392
0.000037

0.000 657
0.000053

0.684 318
0.000045

0.472 619
0.000075

P=2.7

0.331 930 Q.233 945
0.000 103 0.000 105

0.165017
0.000 102

0.116413
0.000095

0.251 457
0.000 126

0.144 533
0.000 122

0.073 779
0.000 113

0.084 750
0.000 103

0.391 195
0.000088

0.019323
0.000072

0.049 930
0.000085

0.020992
0.000070

0.009 656
0.000052

0.004498
0.000051

0.029 457
0.000070

0.011367
0.000054

0.004 900
0.000046

0.002 149
0.000 038

0.001024
0.000048
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tice at P=2.4 partly in order to see the independence of
the result from the initial condition and partly in order to
prepare some configurations for a calculation of the had-
ron spectrum. %e are particularly interested in the value
of the string tension at P=2.4, because we have already
calculated" the hadron spectrum on an 8 )& 16 lattice at
P=2.4. Therefore it is possible to test whether the lattice
spacings calculated from the hadron spectrum and from
the string tension are identical. (Although we have calcu-
lated the string tension on a 6 lattice with the RG-
improved action, ' the size of the lattice is certainly too
small to derive a reliable value for the string tension. ) The
MC simulations are done as follows: We make 3(X)0 itera-
tions after disregarding 1500 iterations starting from a
completely disordered state. The measurement of Wilson
loops W(I,J) with 1 &I,J& 6 is made every ten iterations
as previously. We call the direction of the lattice with the
linear extensian 24 the timelike direction and other three
directions spacelike directions. We separately calculate
the expectation values and statistical errors af the Wilson
loops for time-space (TS) directions and for space-space
(SS) directions. The mean values of the Wilson loops both
for the SS case and the TS case on the 12 X24 lattice at
P=2.4 agree with those at P=2.4 in Table I within sta-
tistical errors for large Wilson loops and within 1% for
small Wilson loops and therefore are not represented here.

~~ [—ln W(I,J)—V& (I)J—V2(I) —V&(I)/J]

[5ln W(I,J)]

with I fixed. Here we assume that

(2.10)

Of course, there are no a pnori justifications for the as-
sumption of the form (2.7) and therefore of the form (2.8).
The last term of Eq. (2.7) might be more complicated than
1/I and might contain logarithmic factors. However the
numbers of I's and J's which are available are not so
large and are not sufficient to determine such a delicate
behavior of the potential. Our strategy is rather to as-

sume simple forms for W(I,J) as well as for V(I) which
are consistent with the existence of a Coulomb term in the
potential. After the analysis of the data with these as-
sumptians, we are able to judge the validity of the as-
sumptions a posteriori. These assumptions are essentially
the same as those in Ref. 5. However, the procedure of
the fitting is different, as shown below.

We fit directly —lnW(I, J) in terms of the form (2.8)
instead of the ratio X(I,J) as in Ref. 5, because in this way
the ratios of statistical errors to the signals do not in-
crease. The fitting procedure is the standard least-squares
method: We determine V;(I) (i =1—3) in such a way to
minimize

C. Calculation of the potential
5 ln W(I,J)= 5W(I,J)/W(I, J), (2.1 1}

W(I,J)=exp[ crIJ m(I +J)—+c],— (2.4)

If the asymptotic form of Wilson loops W(I,J) for
large I and J is given by where 5W(I,J) is the statistical error for W(I,J). The

Vi(I) can be determined in the form

we can derive the string tension in units of a (a is the
lattice spacing) directly from the ratio' (to be referred as
the Creutz ratio)

V; (I)= g C; (I,J)ln W(I,J) .
min

(2.12)

W(I,J)W(I —1,J—1)
W(I —1, J)W(I, J—1)

(2.5)
The statistical errars of V;(I}are estimated from

[b,V;(I)] = g [Ci(I,J)] [51nW(I,J)] (2.13)

by the relation

o =X(I,I) . (2.6)

However, X(I,I), in fact, decreases as I increases when
I=4 6, as for the s—tandard model. This indicates that
the potential is not purely a linear rising one.

Therefore let us assume that the patential in units of
o ' is the sum of a linear rising term and a Coulomb
term

V(I)=oI+c+d /I, (2.7)

as generally assuined. This implies that —inW(I, J) con-
tains a term proportional to J/I as well as a term propor-
tional to IXJ. Because of the symmetry between I and J
in W(I,J},this further implies that —lnW(I, J) contains
a term proportional to I/J.

This motivates us to assume that 1
Vi(I) = ViiI+ Viz+ Vi2 —.I (2.14)

assuming no correlations between lnW(I, J}with different
J with fixed I. In general, J;„=1and J,„=6. Howev-
er, when the mean value is negative and/or when the ratio
of the statistical error to the mean value is larger than
10%, we have excluded the data from the fitting, because
such data are not reliable.

The results for the fitting are shown in Fig. 1 for
P=2.4 and 2.7. We see that the fittings to the data are re-
markable, especially for P=2.7, where the statistical er-
rors far W(I,J) themselves are small. This implies that
our assumption of the form (2.8) is not unreasonable.
Note that if we fit —inW(I, J) to the form V(I)J+ V2(I}
for J=4—6, we will obtain a substantially different value

for V(I).
Then we fit Vi (I}= V(I) to

—lnW(I, J)= Vi(I)J+ V2(I)+ Vi(I)—,J '

where

Vi(I)= V(I) .

(2.8)

(2.9)

The fitting procedure is the same as for —lnW(I, J}. The
results are shown in Fig. 2 for P=2.4 and 2.7. The fit-
tings are again remarkable. We also fit Vi(I) and Vi(I)
to
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-(n W(I, J)

10.0-

V2(I)

5.0-

2.0

0.0

—In W(I, J} V3(I )

I0.0

2.0

0.0

FIG. 1. {a) Fitting curves for —ln8'{I,J) to determine the
potential at p=2.4 in the SS case on the 123X24 lattice. (1) Fit-
ting curves for —ln W(I,J) to determine the potential at P= 2.7.

1.0

1.5-
FIG. 3. (a) Fitting curve for Vq(I) at P=2.7. (b) Fitting

curve for Vq(I) at P=2.7.

V, (I)
1

V2(I}= V2iI+ Vu+ Vn —,I '

1V3(I}=VsiI+ Vs2+ V33
—

~I
(2.15)

5-

4

The results for Vz(I) and V3(I) for P=2.7 are shown in
Fig. 3. The fittings are again excellent

We reproduce Viz (ij =1—3) for P=2.4 in Table II.
The above fitting procedure corresponds to the parame-
trization

J 1—ln W(I,J)= Vi iIJ+ Vie/+ Vi3 —+ VziI+ Vu+ V23—I I
(2.16)

TABLE II. Fitting parameters V~~ and statistical errors 5Vi
for P=2.4.

0.5-

0.0

FIG. 2. {a) Fitting curve for V& {I)to determine the string ten-
sion at p=2.4 in the SS case on the 12 X 24 lattice. (1) Fitting
curve for V&(I) to determine the string tension at P=2.7.

0.082 665
0.001 826

0.652 396
0.006 527

—0.313491
0.004 778

0.652 235
0.006 364

—1.053 294
0.023 373

0.481 821
0.017 346

—0.312 518
0.004618

0.478458
0.017 190

—0.219959
0.012 842
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TABLE III. Numerical values of Wilson loops W(I,J) calculated by the parameters V;, for P=2.4.

0.638 703 0.407 990
0.185 302

0.265 139
0.091 666
0.037 846

0.173048
0.046321
0.016332
0.006 169

0.113138
0.023 606
0.007 174
0.002 395
0.000 830

0.074032
0.012082
0.003 179
0.000943
0.000293
0.000093

The symmetry property of W(I,J) between I and J im-
plies the symmetry property of V;; between i and j. Al-
though our fitting procedure is not symmetric between i
and j in VJ, if our fitting form is reasonable, the derived

V~J s will satisfy approximate equalities between Vi and

VJ;. The results satisfy remarkably these equalities. The
results for other P's are similar. This a posteriori sup-
ports our fitting procedure.

We present in Table III the value of the Wilson loops at
P=2.4 for the parameters determined, using Eq. (2.16).
They are in excellent agreement with the data. This is
typical. If P is larger, the fitting is better. Thus our fit-
ting procedure seems reasonable. We have also fitted
—1n W(I,J) using six parameters, assuming VJ = V,;.
There are no noticeable changes for the results, as expect-
ed.

The fitting by the least-squares method enhances the
weight of the data with small statistical errors. For
—lnW(I, J), the errors of the data for small I,J ( &2) are
extremely small. However, W(I,J) for small I,J may
contain artifacts of lattice theory. Therefore we have
tried several fitting procedures in such a way that relative
weights for W(I,J) with small I,J decrease: For example,
if 5W'(I,j}/W(I,J) & 10, for some I,J set
5W(I,J)/W(I, J)=10 for those I,J; or, if
5W(I,J)/W(I, J)&10, set 5W(I,J)/W(I, J)=10; or
neglect W(I,J) with I,J &2 for the fitting. As far as we
have tried, there are no noticeable changes in the result for
the potential. The value of the string tension changes
only by about 1%. This is due to the fact that the fitting
to —ln W(I,J) is good for all I,J. See the results for some
selected cases at P=2.4 (the SS case} in Table IV.

Our fitting procedure is the same in spirit as that of
Barkai, Moriarty, and Rebbi, as noted earlier. However,
we think it is better to ftt directly the data of —InW(I, J)

than the data of the Creutz ratios X(I,J), because when
taking Creutz ratios the ratios of error to the data become
large when I,J are large.

Now some comments on finite-size effects are in order.
The deconfining phase transition at P=2.7 will occur
only when the size of a lattice in temporal direction is less
than six, according to our crude estimate of the deconfin-
ing temperature. ' Thus the size of the lattice on which
we have calculated the Wilson loops is about twice that
where the deconftning phase transition occurs. Further,
the correlation length f=I/~cr at P=2.7 is about 5.46
and less than half of the lattice size. Therefore we believe
that finite-size effects are under control.

Let us finally determine the physical potential from
V i (I)= V(I) calculated for 2. 1 &P & 2.7. When one
directly deals with —lnW(I, J) instead of the Creutz ratio,
the constant term in the potential is a potentially
dangerous term, because it does not approach a constant
in the continuum limit. However, this term corresponds
to the self-energy of the static sources and therefore we
can safely subtract it from the potential, as usual.

The physical potential is defined by

(2.17)

TABLE IV. String tensions obtained by several fitting pro-
cedures (see text) at P=2.4 in the SS case on the 12'X24 lattice:
1„our standard fitting procedure; 2, if 5'(I,J)/8'{I,J) & 10
set 5$'(I,J)/T+'(I, J)=10; 3, if 5$'{I,J)/8'(I, J)~10, set
5$'(I,J)/8'(I, J)=10;4, neglect 8'(I,J) with I,J &2. —1.0 -

,

2.0 30 r

5.660903+0.095 342
5.687 602+0.267635
5.668 031+0.101056
5.634 301+0.134236

-2.0
FIG. 4. The potential curve in physical units for P= 2. 1—2.7,

together vrith the data in the case of the RG-improved action.
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--c(p)

0.9—
-C(P)

-C(P).P:

0.7— -C(P) P
1.0 2.0

I

3.0

2 1 2.5 2.5 2.7 P

FIG. 5. c(p}and pc(p} vs p, for the RG-improved action.

-2.0

FIG. 7. The potential curve in physical units for p= 5.6—6.6,
together with the data in the case of the standard one-plaquette
action.

where a is the lattice spacing. Renormalizing V(r) and r
by V(r)/Vo and ~err (o=o/o is the physical string
tension}, we have

V(r) =r+ c(P)
r

(2.18)

f'or 2.1&p&2.7. Here c(p) equals Vi& in Eq. (2.14). If
the potential is given exactly by the form r+c/r, and the
P range we have examined is in the scaling region, and,
furthermore, the data at short distances are free from ar-
tifacts of lattice theory; c(P) should be a constant in-
dependent of P.

plot, in Fig. 4 ail results for V(r) in the range
2. 1&p&2.7 together with the data. They are approxi-
mately on the universal curve. However, c(p) s»ghtiy de-

pends on p. We plot c(p) and pc(p) vs p in Fig 5

see that pc(p) is constant rather than c(p) itself. One
might integ ret this result I follows: The potmtial is of
the form r+a(r)/r, where a(r) is an effective coupling
constant which decreases as r decreases. As p increases,
the number of the points at short distance where the data
are taken increases and, consequently, c(P) effectively de-
creases when the data are fitted to r+c(P)/r. Of course,

o AiM=4.47+0.03 or =0.473+0.003,
AIM

(2.19)

where AiM is the scale parameter for the RG-improved
action. This implies

As =0.008+0.0002 (2.20)

because'

Am

As
=59.05+1.0 . (2.21}

from the limited numbers of I and J for W(I,J) we can-
not exclude the possibility that other conditions listed in
the preceding paragraph are not satisfied.

We plot o/As vs p in Fig. 6. We see that asymptotic
scaling is not satisfied up to P=2.5, and that there is a
possibility that asymptotic scaling sets in at P=2.6. To
verify this we have to do MC calculations on a larger lat-
tice for P) 2.8. If we assume asymptotic scaling for the
data at P=2.6 and 2.7, we obtain

-c(p)

—0.2

1O.O—

-c(p) p-

1.5—

-c(p) p

00
2.3 2.5 2.7 p

1,0
56 5.8 60 62 6.4 66 P

FIG. 6. o /A vs P, for the RG-improved action.
FIG. 8. c(p} and pc(p} vs p, for the standard one-plaquette

action.
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same RG-improved action. " Thus let us check whether
the lattice spacings determined from the string tension
and from the hadron spectrum at @=2.4 are identical.
(We have briefly reported the following in Ref. 15.)

If we input v cr =420 MeV, we obtain

a '=1460(40) MeV

at P=2.4. We also have

a '=1490(40) MeV

for the SS case and

a '=1460(40) MeV

(3.3)

(3.4)

(3.5)

5.6 5.8 6.0 6.2 6.4 6.6 P

FIG. 9. o /A vs P, for the standard one-plaquette action.

1s

III. DISCUSSION

The quark-antiquark static potential we have obtained

V(r) =err c/r—
with

(3.1)

c 0.3+0.3 . (3.2)

When we compare this result with previous phenomeno-
logical analyses of cc and bb bound states, a numerical
value @=0.3 is not unreasonable.

Concerning artifacts of lattice theory at short distance,
the difference between the standkrd action and the RG-
improved action is not manifested clearly when we com-
pare Fig. 4 with Fig. 7. This is quite different from what
we have observed in the two-point function G(n, 0) of the
two-dimensional O(3) o model. We think this is due to
the fact that one is able to calculate G(n, 0), e.g., up to
n=20, while one is able to calculate lY(I,J) only up to
I,J=6 8. If one could ca—lculate IV(I,J) up to I,J=20,
the situation would become clear. Because we cannot do
such a calculation at the present time, we have to proceed
differently.

One way is to check the consistency between various
calculations done for various physical quantities. We
have calculated the hadron spectrum in the quenched ap-
proximation at P=2.4 on an 8 X16 lattice, using the

We have also analyzed the data for the standard model
in Ref. 5 by the same method as above. The results are
shown in Figs. 7—9. The values for F are similar to those
obtained in Ref. 5, but the rr 's for P=6.4 and 6.6 become
slightly smaller than those in Ref. 5.

Let us discuss universality. The value quoted in Ref. 5

for As/Va is larger than that obtained above for the
RG-im roved action by 20%. However, the value for

As/ a is decreasing from P=6.4 to P=6.6. If this ten-

dency continues still for P& 6.6, the results may become

consistent with each other. To see what really happens, it
is very interesting to calculate cr for P& 2.7 with the RG-
improved action and for P & 6.6 with the standard action.

for the TS case. All of the results for a ' agree with
each other within statistical errors. This verifies the in-

dependence of the result from the initial condition. Com-
bining three values we have

a '=1470(30) MeV . (3.6)

Now let us turn to the calculation of the hadron spec-
trurn.

By fitting the pion mass and the p mass, we obtain

a '=1460(60) MeV . (3.7}

a ' = l.45(9) GeV (3 8)

fitting the p mass and the pion mass at P=5.7 on an
8'X16 lattice. From the result for the string tension at
P=5.7 by Hasenfratz, Hasenfratz, Heller and Karsch one
obtains

a '=950(30) MeV (3.9)

if one inputs v o =420 MeV. The results for a ' in Eqs.
(3.8) and (3.9}do not agree with each other by about 50%.
Although it is not necessary that they agree with each
other completely in the quenched approximation as men-
tioned earlier, we feel that the discrepancy by about 50%
is larger than expected in the quenched approximation.

We see that there is a clear difference between the RG-
improved lattice action and the standard action concern-
ing identity of the values for a '. We may attribute this

Thus the values for a ' are in remarkable agreement
within statistical errors. This means that we can fit both
the meson spectrum and the string tension by one unique

gauge coupling constant. This is a necessary condition
that the theory be self-consistent. Of course, for both cal-
culations we have used the quenched approximation.
Therefore it is not necessary that the values for a ' agree
with each other completely. If we include the effect of
virtual quark loops, both numbers will change. However,
the notion of the string tension and the quark-antiquark
static potential is heavily based on the valence-quark
model of hadrons and further both of them characterize
mesons. Therefore it is very likely that both of them
change in the same manner. Thus we think that it is nice
that the values for a ' agree with each other in the
quenched approximation.

In the case of the standard model Bowler et al. have ob-
tains�"
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to the fact that systematic errors due to finite lattice spac-
ing effects at small distances are considerably small when
one takes a RG-improved lattice action.
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P(z) ~exp(Puz}(1 —z )'i dz, (A2}

where u is a constant which is determined from the previ-
ous configuration, one generates a trial z with the measure

where {tt, p i, p, z, and p& are all different and
n —( n i n Q n 3 n 4 ) ~ Thus we can update the links in the
same class on a vector processor.

We have to take care of another point for the simula-
tions on a vector processor. The number of independent
instructions which are executed for each link in the same
class should be equal. Therefore we have to slightly
modify the accept-reject process explained below in the
modified heat-bath method by Creutz to generate SU(2)
submatrices as follows: As is well known, in the modified
heat-bath method, to generate a variable z ~ith the proba-
bility

APPENDIX: ALGORITHM OF THE UPDATING
OF LINK VARIABLES

P(z) ~ exp(Puz)dz (A3)

CI.ah= Un, i.

n„+n„+n„—=b(mod3)

(Al)

We use the well-known algorithm of Cabibbo and Mari-
nari'u to generate gauge-field configurations. However, in
order to speed up the updating on a vector processor, we
have ta slightly modify the algorithm which is used for a
usual scalar processor.

First, we have to divide the updating process into in-
dependent parts. Since we use the old link variable when
calculating the mean field, we can update U~„and U
independently only in the case that U~ „does not appear
in the mean field M„„for U„„and U„„not in the mean
field M~ „for U~ To satisfy this condition, we classify
the whole links U„„into 24 classes

n„=a(mod2)

and a random number r (0&r &1) successively until the
pair (z, r) satisfies the condition r &(1—z )' . One ac-
cepts the last trial z. This is the accept-reject process.
However, we can generate only the same number of trial
pairs (z, r) on a vector processor. Thus we modify this
accept-reject process in the following way. If all the trial
z's do not satisfy the condition for a link, we accept the
old link variable as the new one. On the ather hand, if
some of trial z's satisfy the conditian for a link, we take
the last z which satisfies it as the new variable. This
modified accept-reject process works well. The proof that
the system approaches the thermal equilibrium can be
done similarly as for the Metropolis algorithm. We have
decided to generate eight trial (z, r) pairs for each link. In
this case, about 93% of the links are updated in each
ltei'atlatl at p= 2.4.
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