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The Hamiltonian formulation of U(1) lattice gauge theory is studied in a basis of eigenstates of
the electric-field operator. The guided-random-walk algorithm of Chin et al. is transcribed to the
electric-field basis, and exact ground-state properties of the theory in three space dimensions are cal-
culated. A novel variational scheme is used to compute the potential between two static charges for
two space dimensions.

I. INTRODUCTION

Lattice gauge theories are, at present, the most promis-
ing method for extending the successes of quantum chro-
modynamics from the perturbative regime of deep-
inelastic scattering to the nonperturbative phenonmna of
hadron structure and interactions. The most common ap-
proach to these theories is through a Lagrangian formula-
tion, where the action, a functional of the gluon and
quark fields, is discretized on a four-dimensional Euclide-
an space-time lattice and the observables are evaluated by
a Monte Carlo sampling of space-time histories. This ap-
proach has had a number of successes, including calcula-
tions of the interquark potential and the quark-gluon plas-
ma, as well as a rough description of meson and baryon
properties. '3

Despite the considerable progress which has been (and
continues to be) made through the Lagrangian formula-
tion of lattice gauge theory, the approach has some un-
desirable features. Foremost among these is that the sam-
pling over histories is biased only by the action, and there
is no opportunity for using physical constraints (e.g.,
quarks cluster into hadrons, a flux tube connects a quark
and an antiquark) to improve the efficiency of the sam-

pling algorithm. Indeed, statistical precision is currently
the main limitation in many Lagrangian calculations of
QCD phenomena and this problem will become even more
apparent as one attempts first-principles descriptions of
the multinuclten systems of interest in nuclear physics.

The Hamiltonian formulation, less often pursued,
offers an alternative to the Lagrangian framework with
several attractive features. Here, the fields are discretized
on a three-dimensional spatial lattice and the essential
task is to find the ground state of a Hamiltonian that is a
differential operator in the field variables. The problem
thus has the appearance of a conventional "many-body"
(actually, many-variable) system and an arsenal of fami-
liar techniques- can be called into service. These include
variational methods, expansion in a truncated basis, and
exact Green's function or path-integral Monte Carlo
methods, all of which have the advantage of allowing the
use of a well-chosen trial wave function to improve great-
ly the precision and efficiency of the calculation.

Although Hamiltonian methods have been used exten-

sively to treat nonrelativistic many-body systems, there
have been relatively few attempts to apply them to lattice
gauge theories. The first numerical Hamiltonian calcula-
tions were done by Chin et al., ' by Heys and Stump, '

and by DeGrand and Potvin, who treated the U(1) and
SU(2) pure-gauge vacua with variational and exact Monte
Carlo methods. Diagonalization in a well-chosen basis has
been performed by Duncan and Roskies. '

In this paper, we are concerned with the application of
Hamiltonian methods to the electric-field representation
of lattice gauge theories. The basic dynamic variables de-
fining the electric-field representation are the fluxes of
electric field along the links of the lattice. For many pur-
poses, these variables are more convenient to work with
than are the vector potential variables commonly used.
Two distinct calculations will be discussed here. First, we
calculate the ground state of U(l) lattice gauge theory in d
= 3 space dimensions by adapting the guided random
walk algorithm of Ref. 5 to the electric-field representa-
tion. Second, we calculate the potential between two static
charges [again for the U(1) theory, but in 2 space dimen-
sions]. The latter is done in a variational framework, in
which choices are made not only for the vacuum wave
function, but also for the fluctuations of the fiux tube be-
tween the charges (or "quarks"). Although the first calcu-
lation has no obvious extension to the non-Abelian case,
the second does.

The balance of this paper is organized as follows. In
Sec. II we review the Hamiltonian formulation of the
U(l) theory in the vector potential basis. Particular atten-
tion is given to the gauge transformation properties of the
eigenstates and the interpretation of the interquark poten-
tial as an excitation energy. In Sec. III we discuss the
problem in the electric-field basis, which has the advan-
tage that the wave functions of interest are real and posi-
tive in this representation. We also discuss the familiar
independent-plaquette wave function in this language and
introduce an independent-link wave function. In Sec. IV
we formulate the method of guided random walks in the
electric-field basis, and present our numerical results for
the ground state of U(1) in d = 3 dimensions. Formalism
and numerical results for the interquark potential in d
= 2 dimensions are presented in Sec. V, and we conclude
with a discussion of future prospects in Sec. VI.
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1 8H = ——g +A, g {1 —cosf ),
2 $/2 p (2.1)

where the sum in the second term runs over all elementary
plaquettes p, fz is the directed sum of the $1 on the four
links of the plaquette, and A, —=g

4 is related to the cou-
pling constant g. In the physical weak-coupling limit,
this theory reduces to ordinary electrodynamics, with Pi
being proportional to the vector potential, —i8/Bfi being
proportional to the electric flux along the link l, and Pz
being proportional to the magnetic flux through the pla-
quette p. The first term in (2.1) can thus be identified as
the energy stored in the electric field, while the second is
the magnetic energy.

There are, of course, infinitely many eigenstates of H,
each of them a different function of the dL link vari-
ables Pi. However, the gauge invariance of H provides
L" constants of the motion by which these eigenstates can
be classified. In particular, for each lattice site s, the
operator

(V.E),—= g ( —) ' —.
IGs Ol

(2.2)

is easily seen to commute with H. Here, the sum is a
directed one over the 2d links touching s; i.e., ( —) is +1
for the links emanating from s in the positive sense, and
—1 otherwise. The eigenstates of H can therefore be clas-
sified by the eigenvalues associated with these operators,
and H is diagonal with respect to these quantum numbers.
Note that since the eigenvalues of —iBIBQI are integers
(recall that Pi is an angular variable), the eigenvalues of
{V.E), are also integers; they are the amount of charge at
each site of the lattice.

The vacuum state of the theory, %o(P), is the lowest-
energy eigenstate of H in the subspace of Hilbert space
that has no charge on any of the lattice sites. That is, it is
a state that is annihilated by each of the operators (2.2), a
property sometimes referred to as Gauss's law. Similarly,
the lowest-energy state in the subspace having charges of
+ 1 at site a and —1 at site b, 4'&, is annihilated by all

of the operators (2.2), except by those for sites a and b,
whose eigenvalues are + 1 and —1, respectively. The
difference between the energy of this state and that of the
vacuum is the potential between the static quark and stat-
ic antiquark.

Further insight into the qq state can be had by consid-
ering a specific component of the wave function. It is
easy to verify that the state

4~ ——P+4o, (2.3)

II. HAMILTONIAN FORMULATION
OF THE INTERQUARK POTENTIAL

The Hamiltonian for U(1) lattice gauge theory has been
derived by several authors" ' and we only state the re-
sult here. After a suitable scaling, the system in d spatial
dimensions (d = 2, 3) is described by an angular variable,
0(gi &2m, on each of the dL links I of an L" spatial
lattice with periodic boundary conditions. The Hamiltoni-
an 18

has the proper gauge transformation properties. Here, the
product is over any path on the lattice connecting site a
and b (the sign for a given link 1 in the exponent being
determined by the direction in which the path traverses
the link), and 4z is any state in the vacuum (or chargeless)
subspace, perhaps even the vacuum itself. This state cor-
responds to a "string" of unit electric flux running from a
to b on the path chosen. Of course, the exact eigenstate

4& might involve a coherent superposition of many such
states. Still, the form of (2.3} does show that the wave
function of the qq state is intrinsically complex in the vec-
tor potential basis, an unattractive feature if Monte Carlo
methods are to be applied. It is therefore more convenient
to work in the canonically conjugate electric-field basis, to
which we now turn.

III. THE ELECTRIC-FIELD REPRESENTATION

To formulate U(1) lattice gauge theory, we need to
choose a complete set of basis states in which to represent
the Hamiltonian and its eigenfunctions. One such set are
the eigenstates of the vector potential A deflned on the
links of the lattice ( oc Pi) as discussed in the previous sec-
tion. Alternatively, the eigenstates of the electric field E
can be used. Because the electric field is canonically con-
jugate to the vector potential, the corresponding represen-
tation is analogous to the familiar momentum representa-
tion in single-particle quantum mechanics.

For our purposes, the electric-field, or E, representation
offers two potential advantages over the vector potential,
or A, representation.

(1) The degrees of freedom in the E representation are
integers because the variables tI}1 have a compact range,
0&/i&2m. A particular electric-field configuration is
represented as a collection of integers, one for each link.
The numerical advantages of integer arithmetic on the
computer are well known and have prompted the use of
discrete subgroups in lattice gauge theory calculations. '

The E representation has these same advantages and is
free of approximations.

(2) The physics of the qq state is more transparent in
this representation, and the wave function describing the
state is real and positive. The strong-coupling (A, ~O), or
confining, limit of this state is a line of unit electric fiux
between the charges superimposed on the strong-coupling
vacuum, while the weak-coupling (A,~ oo } limit is expect-
ed to reduce (for d = 3) to the classical electric dipole
field at large distances from the charges.

The electric-field representation is introduced by mak-
ing a Fourier expansion of the wave function 4' = %(P):

wy) = g (y ~

n }e(n),

(3 1)

Here, n denotes a configuration of integers ni, and %(n}
are the components of the wave function in the new repre-
sentation. Gauge-invariant states can be expressed in
terms of basis states (P

~

n } that satisfy Gauss's law,
(V n), = 0. (Th.e subscript s indicates that the lattice
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divergence is evaluated on sites. ) For some purposes, it is
useful to satisfy the gauge constraint (V n }, = 0 explicit-
ly by introducing plaquette variables mp via the relation

ni ——(VXm)l . (3 2)

The gauge invariance of basis states (P
~

n ) with n given

by Eq. (3.2) is evident from

exp i gniPi =exp i g(VXm)i/i
I IJ

=exp i g—mp(V Xp)p
P

(3.3)

(P
~

m)=—exp i gamp' y—p
', (3.4)

defined in terms of plaquette variables mp ——0, +1, +2,
. . ., is referred to as the "m basis. "This basis has the ad-
vantage that gauge invariance is automatically satisfied.
However, for d = 3 the m basis is actually ouercomp/etc
(and thus nonorthogonoi) in the gauge-invariant subspace.
This follows from the fact that two states

~
m) and

since the last expression depends on ((}I only through
the (dimensionless) gauge-invariant magnetic field

gp=(VX((})p.
It is important that Eq. (3.2) does not determine the mp

uniquely. In d=3 space dimensions, we can generate
from a given solution mp another solution mp by adding
the gradient of an arbitrary field o (defined on cubes}: mp
= mp+(Vo)p. In contrast, for d = 2 the solution of Eq.
(3.2) is unique if free boundary conditions are used, and is
unique within an overall additive constant if periodic
boundary conditions are used.

It is crucial to make a very clear distinction between
two different electric-field bases. On the one hand, the
transformation coefficients (P~n) in Eq. (3.1) define
what we call the "n basis. " This basis is orthogonal,
(n'

~

n ) = 5„„,and complete in the total Hilbert space.
As has already been said, restriction to the gauge-
invariant subspace is made by imposing Gauss's law. On
the other hand, the set of functions

~

m') have an overlap of unity if the respective configura-
tions mp and mp differ only by a gradient:

( m '
~
m ) = f 1[p]exp i—g (mp m—

p )pp
P

= f 1[/]exp i g(Vo)p(VXQ)p

(3.5)

(Here, d[P] =—g& dPi/2m. ) Eq. (3.5) is just another way
of saying that two sets mp and mp which differ only by a
gradient describe the some physical state

It is therefore clear that some care must be exercised
when using the m basis in practical calculations (for d

3). For example, due to the vast overcompleteness,
many states in the m basis are spurious, making it neces-
sary to project in some exact or approximate manner onto
the physical subspace. Alternatively, one might attempt to
make the m basis less redundant by imposing additional
constraints. One possibility is to consider only sets m that
are purely transverse. Unfortunately, the implementation
of such a condition requires highly nonlocal operations,
which are unattractive from a computational point of
view. For these and other reasons, most numerical calcu-
lations discussed in this paper have been performed using
the n basis. (We note in passing that variational and exact
m basis calculations have been carried out by Heys and
Stump. 's These authors, however, do not discuss the
problem of nonorthogonality of the m basis. In fact, they
claim that there exists a one-to-one correspondence be-
tween m configurations and sets of closed loops of electric
flux on the lattice; the analysis presented above shows this
to be incorrect. We believe that this, and not the trapping
of the system in some "metastable phase, " is responsible
for the problems they encounter when using the mean-
plaquette wave function. )

We now turn to the representation of the Hamiltonian
in the electric-field basis (n basis). The matrix element of
H between two states

~

n ) and
~

n ') is evaluated as

f d[t)(]exp
' —i g «'Pl ——g,

+kg�(1

—cosPp) exp 'i g n&P&
1 8

I 2 I 54'I p I

gnI 5„„+A,g(1——,'5„„~i——,'5„„ i ) .
I P

(3.6)

Here, n +1& (n —lz) denotes the configuration that is ob-
tained by incrementing (decrementing) n by one unit in a
directed sense simultaneously on all four links contained
in the plaquette p. Repeated action of (n'

~

8
~

n ) on a
configuration n leaves (V.n ), invariant, which is
equivalent to saying that H is gauge invariant. %e also
note that the association of "kinetic*' and "potential" en-

ergies with the electric and magnetic parts of the Hamil-
tonian is reversed in going from the A to the E represen-
tation. In particular, the magnetic term now has a form
reminiscent of a discrete second derivative.

Many calculations that have been performed in the vec-
tor potential representation are based on the independent-
plaquette vacuum trial state
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4(P)= g f(P~)= ff exp(Pcosg ) . (3.7) Single- Cube Excitation

To transform this state to the E representation we expand
in terms of Fourier components:

4(P)= g gI (P}exp( i—m g )

p Esp

IN p

I (P)exp( im—g ) (3.8)

where the I (P) are modified Bessel functions of order

mz Mu. ltiplication with (P ~

n }' and integration over all

Pi gives the n basis representation of 4:
@(n)=g I d[4]exp i g— niff

tN I

Xexp —i g mph
p

ff I (p)
P FIG. 1. Values of the plaquette variables m for a single excit-

ed cube. This excitation is spurious as it leaves the integers n
(electric-field strengths) unchanged.

QI (P) g&[(VXm)i —ni]
m, p

(3.9a)

On the other hand, if we are willing to work in the
nonorthogonal m basis, then 4 takes the much simpler
product form

4(m) = g I~ (P) . (3.9b)

Equation (3.9a) means that, to evaluate the amplitude
4(n) for a given configuration n, we must sum over all m

that describe the physical state defined by n. It is not
computationally feasible, in general, to calculate this sum
exactly for every configuration. The situation simplifies
in the strong-coupling limit (P sufficiently small), where
individual terms in the sum correspond to different
powers in P. For the simple case of zero electric field
everywhere, let us examine in d = 3 the plaquette
geometries represented by the various terms. The first,
the "minimal set, " is merely all m = 0. The next is a cube
of six excited plaquettes with the values of the three
whose outward normals point in the positive direction
equaling + 1 (or —1) and the others equaling the opposite
(see Fig. 1). A single such cube is suppressed relative to
the minimal term by P . Higher terms represent larger
closed volumes and/or larger values of m variables and
are suppressed even further. It is thus permissible to retain
only the minimal set in the sum over m for small values
of P. For a general configuration n, finding the corre-
sponding minimal set amounts to determining the
minimal surface that has the flux lines defined by n as
boundaries. Unfortunately, finding the minimal surface
for a general electric-field configuration is a nontrivial nu-
merical problem, and the trial state (3.9a) is therefore
quite difficult to deal with in practice. The situation is of
course different for d = 2. In this case, the minimal sur-
face is trivially given, and Eq. (3.9a) collapses to a sum of
terms which differ only by a constant over the entire lat-
tice, so that higher-order terms are suppressed at least as
P, where V = I. is the total number of plaquettes (the
area of the lattice).

As another choice for the vacuum trial state, we can de-

fine an "independent-link" wave function:

4( n) = g I„,(P) g 5[(V n ),],
I s

(3.10)

4(P)=exp (3.11)

with
~ p —p'

~

the distance between the two plaquettes.
While a wave function of the form (3.11}is quite difficult
to handle numerically, in the E representation, Eq. (3.10),
the algorithm is relatively straightforward.

IV. GUIDED RANDOM WALKS
IN THE ELECTRIC-FIELD REPRESENTATION

In this section, we calculate the ground-state energy for
the U(1) theory as a function of A, on a 4i lattice and com-
pare with earlier work in the A representation. 5 We use as
trial states both the independent-link and the
independent-plaquette wave functions described in the
previous section. Variational as well as time-evolved exact
ground-state energies are evaluated.

A. Variational calculations

Given a trial wave function 4(n), we generate electric-
field configurations n distributed according to 4 (n} via
the Metropolis Monte Carlo method. ' The variational en-

ergy, or expectation value of the Hamiltonian in the state
4, is computed by averaging the local energy density

'(n )(H@)(n ) over these configurations,

Z
'(n; )(HC )(n; ),

i=1
(4.1)

where Ei is subject to statistical error for finite Z. Both

where gauge invariance of the state is imposed by requir-
ing (V n ), = 0. This wave function contains long-range
correlations between plaquette variables as is seen by
transforming back to the A representation (see the Appen-
dix). For large values of P the result in d = 3 is given by
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(4
~
4) = g 4(m)4(m +Vo ) . (4.2)

Using this relation we can write the variational energy as

Ez g——g 4(mz)(mq
~
H

~
m t )4 '(m t )

m &, cr m2

4(m
& )4(mt+ Vc}r

X g 4(m')4(m'+ Vo')
(4.3)

The calculation now proceeds by making Metropolis
moves on both m and o according to the weight function
4(m)4(in+Vcr) and then averaging the expression in
large parentheses over the configurations generated in this
way. The coding is simplest for the independent-plaquette
wave function (3.9b), but other choices are possible. In
particular, the independent-link wave function (3.10) or,
for that matter, any combination of independent-plaquette
and independent-link wave functions, can be treated using

Eq. (4.3).
%'e present variational ground-state energies, and ener-

gies calculated from the strong-coupling expansion
(SCE), corresponding to values of A, in the strong, inter-
mediate, and weak-coupling regimes in Table I. The
independent-plaquette wave function is known to ap-
proach the exact ground state as A, ~O. In this regime, the
independent-plaquette state gives indeed a 1ower energy
than the independent-link wave function. On the other
hand, the independent-link wave function is superior in
the intermehate and weak-coupling regions. This we attri-
bute to the presence of plaquette-plaquette correlations,

the Metropolis updating procedure and Eq. (4.1) are
straightforward to implement numerically when an
independent-link wave function, Eq. (3.10), is chosen for
4. [The only subtlety involved is the necessity of preserv-

ing gauge invariance. This is accomplished by simultane-

ously updating all links I belonging to a given plaquette p
according to n/ = nt+(V&(5m }t with 5m~ = +1.] For
the independent-plaquette wave function (3.9a), however,
we encounter the difficulties discussed in the previous sec-
tion. It is therefore preferable to work in the m basis in
this case. Since ( m

~
m +Vcr ) = 1 for arbitrary m and o,

the overlap integral in the m basis is given by

which are missing in the independent-plaquette state. It is
conceivable that a well-chosen combination of the two
gives a good description of the vacuum far into the weak-
coupling region.

B.Generating the exact ground state
via time evolution

p(n, t) =4(n)%(n, t), (4.4)

where, for now, n may stand for any set of discrete vari-
ables (though eventually n will be identified with electric-
flux configurations), and 4(n) is the trial or guiding wave
function. Let the time evolution of p be governed by the
(imaginary-time) Schrodinger equation

——p(n', t)=4(n') g (n'
~

(H E„, )
~

n )—
dt

X 4 '(n)p(n, t), (4.5)

where E„0 (t) is an as yet unspecified c-number function.
If the initial wave function, %(n, 0) =—4(n), has a nonvan-
ishing overlap with the exact ground state of H, %o(n),
then %(n, t)~To(n) as tab oo. We split the Hamiltonian
into kinetic and potential parts,

( n'
~

H
~

n ) = T(n', n)+ V(n)5„„, (4.6)

and decompose the kinetic term as follows:

The guided random walk (GRW) algorithm is a numer-
ical method for evolving a given trial state to the exact
ground state of a quantum many-body system. In Refs. 5
and 6 this method was applied to U(1) and SU(2) lattice
gauge theory in the A representation. Here we show how
to formulate the GRW algorithm in a discrete basis and
apply it to the U(1) theory in three space dimensions using
the electric-field representation.

Consider the product

TABLE I. Variational and exact U{1) ground-state energies for a simple cubic lattice of dimension
O'. The exact results for the independent-plaquette trial function were taken from Chin et al.
+~=independent-plaquette trial function. 40 ——independent-link trial function. P=variational pa-
rameter determined by finding minimum energy listed in column 2. SCE=strong-coupling expansion.

0.6

1.0

1.8

+"q (m basis)

0.5124(3)

0.7635(9)

1.0754(19)

Variational
(n basis)

0.5308(7)

0.7201(3)

0.9986(9)

SCE

0.5108

0.7523

1.0150

Exact
+"q (A representation)

0.509(1)

0.719(1)

0.997(2)

(n basis)

0.515(2)
P = 1.70
0.708(1)
P = 2.35
0.982(1)
P = 3ZO
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4(n')T(n', n)i' '(n)—=4 '(n} g T(n, n")4(n") 5„„+k(n',n),

k(n', n)=@(n')T(n', n)4 '(n) —4 '(n) g T(n, n")@(n"}5„„.
(4.7)

The Schrodinger equation can now be written as

Bt
——p(n', t) = g [ k( n', n) +U( n) 5„„'jp( n, t), (4.8)

where we have defined

U(n) =4 '(n) g (n
~

H
~

n")4(n") E„, — (4.9)

= W(n';5t) g K(n', n;5t)p(n, t)+0(5t ),

(4.10a)

K(n', n;5t) = (n'
~
e ~s'~ n ), W(n;5t) =e

(4.10b)

The generator k, Eq (4.7), .was so constructed as to satisfy

The GR% algorithm is implemented by exponentiating
Eq. (4.8):

p(n', t+5t)= g (n'~ e '"+"is'~ n)p(n, t)

On the computer, the GRW algorithm proceeds as fol-
lows.

(1) Choose a time step 5t and generate an ensemble of X
sets of variables n distributed according to 4 (n).

(2) Random walk each set n according to (4.13}.
(3) At each time step, replicate or delete each member n

of the ensemble according to the weight W(n;5t). At the
end of the time step, adjust the normalization energy

E„, to keep the population stable. (In the relaxation
phase of the time evolution this requirement will tend to
cause E„, to decrease with time until E„~-=Eo.)

(4) After the system has relaxed to the ground state (so
that the ensemble is distributed according to 4+o), contin-
ue evolution (thereby generating more statistically in-
dependent sets n; distributed as 4%0) to reduce the statist-
ical variance in the observables to be calculated.

(5) The ground-state energy can be computed from

(cy
~
H

~

~Ii ) 1
T+zsi

Eo=
~

— g 4 '(n;)(H4)(n;)
i =T+si

(4.14)

gk(n', n)=—0 (4 11) as well as from

for all n. [Note that the only condition required for (4.11)
to hold is the symmetry of T, T(n, n') = T(n', n).] Equa-
tion (4.11) means that the kernel K(n', n;5t) conserves
probability:

Q K(n', n;5t) —= 1 . (4.12)

K(n', n;5t)=(n'
i

1 —k5t
i
n ) =5„„k(n',n)5t . —(4.13)

The action of K on p therefore can be simulated by per-
forming a random walk in the space of n variables with
K(n', n;5t) being the probability for stepping from n to
n' in time 5t In practice, .since Eq. (4.10a) is correct only
to order 5t, K is replaced by

T+ZSt
Eo = g (Enology }i

i =T+St
(4.15)

where the sum over time steps (and ensemble members at
each time step) begins at some time T by which the sys-
tem has relaxed to the ground state. (Both methods of cal-
culating Eo should give the same answer within statistical
errors as 5t ~0.)

(6) Repeat the calculation with smaller values of the
time step 5t and extrapolate to 5t = 0.

To apply this algorithm to U(1) lattice gauge theory we
interpret n as a configuration of electric fiuxes, i.e., as the
set of integers ni on the links of the lattice. The explicit
expressions for k and U are then given by

4(n+lz)+4(n lz) 1
—4(n+lz) 4(n —lz)

@( )
5n'n

2 g g( )
n', n+I + g( )

I', n —I

p p

4(n + 1~ )+4(n —l~ )
U(n)= — gn, ' +Zg

2 i 2 4(n)

(4.16)

(4.17)

and 4(n) is a suitable guiding wave function.
%e showed above that variational ground-state energies

can be calculated using either of the two E representations
that were introduced in Sec. III, i.e., the n basis or the m

basis. In contrast, the exact algorithm just described re-
quires the n basis formulation. The derivation of the
method relies in an essential fashion on the orthogonality
of the basis, and we have not been able to find a simple
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way of relaxing this condition. This limits our choice of
guiding wave function to the independent-link state de-

fined in Eq. (3.10), optimized by varying P to minimize

Ei defined in Eq. (4.1).
Our results for a 4 lattice are given in Fig. 2 and Table

I. A comparison with the GRW calculations of the
ground-state energy in the A representation is presented
in Table I. In our case the GRW algorithm required about
60 VAX 11/750 CPU minutes per 5t data point, while the
A representation calculations with continuous fields con-
sumed about 2 h. '6

We notice that at the extrapolated 5t = 0 limit the en-

ergy is reduced below the variational energy and the nor-
malization and expectation value energies agree within
statistics. At weak coupling 9, = 1.8), the independent-
link guiding wave function appears to give a slightly
lower energy than does the independent-plaquette wave
function used in the A representation GRW algorithm.
The same is observed in the intermediate-coupling region
Q, = 1.0), while at strong coupling (I, = 0.6) the E repre-
sentation result is somewhat higher in energy.

This pattern of results is correlated with the relative
quality of the variational wave functions used. Previous
experience with the GRW algorithm suggested that the
results obtained are insensitive to the choice of guiding
function, as long as a sensible choice is made. In the
present example, however, we seem to find that a better
choice of guiding wave function also results in a better re-

sult for the "exact" energy. Ideally, one would like to see
as a function of trial state "quality" a sharp separation in

energy between those cases where convergence to the same

state (the exact ground state} occurs, and other cases
where the trial state is so poor that the random walk fails
to converge to the correct distribution. Our results seem to
indicate that no such sharp separation exists, at least for
the lattice gauge theories we consider.

V. VARIATIONAL CALCULATION
OF THE INTERQUARK POTENTIAL

In Monte Carlo calculations based on the Lagrangian
formulation of lattice gauge theory, the potential between
two static quarks is extracted from measurements of large
Wilson loops. As was discussed in Sec. II, an attractive
feature of the Hamiltonian formulation is that it allows
the interquark potential to be calculated directly as an ex-
citation energy, the difference between the energies of the
lowest eigenstates in the vacuum and qq subspaces. We
will describe below a physically appealing and efficient
variational method for estimating this excitation energy.
While the variational (as well as the exact) computation of
glueball energies is complicated by the need to preserve
orthogonality to the vacuum, there are no such problems
for the qq state: the gauge transformation properties of
this state imply that orthogonality is automatically satis-
fie. We will formulate the variational scheme here
speciflcally for U(1} in d = 2 dimensions and hope to
describe the generalization to d = 3 and to the non-
Abelian case in a future publication.

The Hilbert space for the gauge field sector of the qq
system is spanned by states of the form (2.3), which sug-
gests making the following variational ansatz for the qq
wave function:

I I I I I I I I I I I I I I I I I

I e~) =F+
I
eo), F+ ——g IV(i)P+(i) . (5.1)

paths i

0.986—

0.984

0.982—

0.980—
1 v

0.7 I 0—

Here, 1+o) denotes (in a basis-independent notation) the
exact gauge-invariant vacuum, and F+ is a weighted sum
over all possible path operators P+(i }.To make the an-
satz (5.1) tractable, some approximation for the weight
W(i} is needed. We feel that a very simple, and yet ade-
quate, choice is to take IV(i) dependent only on the length
L of the path. Furthermore, it seems reasonable to assume
that W(L) decreases exponentially with L:

W{L )=exp( aL ) . — (5.2)
0.708—

0.?06—
~ a,

O.520—

0.5 i8

0.5 l6

I I I

Given the variational ansatz (5.1), we could now in princi-
ple go ahead and calculate V(R) by subtracting the energy
of the vacuum, @{0),from the energy of the qq state, e(R ).
However, since e'(R ) and e(0) are computed stochastically,
such a direct evaluation suffers greatly from statistical
imprecision. (Note that both energies grow linearly with
the volume of the lattice, while their difference is indepen-
dent of lattice size and hence small. )

The statistical noise arising from fluctuations in the
vacuum energy can be eliminated by expressing V(R} as

FIG. 2. Extrapolation to 5t = 0 of the ground-state energies
obtained with the GR%' algorithm in the n basis. Eq and E„,
are calculated from the RHS of Eqs. (4.14) and (4.15), respec-
tively.

V(R ) =e(R ) —e(0)=
&'41F F+ I

Po)

& Po I lF-, l~,F+1] I +o&

2& +o
I
F F+ I

+o)—(5.3)
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where we have used the fact that
~
Vo) is the exact vacu-

um state. The commutator in Eq. (5.3) has the effect of
explicitly canceling all "disconnected" contributions to
V(R) (disconnected from the "sum-over-paths" operator

F+ and its adjoint, F ).
To evaluate [F,[H,F+]] we need to work out the

double commutator [P (j),[H,P+(i)]] for any pair of
paths i and j. Only H, i contributes to this double com-
mutator because H,~ and P+ commute. Furthermore,

+i/I
the factors e ' appearing in the definition (2.3} are
eigenfunctions of the electric-field operator. Evaluation of
the double commutator therefore yields P (j )P+(i } mul-

tiplied by a c number. This c number is given by the
number of links traveled by both i and j in the same
direction, minus the number of links traversed by both i
and j in the opposite direction. We refer to this quantity
as the "intersection" of path i with path j and denote it by
L nJ

Expression (5.3) for V(R) can now be written as

g LfAJZIJ
1 gJ (5.4a)V(R )—

V
1J

Z& ——W(i ) W(j ) &%'o
~

P (j )P+ (i )
~

lip), (5.4b)

&%Q
~

P (j )P+(i )
~
+p) = g q p(n +i —j)+p(n) (5.4c)

e,(n) = g I. (P) X ff I„,(y),
P I

(5.5)

where P and y are variational parameters, and m is the
solution of ni = (V Xm)i. (Recall that the solution of this
equation is unique within an overall additive constant for
d = 2.) Our motivation for choosing the wave function
(5.5) becomes evident when the modified Bessel functions

Here, Vp(n) stands for the vacuum wave function as
represented in the electric-field basis (n basis) introduced
earlier, and n +i —j denotes the configuration obtained
by incrementing n in a directed sense on all links con-
tained in path i and decrementing n on all links contained
in path j. [Note that the operation of adding i and sub-
tracting j leads to a configuration which again satisfies
Gauss's law, V (n+i j), = 0.]-

Equation (5.4) suggests a physically appealing and effi-
cient algorithin for evaluating V(R) in the present varia-
tional framework: use a stochastic method to generate
pairs of paths i and j distributed according to Z,&, and
then average L;co over these pairs to obtain V(R). We
observe that a proper treatment of (5.4) requires an algo-
rithm that samples configurations n from the product
q p( +ni —j)+p(n ), with +p the exact vacuum wave func-
tion. This might be possible using a generalization of the
method described in Sec. IV. However, we chose to sim-
plify the problem even further at this stage and approxi-
mate Vp by an optimized variational wave function, 4Q.
This means that the value of V(R) computed from Eq.
(5.4) is no longer a rigorous upper bound on the potential.
However, one might still expect that sensible choices for
4Q lead to sensible results for V(R).

%'e have used the following ansatz for @o..

are replaced by their asymptotic forms for large argu-
ments:

4Q(n }~ exp — g m~ — g nI
1 2 1

2P ~ 2y
(5.6)

For a single closed loop of electric fiux, this reduces to

e
—(A IP+1.lr)I2On cCe (5.7)

where 3 is the area of the loop and L is its perimeter.
The wave function (5.5) thus combines the attributes of
confinement (area dependence) with aspects of long-range
order (perimeter dependence). For a given value of the
coupling A, , P and y are determined by minimizing the
variational energy: Ev = &4Q ~H

~
4Q&/&@o

~
@o&. (Ev is

evaluated stochastically using the standard techniques re-
viewed in Sec. IV.)

Given an optimal variational approximation to the vac-
uum, we sample the function Z,J, Eq. (5.4b), by perform-
ing a random walk in the space of variables i, j, and n

Using the standard Metropolis algorithm, i is updated ac-
cording to the weight W(i)@p(n+i —j), j according to
W(j)@p(n +i j), and—n according to 4Q(n +i —j)4Q(n).
At certain regular intervals, the random walk is interrupt-
ed to measure the intersection I.;~J.

Some qualitative properties of the potential V(R} can
be anticipated at this point. In the strong-coupling limit
()L,~O), the system prefers the paths i and j to be straight
lines connectinI1 the two sources. This gives V(R )
= —,

'
&L; ro ) =—,R for this limit. As A, increases the paths

begin to fluctuate, and these fluctuations become less and
less correlated as the number of electric-flux excitations in
the vacuum grows. The result is a gradual decrease in the
average intersection and, therefore, a gradual decrease in
V(R).

We now turn to the discussion of our numerical results.
Optimization of the variational parameters for the vacu-
um wave function (5.5) gave (P, y ) = (0.66,11.94),
(0.89,3.68) and (0.82,2.76) for A, = 0.6, 1.2, and 1.8,
respectively. ' The corresponding vacuum energies are
0.556, 1.038, and 1.471 (with errors only in the fourth de-
cimal), in very close agreement with exact results. The
lattices used in our calculations were of size 8 X 8 for A, =
0.6 and 1.2, and of size 12 X 12 for A, = 1.8. We typically
generated 4000 configurations to compute the average in-
tersection I.; zJ.. For the 12)& 12 lattice, each point in the
potential required somewhat less than 4 h of CPU time on
a VAX 11/750.

Results for the interquark potential V(R) are shown in
Fig. 3. At A, = 0.6 the potential is exactly linear, but it is
only imperfectly so for A, = 1.2. At A, = 1.8 the linear
dependence sets in only for R &3, with a dependence
weaker than linear (logarithmic' ?) for R (3. We interpret
this as the onset of Coulombic behavior at short distances.
Values for the string tension have been extracted by mak-
ing a least-squares linear fit to the data for V(R}. For A,

= 1.2 only the points for 8 & 2 were used in the fit, and
for A, = 1.8 only those for R & 3. The resulting values are
displayed in Fig. 4, together with the strong-coupling re-
sult and the prediction of Suranyi s weak-coupling varia-
tional calculation. ' (We have taken out a trivial factor g
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which just sets the overall energy scale. ) The
points deep in the strong-coupling regime with large error
bars are results obtained by DeGrand and Potvin. We
observe that our values for the string tension drop consid-
erably (by more than a factor of 2) over the region of cou-
pling strengths considered, but the decrease is less dramat-
ic than would have been expected from Suranyi's calcula-
tion.

It is not entirely clear to us whether the difference in re-
sults means that the variational ansatz (5.2) is inadequate,
or that Suranyi's estimate becomes valid only at A. ~~ l. It
should be noted, however, that our choice of vacuum
wave function is rather different from Suranyi's, who uses
periodicized harmonic-oscillator wave functions. We
found that V(R) is quite sensitive to the structure of 4O
when A, is large. For example, a pure independent-link tri-
al function yields at A, = 1.2 a value for the string tension
which is by about a factor of 2 smaller than the result

0.6—

~ ~ ~

I
I 1 ~ ~

I
I ~ I

I
~ w I ~

SUTQQI

= DeGrQnd 8Potv)o-
= present work

04—

FIG. 3. The potential V(R) between two static sources as a
function of separation R. The various points correspond to A,

= 0.6 (diamonds), A, = 1.2 (circles), and A. = 1.8 (squares); they
have been connected by dashed lines to guide the eye. Statistical
errors are roughly equal to the size of the symbols used.

given in Fig. 4. (The actual system prefers a 40 with a
significant independent-plaquette component; see the
values for P given above. ) Finally, we would like to em-
phasize again that our results do not set a rigorous upper
bound on V(R) as we have approximated the true vacuum
4'0 by the trial state 40, Eq. (5.5).

VI. CONCLUSIONS

In this paper, we have studied the Hamiltonian formu-
lation of U(1) lattice gauge theory in the electric-field (E)
representation. Our choice of representation was motivat-
ed by the fact that the U(1) ground-state wave function in
the presence of static sources is complex in the usual vec-
tor potential representation, but real and positive in the E
representation. We found that there exist (at least) two
distinct electric-field bases that are useful for applications:
the n and m bases. The first of these is defined by integer
electric-field strengths on links and is orthogonal and
complete in the total Hilbert space; gauge invariance is en-
forced by imposing the constraint V n = 0 for all sites. In
contrast, the m basis is defined by integers on plaquettes.
It is explicitly gauge invariant, but suffers from the draw-
back of being nonorthogonal and overcomplete. In fact,
almost all states in the m basis are unphysical, or redun-
dant.

We have presented a novel variational scheme for calcu-
lating the potential V(R) between two static sources. It is
based on the physical picture of a string of electric flux
connecting the two sources, fluctuating within the vacu-
um of the theory. The method uses a double-commutator
formalism that cancels explicitly all disconnected vacuum
contributions and allows V(R) to be computed with high
statistical precision. Although it provides only a variation-
al estimate, we feel that this method holds much promise
for future applications, including the calculation of poten-
tial energies for more complex source configurations such
as q q , etc.

The calculations for the U(1) gauge group presented
here are just an intermediate step toward our eventual
goal of treating non-Abelian theories. Let us sketch briefly
how to extend the discussion of Sec. III to the non-
Abelian case. As before, we find that there exist two dif-
ferent electric-field bases. The non-Abelian analog of the
m basis is composed of functions ( U

l
rn ) of the form

0.2—

O.O0
I ~. . . I

0$ I

s a s I a q s

l.5

FIG. 4. Results for the string tension, cr(A, ), as calculated
from the curves given in Fig. 3. Our results are represented by
circles, with statistical errors that are roughly equal to the sym-
bol size used. Crosses correspond to results obtained by De-
Grand and Potvin. The dashed line is a weak-coupling varia-
tional estimate due to Suranyi.

(6.1)

Here, X (U) denotes the character of the gauge group in
the irreducible representation labeled by quantum num-
bers m. The basis functions (6.1) are manifestly gauge in-
variant, due to the invariance property of characters, but
they again suffer from problems related to nonorthogonal-
ity and redundancy. Unfortunately, the probleins are now
much more severe than in the U(1) case because the
dependence of the overlap kernel (m'

l
m ) on m and m'

is generally very complicated.
The non-Abelian analog of the n basis is defined by the

functions
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The next step is to make a lattice "integration by parts, "

g (V n ),y,, = —g (Vp, )inI, (A2)

where D~( U) are the representation matrices of the gauge
group. Gauge invarianee is imposed by considering only
linear combinations of these functions that couple the 2d
matrices touching a given site to a scalar. Several workers
in the field have expressed feir at the "forbidding pros-
pect"9 of implementing such a procedure, but it appears
to us as straightforward; for the SU(2) gauge group, it be-
comes the well-understood problem of coupling 2d angu-
lar momenta to a singlet.

Having decided on a coupling scheme, we must then
evaluate matrix elements of the Hamiltonian in the cou-
pled basis. Matrix elements of the electric part of the
Hamiltonian are trivial, as H, &

is simply a sum of quad-
ratic Casimir invariants, one invariant for each link. The
magnetic term has more complicated matrix elements,
which can be written as a product of group recoupling
coefficients (6j symbols). An important point here is that,
since H~,~ is placed in the fundamental representation
(FR) of the gauge group (H,s„~ g trU&), at least one
entry in each 6j symbol must be the FR. The relevant 6j
symbols therefore can be precomputed and stored in a
table of relatively small size. Closed algebraic expressions
for the SU(2) 6j symbols have been given by Racah. ' A
major complication, as compared to the Abelian case, is
that not all off-diagonal matrix elements of H,~ are of
the same sign, and so the relative phases of the com-
ponents of a good trial wave function are not obvious.
This, and other questions related to implementing our ap-
proach for non-Abelian theories, are currently being in-
vestigated.

cos[(Vu 4 6—]=1 '[—(V—W) I Ni
—l' .

Performing another integration by parts we find

(A4)

4(P) ~ f d [p]exp —g p, (V'p),
e'

(A5)

Since the integral is dominated by a narrow range of
values of p„we can extend the limits of integration to in-

finity, thereby reducing the expression (A5) to a Gaussian
integral which is evaluated by completing the square:

4(P)~exp ——ggl+ g(V P), [(V ) '(V P)],
I S

where (Vp)i means the difference between the values of
p, at the two sites bounding the link 1. The sum over n

can now be performed to give

4(P)= f d[p, ]exp Pecos[(Vp)t PI—] . (A3)
l

In the weak-coupling limit, P becomes large and it is a
valid approximation to expand the cosine:

ACKNO%'L EDGMENT 8

This work was supported in part by the National Sci-
ence Foundation, Grants Nos. PHY82-07332 and
PHY83-15500. E.A.U. and M.R.Z. acknowledge support
by Caltech Bantrell and Weingart Research Fellowships,
respectively.

APPENDIX: INDEPENDENT-LINK O'AVE
FUNCTION IN THE A REPRESENTATION

We transform the independent-link wave function
4(n ), Eq. (3.10), to the vector potential basis. By eliminat-
ing the gauge constraints (V n), = 0 through the intro-
duction of auxiliary integration variables p„0&p, &2m,
we can write 4(P) as 4(P) cc exp (AS)

(A6)

In momentum space, the exponent of (A6) in the con-
tinuum approximation is given by

r

lk 4 I' 13 lkxkl'
k

(A7)

where reciprocal lattice cross and dot products are under-
stood. In coordinate space, k XP is simply the lattice curl
of P and, thus, the wave function in the A representation
for d = 3 can be written as

4(p)= g f d[p] ff I„,(p) exp i gn p

Xexp i g(V n),p, (Al)

where
~ p —p'

~
is the distance between the plaquettes p

and p'. Equation (A8) makes manifest the gauge invari-
ance of 4, as well as the presence of long-range correla-
tions between the plaquette variables f~.
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