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The nucleon electromagnetic form factors Gg{q') and GQ{q~) and the axial-vector form factor

G~(q ) are investigated in a simple model of relativistic quarks confined by a vector-scalar mixed

potential U&(r}=(1+y )(a"+'r"+ Vo) without taking into account the center-of-mass correction
and the pion-cloud effects. The respective rms radii associated with Ggiq ) and G„(q') come out as

(r, )'~ =1.07 fm and (r„)'~ =1.17 fm. The possibility of restoring in this model the chiral sym-

metry in the usual may is discussed and the pion-nucleon form factor G ~N(q ) is derived. The
pion-nucleon coupling constant is obtained as g &z ——10.2, as compared to (g &+) pt 13.

I. INTRODUCTION II. THE FORMALISM

The usefulness of the study of electromagnetic form
factors in connection with the description of the size and
compositeness of hadrons led many authors to explain the
available data within the framework of various potential
models. Several authors' have recently attempted to study
the nucleon form factors based on bag model and other
confining quark potential models. Tegen and collabora-
tors' have studied the same in a model with massless
quarks in confining scalar potentials of the cr and cr
type. They have reasonably accounted for the available
experimental data by taking into account the center-of-
mass corrections and the pion-cloud contributions. Here
we present an attempt to study the quark-core contribu-
tions to the electromagnetic form factors in a model based
on the Dirac equation with an independent-quark confin-
ing potential of the form

U, (r) =(1+y')(a"+""+V.),
which corresponds to an equal mixture of scalar and vec-
tor parts. Such a potential model met with reasonable
success in explaining the quarkonium spectroscopy as
well as magnetic moments and other static properties of
baryons.

The organization of the paper is as follows. In Sec. II,
we present a brief outline of the potential model as dis-
cussed in our earlier work. Using expressions for the
ground-state wave functions of the independently con-
fined constituent quarks of the nucleon, the form factors
are computed to order g=

~ q ~
/4M in the Breit frame.

The
~ q ~

dependence of these form factors are studied in
comparison with the experimental data in the range
0&

~ q ~
&1 GeV . We have only considered the quark-

core contributions to the form factors without taking into
account the center-of-mass corrections and the pion-cloud
contributions. Furthermore, we have computed the nu-
cleon core radii associated with different form factors.

[tz p+Prnq+ 'Uq(r)]gq(r) =Eqgq(r) (2.2)

where lbq(r) is the four-comPonent quark wave function
belonging to the energy eigenvalue Eq. It is further as-
sumed that the quarks inside the nucleons in their ground
state occupy 1S&rz orbits and the nucleon mass (in the ab-
sence of c.m. corrections) is given by M =3Eq. Then in
the two-component form gq(r) can be obtained as

gq{r) =Nq
Pq(r)Xt

qIq{r)X t

(2.3)

where A,q (Eq+mq) and Pq(——r) satisfies a Schrodinger-
type equation,

Pq+ Pq+Aq{'Eq mq 2V(r)]gq:0 (2,4)

A. Potential model

The potential model on which our present discussion is
based upon, has been discussed in detail in our earlier
work. In order to make this paper self-contained, we
briefiy outline some important features of the model,
which is based on the following assumptions.

The constituent quarks in a nucleon are assumed to
move independently in an average fiavor-independent po-
tential defined in the nucleon center of mass by

Uq (r) =(1+y ) V(r),

(2.1)

V(r) =(a""r"+V, ),
and a, v, and Vo are the potential parameters with a,
v&0, and y is the usual Dirac matrix. The independent
quarks of rest mass mq (m„=m4) are believed to obey
the Dirac equation
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The overall normalization constant i]]]'» is obtained as

Nq
——t Aq/2fE» —

& V(r) &]J'~ (2.S)

where & V(r}& is the weighted average of V(r) with

respect to Pq(r).

B. Nucleon electromagnetic form factors

& x(p, )
I
J]'(0)

I x(p] ) &

1 G~ —GE

(1+g)
u(p2, s') (1+']))GMy"— p"

2M

X u (p],s) (2.8)

The Dirac-Pauli nucleon form factors F, (q ) and
F2(q ) in the spacelike region are defined as

&x(p, )
I
J]'(0) Ix(p])&

= u(p2ys') y"F](q )+i F2(q ) u(p], )s,

(2.6}

where J]' is the nucleon current and u (p,s) is the positive
energy Dirac spinor of the free nucleon of four-
momentum p and spin s. p] and p2 are the ingoing and
outgoing nucleon four-momenta. q = (pq —p, ) is the
four-momentum transferred from the photon to the nu-
cleon and

fr" r-"l .
2

In view of the fact that F] and F2 mix effects due to the
distribution of charge and magnetization, it is customary
to adopt a convenient pair of form factors Gx, ]]q(q2),
called the Sachs form factors. These are defined as

when p"=(p]+p2}]'. It is convenient to adopt the Breit
frame in which p = (p]+pz) =0. Then q"=(o,q},
p] p2 =M po=E =M(1+»))', and pi ———p2

2 2 2 1/2

= —q/2. Using these prescriptions in Eq. (2.8) and
u (p,s) with the normalization uu =1, the time and space
components of the nucleon current matrix elements are
obtained as

& N(q/2)
I
Jo(0)

I
N( —q/2) & =X, ( I+ri) '~'Gz(q')X,

(2.9)

&N(q/2)
I
J(0) IN( —q/2) &

X,,(1+ i)-]~~' q G~(q }X . (2.10

We now proceed to determine the quark-core contribu-
tions to Gg]]r(q ) without taking into account the recoil
corrections and pion-cloud contributions. Assuming the
q]]grks to be pointlike particles in 1S]~2 orbits, the nu-
cleon current is taken as the sum of the quark currents
Pqy"fq where Pq(r) is the single quark Dirac wave func-
tion of the form given in (2.3). Then Eq. (2.9) yields the
electric form factor of the proton as

GE(q )=F](q ) »)F2(q ),—

GM(q'} =Fi(q')+F2(q'»
(2.7) (1+»)} ~ Gg(q )=f d rgq(r)fq(r)e'q'

=4]ri]]]',' f dr r'jo(
I q I

r}

where»}= q /4M and—q =(q —q ). GE(q ) and

G]]r(q ), respectively, represent the true charge and mag-
netic distribution and, hence, are called the electric and
magnetic form factors. Using Eq. (2.7) and the usual
Gordon decomposition technique, Eq. (2.6}can be reduced
to

X tI)q'+, P' (2.11)

where jo( I q I
r) is the zeroth-order spherical Bessel func-

tion. Now integrating the second term on the right-band
side of Eq. (2.11) and using Eqs. (2.4) and (2.1), we obtain

N
' 1/2

Gg( z)
~q 4M

2

2Eq —2Vo — &Jo( I q I
r}&

—2u"+'& r "jo(
I q I

«}&

q

(2.12)

where &jo( Iq I
r)& and &r"jo(

I q I
«)& are the expectation

values with respect to Pq(r). In the q ~0 limit Eq. (2.12)
yields Gg(0) =1 as expected.

We next obtain the expression for the magnetic form
factor GQ(q ) of the proton. Using Eq. (2.10), we can ob-
tain

Now choosing the z axis parallel to q inside the integra-
tion and equating the x component on both sides of Eq.
(2.13), we obtain

2%q(1+g} '
GI]'q(q )=— 4m f dr r Pq(r)Pq(r)

e

(1+ )
'" Gg( ')

2%q f d r(crXr)e'q'Pq(r)Pq(r) . (2.13)
Then integration by parts ~ould yield

&j]( I q I
«}

(2.14)
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2M' qI+, &jo( I q I
«}&

4M

which in the q ~0 limit reduces to

2M'G (0)=

(2.15}

(2.16)

F ( 2) (1+ I q I
™ I

G&( z)+ 5
I q I

'
G&( 2)

12M

(2.18)

F2(q )= —,(1+ lql «M ) '[ —Gg(q )+ —', GQ(q )] .

C. Axial-vector form factor of the nucleon
This is the expression for the magnetic moment (M& of the
proton as obtained in Ref. 3. If one does not take into ac-
count the coupling to the charged pion cloud it is trivial
to obtain the electromagnetic form factors in this model
for the neutron as

Gg(q )=0,

GM(q'}= —
2 Gf(q') .

(2.17)

Since the proton and neutron belong to an isotopic
doublet, it is sometimes convenient to decompose the ob-
served nucleon form factors into their isoscalar and iso-
vector components. The isovector parts of the form fac-
tors Fi (q ) and F2(q ) can be expressed here as

Ge (q ((rrerre/2 ) =(((r f dere'e'A (r) //) .

Now substituting (2.19) and (2.3) in (2.20) we get,

(2.20)

For a nucleon consisting of three pointlike quarks

q =u, d, in their lowest IS»z orbits, the axial-vector
current is the sum of the quark axial-vector currents and
is given as

& x(r)=gg, (r)y"y' f,(r) .
2

(2.19)

Then the axial-vector form factor of the nucleon which
measures the spin distribution of the quarks inside the nu-

cleon is given by

Ge(q )(acre/2( Nr (X f d re' 'g dr rr+ r dr r /2 2/) . (2.21)

After a little spin algebra and the angular integration, one obtains with the substitution

25/q
G~(q )=

3
&jo(lqlr)& —

~ I, «r'0,' Uo(lqlr) —2Ji(lqlr)]
q

(2.22)

The integral in (2.22) can be simplified further by using
Eq. (2.4) which yields an expression for (t/s as

fE, m, 2V—(r)]r —(y, ')

(2.23)

V(r)=(a "+'r"+V ) .

Hence, written explicitly, one gets

G (q }=3 g
( +V)&j(lql )&

5 2'

and the Bessel-function identity

2j (
I q I

r)
I jo( I q I

r)-j; (
I q I r)]= (2.24)

+~ "+'&r"jo(
I q I

r) &

(2.26)

to give

5 2'G~(q') =
3

~' & Vi(r)jo(
I q I

r) &

dv(r) ji( lql«)
(+ r (2.25}

Since the q —+0 limit of (2.25) defines the axial-vector
constant g„, we find that

Gg (0)= —,(4%q —1) (2.27)

which is the expression for g„derived in our earlier
work.

Here D. Chiral-symmetry breahag and pion-nucleon
form factor

and

Vi(r)=m +V(r)
The quark-core contribution to the axial-vector current

of the nucleon Ag(r) given in (2.19) breaks chiral symme-
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try as a necessary consequence of confinement. With the

quark fields ir()&(x) satisfying the Dirac equation (2.2) it
can be shown that

where f =93 MeV is the pion decay constant. The pion
field 4"(x) satisfies the resulting field equation

(CI+m )C)"(x)=Jq(x) . (2.31)

B„XII(x)=iVi(«) g fg(x)y"y'~if~(x) . (2.28) The source function J5 (x) provides the coupling of a pion
to the quarks in the nucleon and is given by

The chiral-symmetry breaking here is in fact due to the
scalar part of the confining potential V(«} and the quark
mass m~. Then, to restore the chiral symmetry, one usu-

ally introduces an elementary pion field 4i(x) such that
the generalized axial-vector current

3

A~i(x) = g PJ(x)y"y' P, ( x)+f~P'4i(x)
j=l J (2.29)

is a quantity satisfying the PCAC (partially conserved
axial-vector current) condition

Vi («)
J5(x)= —i g f,(x)y5+P, (x) .f (2.32)

Then one can define the pion-nucleon form factor
6 ~z(q2) for the static source J5 (r) as

(G „„(q )(ere qre ) =2M()q f d re'e'dr (r) )q) .

(2.33)

B„AII(x)=—m f 4 (x), (2.30)
For the quarks in 1S&&z orbits, using (2.3) and (2.32) one
obtains

3

G Nrr(q )(rrN qre)= f drr V&(r)de(r)dr'e(r) N g f d()(err r)e' 'r) N) .f A,
q

(2.34)

Using the integral result

o" e'q'=4mgj q r

M
g q'NN f gri— (2.38)

and the identity

N g (er) q )r) (q) = —, (ere qPjq ),j j

X ((()s') . (2.35)

Integrating by parts (2.35}yields

2 I lowe
( vi(«)jp(

I q I
«) )

we find

2

G wx(q )= f d«[«Vi(«)ji(
I q I

«)]
8~M»,

which is the Goldberger-Treiman relation

III. RESULTS AND CONCLUSION

In the preceding section we have obtained expressions
for nucleon electromagnetic form factors, axial-vector
form factor, and pion-nucleon form factor in an indepen-
dent quark-model based on the Dirac equation with equal-

ly mixed scalar and vector potentials taken in a non-
Coulombic power-law form as given in (1.1}. This poten-
tial model has been employed before with reasonable suc-
cess in explaining the quarkomum spectroscopy as well
as the magnetic moment and other static properties of
baryons. Our purpose here is basically to see to what ex-
tent the same model can explain the nucleon form factors.
Therefore, we take the potential and quark-mass parame-
ters obtained in Ref. 3,

dv(«) ji( I q I
«)

+ r
d« IqI«

Now comparing (2.36) with (2.26) we find that

(2.36)

(v, a, Vp) —= (0.1, 1.5562 GeV, —1.89 GeV),
(3.1)

(m„=m~) =146.95 MeV .

The ground-state energy eigenvalue solutions for the con-
fined u (or d) quark, assumed to be in their 1S&&2 orbit in
the nucleon gives

6~(q'»f (2.37}

which relates the pion-nucleon form factor to the axial-
vector form factor of the quark core of the nucleon. Al-
though strictly at the q = —m limit 6 Nz(q ) defines
the pion-nucleon coupling constant g ~~, we ignore the
minor deviation in writing the q —+0 limit of Eq. (2.37) as

(E„=Eg)=312.77 MeV,

(Ng ——ding )=0.70388 .
(3 2)

Now taking this typical set of parameters and the corre-
sponding solutions, we compute the various form factors
like Gg(q ), 6$(q ), Fi i(q ), and Gz (q } as provided by



N. BARIK AND M. DAS 33

i.0 F,"(qs)/F, (0)

0.6

0
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CV
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u 0.2

FIG. 1. Charge form factor Gg(q~), calculated in the present
model, in comparison with the results of MIT bag-model calcu-
lations with bag radius R =1 fm. Experimental data are taken
from Ref. 5.

the expressions (2.12), (2.13), (2.18), and (2.26), respective-
ly. The expectation values &r &, &jo( l pl r)&,
&r"J'o( lqlr)& and &r"A( lqlr)~lqlr& app~~ng tn
these expressions are evaluated numerically for a range of

l q l
values, 0&

l q l
&1 GeV, which enables the compu-

tation of the q dependence of the form factors.
In Figs. 1 and 2, we show the results for the proton

electromagnetic form factors Gg(q ) and GQ(q ). We
observe only an overall qualitative agreement with experi-
mental data with discrepancies more prominent for the
higher-

l q l
region only. We obtain Gg(0) = 1 as expect-

0.2 0.4 0.6 0,8 1.0
-qs (GeVs)

FIG. 3. Isovector form factor F~(q )/E~(0), as obtained in

the present model, in comparison with the MIT bag-model cal-
culations with bag radius 8 =1 fm, as well as with the experi-
mental data.

ed and GQ(0) =p~ =2.874@~ as compared to
(pz),„~,=2.793@~. It is also instructive to obtain the
charge rms radius of the proton which is related to
Gg(q ) as

3.0-
eeoc

PRESEHT WORK

2. 5

2.0

1.0

0
0

I

0.2 0.4 o,e

(GeV j

0.8
I

1.0

FIG. 2. Magnetic form factor Gg(q~), calculatal in the
present model, in comparison with the experimental data taken
from Ref. 5.

0 02 0 I. 0.6 0.8 1.0
-q' (GeV }

FIG. 4. Isovector form factors F2(q )/E2{o), as calculated in
the present model, in comparison with the MIT bag-model cal-
culations (with 8 =1 fm) and with the experimental data taken
from Ref. 7.
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de(q )
r, 2 = —6

ie i'=o
2

2&,(r2) —2(r 2&(r) ) +
I

3

4M

I
el'=0

v+ 1 ( r v+ 2 ) (3 4)
5

Calculating this expression with gz ——Gz(0}=1.01 we
find (r„2)'~ =1.172 fm which is roughly of the same or-
der as (r, )'~ =1.072 fm, found in this model without
considering the pion-cloud effects. Then calculating g ~N

GA (q~)/GA(0)

0.8

C)
~ 0.6

45

OI
CT

0l,
C9

0.2

(3.3)

Calculating the above expression we obtain
(r, )'~=1 072 fm, in somewhat poor agreement with
(r, ),„~,

'~ =0.88 fm. However, our result compares well
with the predictions of the MIT bag model with
(r, ') '~2=1. 12 fm.

Next we obtain the isovector form factors Ei(q2) and
E2(q ) as prescribed in Eq. (2.8). Figures 3 and 4 provide
a comparison of this result with the MIT bag-model re-
sults as well as with the experimental data. We observe
again that our results are not very different from the MIT
bag-model calculations.

Finally, the results for the axial-vector form factor
Gz(q ), evaluated according to Eq. (2.26), are shown in
Fig. 5. Here we have plotted the normalized ratio
Gq (q )/Gq (0) in comparison with the experimental
data. We find here that the agreement is rather poor.
Nevertheless, we can derive the rms radius associated with

Gq (q2), which is given by

6 dG~(q')
rA

(V, +rn, )(r )
10 N& z

~q

from (2.38) we find g ~N-10.2 which should be com-
pared with ( g~~~}e„pg 13.

It is a well-known fact that in models as this where the
pion is introduced by a f~d„4 term in the axial-vector
current, the pionic contribution to the axial form factor
G„(q ) vanishes in the Breit frame. Hence, in such a
description G„(q ) should be determined entirely by the
quark-core alone, while Gg(q ) and GQ(q2) should as
well receive contributions from the pion-cloud effects.
Therefore, we believe that the overall discrepancies ob-
served in the present calculations may be because of the
absence of possible corrections due to the pion-cloud ef-
fects and the center-of-mass motion.

One can also further note that in a composite system
like the nucleons, the high-q form factors measure the
high-momentum tail of the relative-momentum wave
functions of the constituents. This tail is generated by the
short-distance dynamics of the system which in this case
is believed to be governed by the one-gluon-exchange part
of the interaction. Therefore, the high-q discrepancy
seen in Figs. 1 and 2 may partly be an a priori indicator
that the present model, like the MIT bag model, fails to
take short-range correlations into account properly. This
was because of the fact that there is no straightforward
and clear cut mechanism to generate the three-body cen-
tral potential out of the given two-body potential includ-

ing the short-distance one-gluon-exchange part. There-
fore, the best one can do is to assume some phenomeno-
logical average potential for independent quarks. Keeping
in view the fact that the spin-orbit splitting is not very
significant in ordinary baryons and also the short-distance
Coulombic part of the interaction is supposedly less dom-

inant in baryonic dimensions; a suitable average potential
for independent quarks was modeled in the form of

(I+y')(u "+'r"+ &G),

which was found to be quite successful in predicting the
static properties of baryons as well as the weak electric
and magnetic form factors in semileptonic baryon transi-
tions. In view of this success it was natural to extend the
applicability of the model in the present work to the study
of the nucleon form factors arising out of the core contri-
butions mainly in the low-q2 region, which has been
found to yield results comparable with those obtained
without c.m. and pionic corrections in the MIT bag
model. However, these results might be improved by in-

corporating chiral symmetry so as to bring in the pionic
effects and including the c.m. corrections in the present
model, which is being taken up in a more detailed study in
our subsequent work. Nevertheless, in view of testing the
applicability of the model in this area of study, it has been
found to be meaningful with its simple and straightfor-
ward approach, yielding qualitatively encouraging and
reasonable results.

0
0 0.)

I

0.2 0.3 G.I
-q'(6~V')
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