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Temperature-induced interaction: +4 theory
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%e study the possibility that a field theory is interacting and bounded only above a certain tem-
perature, while not existing below it. %'ithin the Gaussian variational approximation used we find a
phase for l),P in four dimensions in which this phenomenon occurs.

I. INTRODUCTION

Quantum field theory is a never-ending story of poten-
tial surprises. In 3 + 1 dimensions our simplest theory is+, and yet very little is actually known about it. Does it
exist as an interacting theory? This is not very likely if
the bare coupling constant is positive: As & 0. ' However,
the answer may be yes if it is negative and small (Ref. 2),
A,tt &0, which is known, since Symanzik's work, not to
lead necessarily to unboundedness (although his
asymptotic-freedom argument is probably not enough to
avoid it). In this work we would like to study another
road to interaction: one induced by temperature Cou.ld it
be that a field theory only exists as an interacting theory
above a given temperature with a coupling constant deter-
mined by the temperature-to-mass ratio) %'e have studied
this question for + theory and we find that within the
approximations used, this possibility is realized in this
model. Let us show how this happens.

Let us first recall Stevenson's main results obtained at
T =0 within a variational approach4 ideally suited for in-
vestigating the question of existence. For A,n & 0 the truly
renormalizable theory, i.e., the one which remains finite
when the UV cutoff is removed, A~ Do is trivial (nonin-
teracting) or nonexistent (unbound from below). This
reproduces the well-known triviality results. ' Of course,
the conclusion does not follow if one considers + theory
an effective theory where A has a physical meaning com-
ing from the reduction of the original larger field theory
to + theory; one can then obtain a spontaneous-
symmetry-breaking phase. We will not follow this road
but will consider + theory alone as a renormalizable
field theory. Then Stevenson finds that if At) goes to-
wards zero from below as the cutoff is removed through

This result and the technique by which it is obtained is
our starting point. We will now perform a similar study
but at finite temperature. Temperature is introduced in
the usual way, and we find it convenient to use the real-
time formalism. Notice that although the variational ap-
proach is nonperturbative one can use the free-propagator
temperature modifications because our quantum trial
field will be a free field.

II. THE ANALYSIS

The Hamiltonian density of AP theory is
'2

+ —,'(VP) + ,'mtt P —+A,tie (2.1)

and the creation and annihilation operators satisfy the
commutation relations

[ai,(Q),ai, (Q)]=(2sr) 2tok(Q )5 (k—k') . (2.4)

Then, the upper bound of the ground-state energy is given
by the minimum of

where the subscript B indicates that all parameters are
bare. In order to use the variational method we will intro-
duce the ansatz

d3k
P(x)=go+ I, [ak(Q)e ' +a„(Q)e' ],8' (2sr) 2tok(Q )

(2.2)

where both Po and Q will be the variational parameters,
aiid

1+,+01 1

6I i(mz) 2AI)(m ) I i (m )

I'(0o»(0o» —= & on I
~

I
0n &

I ti=n(y, ) (2.5)

where I i(m )-ln(A /m ) and m and l), are the renor-
malized mass and coupling constant, the theory is in-
teracting with

Sst &A, &0, m &—0,

where
~
On) is the normalized free-field vacuum.

One can easily compute the right-hand side of (2.5) and
obtain

&o„~m~o„&=I,(Q')+-,'(,' Q')I, (Q )+-,'

+Aaai+6ltaaIo(Q2)+3AaIo (Q )

and the effective potential increases from the origin up to
a certain value of the classical field and is flat from there
on showing that the theory is stable and that no spontane-
ous symmetry breaking occurs.

where

(2.6)

(2.7)
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d'k
I„(Q )=—I, [a)g, (Q )]" .a'(2n) 2p)k(Q )

(2.8)

Equally,

Ii(Q )=Ii(Q )+Hi(Q) (2.11)

Ip (Q ) =Io(Q )+Ho(Q),

where P=1/(ka T) and

(2.9)

H (Q)= J, 5(k —Q') . (2.10)
(2n ) a' exp[pcok(Q )] 1—

Up until now, we have not included finite-temperature
terms. In order to do that we have to realize that Ip(Q )

is the propagator of the theory and add to it the tempera-
ture corrections obtaining '+Q'

Hi(Q)=— 3 J, 5(k —Q )d k .
(2m) R' exp[Pcok(Q )]—1

(2.12)

Using Eqs. (2.9) and (2.11) the finite-temperature upper
bound of the energy density is given by

{On~A ~On)=li(Q )+H)(Q)+-,'(my —Q )[I (Q )+H (Q)]+—,'rn a+A, a +6k, a[lp(Q )+Ho(Q)]

+ 3Aa [Ip(Q ) +Hp(Q)] (2.13)

Before continuing it will be useful to remove dimensions by multiplying all quantities with an adequate power of P. We
will work from now on with these rescaled variables without changing the notation. All the relevant properties of Hp(Q)
and Hi (Q }are given in the Appendix.

Formula (2.13) displays many divergences. Some of them will be removed by subtracting the zero-point energy. To
eliminate the others one has to renormalize the mass and coupling constant. So, we start by regularizing the theory with
a symmetric cutoff A in the divergent integral I„(Q ), (2.8).

We choose the origin (a =0) as the subtraction point and so

'—=2 ' '"' " =,'+12', [l,(Q,')+H (Q )]+2Q' (2.14)

1 d VaQ
=A.g+6A,gQp[Ho{Qo) —Qpl, (Qp2)]

+ i Qo (Qp I i(Qp )+Hi(Qo) —Ho(Qp) —2QpHp(Qp)

+[Ho{Qo}—I i(Qo'}+3I 2«o'}Qo']I-,'(m, '—Qp')+6k, ,[lp(Qo')+H, (Q,)]j

+6Aa[Hp(Qo) —Qpl i(Qoi)] )+—,
' Qp'

a=o

where Qp=—dQ/da ~~ pand Qp'—:d Q/da
~ ~ p. Also the formula

(2.15)

dI„(Q )
=(2n —1)QI„ i(Q ) (2.16)

has been repeatedly used.
On the other hand, Qp is Q(a =0). To obtain it we will look for a solution Qp & 0 of

8 V(O, Qp)
=Hi(Qo)+[Ho(Qo) —Qpl i(Qo )]I —,

'
(ma —Qo )+6As[lp(Qp )+Hp(Qo)]] —QpHo(Qp) =0 . (2.17)

This equation could or could not have a solution. If not and if 8 V(O, Qo)/BQp & 0, the theory is unbound from below. If
not but 8 V{O,Qo}/BQo& 0, then Qp ——0 gives the minimum of V(O, Qp). We leave this case for later and start assuming
that it has a solution Qp & 0. Consider first the subcase Qp & 0. Then (2.14) becomes

rn =ma +12Aa[lp(Qo )+Hp(Qo)],

and using (2.17}we see that

(2.18)
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20oHo( Qo) —2H i ( Qo)
m =00- +0

Qpl (0 ) I
so that m ~0 too.

As Qp has to be a minimum of V(O, Qo),

8 V(0,0o)
&0,

BQo

which leads to the inequality

~. Hi«o) 2 2 2 2 I
H&(Qo) — —20oHo(Qo)+Qo I—&(Qo )+6Aa[Ho(Qo) —Qol &(Qo )] +0

0 —1

Notice that this implies that A, as given by (2.15) is a convex function of Qp.
We now subtract the zero-point energy. The result is

E(a,Q)= V(a, Q) —V(0,0p)= —
8 (0 —Qp ) I f(Qo )+X(0,0o )

)0.

(2.19)

(2.20)

(2.21)

—,'(0 —Qo )[I"(0,0o ) ——,'(0 —Qo )I )(Qp )]+isa + —,Qp a

+3Aa [I (0 Qo2) —
2

(0~—Qo }I—
& (Qo ) 1

+6Asa[I (0,0p ) ——,'(0 —Qo )I )(Qo )]+H)(0)—H)(Qo)

+6As[Hp(0) —Hp(Qo)][a+1(0, 0o ) ——,'(0 —Qp )I ](Qp )]

+ [3AsHo(0) —
2 (0 —Qo2))[Ho(0) —Ho(Qo)] — (02—Qo2)Hi(Qo)

20p

+0 1

—1

(2.22)

where the following relations have been used:

It(0 ) —Ii(Qo )= (0 —Qo )Io(Qo ) — (0 —0o ) I i(Qo )+&(0 —Qo )

X(0 —Qp }:— 20 ln —(0 —Qp )(3Q —Qo ) +0
128M Qo A

Io(Qz) —Io(Qo2) = —
2

(02—Qo2)I —i(Qoz)+ I'(02 Qo~)

dX(0',Qo')I'(0,0o )=— 0 ln —0 +Qp +0 2
——2 )0,

(2.23)

T

I—i(0 ) —I—i(Qo )= — ln +0 = —2
1 0 1

Sn Qo A

I i(0 )= ln —2 +O1 4A~

8 0 A~

dI (0,0o )

dQ

It is easy to calculate Qp by obtaining 0(a) which minimizes e(a, Q) in Eq. (2.22) and then performing its derivative at
a =0. This leads substituting into Eq. (2.15}to

2 2 H)(Qp) 0

2 2Qp I ~(Qo )+Hg(Qp} — —20pHo(Qo) —12As[Ho(Qo) —Qol 1(Qp )]00
e

~ 1 H)(Qo} 2 2Qo I )(Qo )+H)(Qp) — —20pHo(Qo)+6As[Ho(Qo) —Qpl )(Qp )]00

(2.24)

The same result is obtained by direct minimization of A, as given in Eq. (2.15) with respect to Qp.
For large 0, (2.22} becomes
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n' 0 0
e(a, Q) — I,(Qp )[1+6kgl i(Qii )]— ln [1+12Asl i(Qii )],

Q)&1 8 64 Qp

in such a way that the condition

1+6K,sl i(Qii ) &0

(2.25)

(2.26)

guarantees the stability of e for large Q at any fixed a. Then, the values of Q which minimize (2.22) will be either Q=0
or solution of Be/BQ =0

——,'I i(Q )Q 12k' a—Q ~ —Qp 2QpHo(Qp) —2Hi(Qp)I i(Qp )+1 (Q —Qo ) —Q +Qp-
Qpl i(Qp )

+12Aiti[Hp(Q) —Hii(Qp)] +6AsHo(Q)[a ——,'(Q —Qii )I i(Qp )+I'(0 —Qp )]

+Ho(Q)[3~@Ho(Q) —Q]+Hi(Q)+Ho(Q){3ga[Ho(Q) —Ho(Qo)] —i (Q —Qo ) I =0 g 27

A careful study along the lines of Ref. 2 leads to the con-
clusion that the only A,s which eventually corresponds to
a finite nontrivial theory is

For Qo larger than the root of Eq. (2.31), e is entirely
flat. If (2.29) is not the case then it will be

1 1+O
6I i(Qo ) I 6I i(Q ) 6I i (Q ) I (2.32)

where the subdominant terms have to be positive or zero.
The most remarkable fact is that it includes certain A,s's
which were not acceptable in the zero-temperature case
where they led to an unphysical theory ()I,= ao). In par-
ticular,

2HO(x)++a e
xe (2.33)

with c &0. If c ~1/16ir, then what we said above still
applies although (2.30) becomes

and (2.31) becomes
(2.29)

1 1+0
6I i(Qp ) I

where analogously the subdominant terms cannot be nega-
tive is one of the )L.s's forbidden at zero temperature. The
shape of e(a, Q(a)} depends on the form of the subdom-
inant terms in (2.28) and also on Qp in the following way.
If (2.29) is the case then if Qp is less than the value of the
function

x 1 cHi(x) — — Hi(x)+x—
30 2 128&

=0. (2.34)

If c & 1/16ir, then as we see from (2.34) and (A9), e is
never entirely flat for any Qp.

The renormalized coupling constants are

2Ho{x)xe (2.30)

X rI x
128&

+Hi(x) ——Hi(x) =0—,30 2
(2.31)

at its minimum, the minimum of e is in a=0. As a in-
creases, so does e until it joins smoothly with the flat re-
gion e(a, Q=O), which is the minimum of e(a,Q) beyond
a certain a. If Qo is greater than the minimum of (2.30)
but smaller than the root of

2Ho(Qo)

in the first case and

(0 (2.35)

2[Ho(Qo)+c]
(2.36)

in the second one.
Consider that Qp ——0 is not a solution of Eq. (2.17) so

that BV(O, Qo)/BQp&0. For reasons of continuity the
minimum will be at Q =0 until some value of a, in such a
way that we can write

then the structure of e is slightly more complicated but al-
ways has the minimum in a=0 and the curve is continu-
Ous.

Qo ——Qo' ——0 .
Also we have that

(2.37}
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B V(O, QD)
=HD(0) Ima~+12Aa[Ic(0)+HD(0)] j )0,

0

(2.38)

so that using (2.14) and (A6),

m ~0.
Analogously we have that

The energy density reads

(2.39)

(2.40)

Q 4A 1 0 4A
e(a, Q) = — ln ————,

' (Q —m ) H0(Q) — ln —1
64m Q 16m Q

L

0 4A 78—6K&0(0) Ho(Q) — » —1 +Hi(Q) —Hi(0) — Ho(0)+6AtI0 (0)
1&r' Q' 2

r

+ , rn a ——6hxH0(0}+hx +6Aa HD(Q) — In —12 2 Q 4A

1&r Q2

+3~'Ho (Q) —Ho '(0}+ Ho(0)+ ln —1
1 Q

Q 4A
ln —1

16m 0 (2.41)

Note that all IR divergences have canceled. For large Q the behavior of e is

3A1 4A Q»4Ae — 1+ ln
4e Q &br Q

In order to get a nonzero k it is necessary that A,~ is independent of the cutoff and positive.
As we have said, in a neighborhood of a =0 the solution is Q =0 and e is

(2.42)

(2 43)

but beyond

Ho(0) 4 (
nl'

[
1r'

'2A, +
3A,

the Q which gives the minimum for e is the solution of

(2.44)

Bs
6A, a—

BQ
L

Q 4A i —z 2 Q 4A2 2 2

16m Q2
ln —1 ——,(Q —m ) — ln —2 —QH0(Q)+H&(Q)86 Q~

4A
+6XHo(Q)[Ho(Q) —Ho(0)]+3AtI0(0) ln —2 =0,

Q2
(2 45)

which for large a implies

—2@x (0, (2.46)

III. PERTURBATION THEORY: COMPARISON

and so e is unbounded from below.
If A, is zero then it is obvious from (2.43) that the theory

is again unbounded below.
Finally, if Q0=0 is a root of Eq. (2.17) we are in a lim-

iting case of one of the previously studied cases. e is at
best fiat. This ends the analysis.

e.g., its 0(R) contribution does not coincide with Cole-
man and %einberg*s one-loop resu1t. One can, however,
reproduce the one-loop result if one expands the zero-
temperature equation equivalent to (2.24} in A,z, thereby
working with perturbation theory, and keeping every-
where only Q(A) terms. I.et us quickly recall the steps at
zero temperature (which just means dropping HD and H,
everywhere).

The reintroduction of A is performed by multiplying the
functions I„,X, and I by 4 Equation (2.27) then leads,
with the help of (2.19) to

Stevenson showed that the zero-temperature Gaussian
effective potential does not reproduce perturbation theory;

Q =m +12k&a+0(A)

and (2.24) to

(3.1)
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A, =A,ii[1—18K,iril i(m )]+O(fP) .

Using these expressions in (2.22) gives

Vp(a) =co(a, Q)

(3.2)

,'m—a+4&+fiX(m +12@x,m )+O(fi ), (3.3)

where the subscript 0 means zero temperature. This ex-
pression is the well-known one-loop result.

Let us now perform the same steps at finite tempera-
ture. We would expect them to lead to the one-loop
finite-temperature effective potential as given for instance
by Dolan and Jackiw. Surprisingly they do not.

From Eq. (2.27) one obtains

Qi=Q i+12/ a — Hi(Q) — Hi(Qo) —Q[Ho(Q}—Ho(Qo)]
QI i(Q ) Qp Q=(Q 2+12K,&a)'~2

I i(Q}+0 (3.4)

and from (2.19),

Qp ——m +O I i(rn )
(3.5)

whereas (2.24) gives

Hi(Qp)
1 —18Afit, (Qp')+18Airi, HH, (Qo) +O

Qp Qp I i(m }

Using these expressions in (2.22) gives

(3.6)

Vr(a)= —,m a+Asa [1—18AiriI i(m )]+AX(m +12Aa, m )

+Pi Hi{(m +12Aa}'~ ) —H&(m) — Hi(m) +O(iii } .
m

(3.7)

If one defines the renormalized coupling constant and the renormalized mass (2.18) for T =0 one can write

VT(a) = Vp(a) +Pi Var(a )

with

(3.8)

Vqr(a) =H, ((m +12@x) )—H&(m) —64'2 1/2 Hi(m) —Hp(m) (3.9)

The term proportional to Ho(m) comes from (2.18).
This result, however, does not reproduce the temperature one-loop contribution6 which normahzed to zero at a =0 is

1 —exp[ —(x +m +12k,a)' ]Vfra= dxx ln2+ o 1 —exp[ —(xi+ rri 2) 'r&]

= —
3 [Hi{(m +12Aa)' }—(m +124z)Hp{(m +124z)'~i}—H&(m)+miHp(m)] . (3.10}

Their respective expansions in a are

36k,
Var(a) =6AHp(m)a+. 18Hp(rn)isa + Hp(rn)a +O(a ),

m

18k. 2 36K,VfP(a)=6Mp(m}a+ Hp(m)a + [rnHp(m) —Hp(m)]a +O(a ) .
m m

(3.11)
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5(k2 —0 ),
k —0 +is k —0 +i@ e~ —1

(3.13}

one obtains immediately (2.9) and (2.10}. Alternatively,
and following Bardeen and Moshe, s one can write in the
imaginary time formalism

d3
&onl4'» loo&'=-- g f

s=p, +1,+2, . . .

(3.14)

with kp =—co„=i2m n/P. It is well known that this expres-
sion leads to the previous one (Dolan and Jackiw }.

Consider now &Oo
I

((I (x)
I Oo &. At zero temperature

&o„ I
y'(x)

I
o„&'=I,(0') .

Furthermore, recall (2.16):

dIi(0 )

0 =QIp(0 ) . (3.16)

Now, Bardeen and Moshe assume that the relation (3.16}
between (3.12) and (3.15) also holds at finite temperature,
or in other words

dH, (0)
0 =QHp(0)

~here

&o„l j'(x)
I
o„&'=I,(0')+H, (0) .

(3.17)

(3.18}

It is easy to check from (3.17), (3.10), and (Al) that then
Hi(0) as given by Eq. (3.17), which we will call
Hp" (0), is precisely VQT(a) (for a suitable constant of
integration}, i.e.,

HP ((m +124') ~ )—HP (rn)=I~IiP(a) . (3.19)

Obviously with this definition we would have retrieved
perturbation theory as now (3.9) coincides with (3.19), re-
calling that Hp" satisfies (3.17).

Our point of view has ban different. Hi(Q) is defined
by Eq. (3.18) and therefore should not, in principle, need
another defining relation as (3.17). One can compute
Hi(0} from (3.18) following steps as Bardeen and Moshe
did for Hp(0) from (3.14). We first write

What has happened'? The steps which at zero temperature
reproduce perturbation theory do not do so at finite tem-
perature. It is easy to see that the root of the divergence
lies in the finite-temperature vacuum expectation value of
the kinetic energy of the Hamiltonian, i.e., in Eqs. (2.11)
and (2.12}. Let us quickly recall where our expressions
(2.10) and (2.12) come from, and compare with Bardeen
and Moshe's results. ' Consider &oo I P (x)

I oo&. At zero
temperature,

d'k i
&o„I/i(x) lo„& =I (Q2}=f (2m'} k —0 +ie

(3.12)

and by using the real-time finite-temperature rule

&oo
I
4"'(»

I
oo&'=hm&oo

I Ttd(x)4(y)1 I
oo&'.

One can write (3.20) as

&o 1()I'( }Io &'=h ~..5„o&0 I T[(tl( )())(y}/
I
o &'.

This quickly leads to

'k
&oo I

e'(x) Io.&'=- —g~.'f (2m)s k2 —Qi

(3.21)

1 d k

P „ f (2ir)i

1 g f d k k +0
(3 22)

(2ir) k —0

+ E 5(k —0 ) . (3.23)el'E —1

This is our expression for H i (0), (2.12).
Our understanding of this interesting and puzzling situ-

ation is as follows. At T =0 the nonperturbative method
we follow does not reproduce perturbation theory; this is
not surprising. However, when the steps of taking A~ ao

and X~0 are reversed, i.e., first A, ~O and then A-+ ~,
perturbation theory is recovered. This is also not surpris-
ing. At finite temperature, however, the reversal which
leads to perturbation theory for T=0 is not anymore
enough to recover it, as the non'perturbative character of
the approach is also contained in the evaluation of the
finite-temperature kinetic energy vacuum expectation
value, which is independent of A,e. Thus one only recov-
ers perturbation theory if the finite-temperature kinetic
energy vacuum expectation value is computed as in pertur-
bation theory; if not, perturbation theory cannot be re-
trieved from our nonperturbative approach.

IV. CONCLUSIONS

We have shown that a + theory with a bare coupling
constant depending on A as

1 c 11+,+0
6I i(m ) I i(m ) I i (m )

(4.1)

with 0 ~ c ~ ,', ir, which, at zero te—mperature according to

which performing the standard steps to go from the imag-
inary to real time formalism gives, neglecting the ir-
relevant 0 independent first term in the last expression of
(3.22),

&o„l j'(x}lo„&'
d4k

~(k +Q )
(2ir) k2 O2+ie
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Eqs. (1.1) and (1.2), does not lead to an interacting renor-
malized theory, but does so above a certain finite tempera-
ture. This phase has

APPENDIX

The functions Ho(Q) and Hi(Q) given by Eqs. (2.10)
and (2.12) can be written as

m &0,

and its coupling constant is given by

(4.2) 1 "d [x(x +2Q)]'
2ir' o e +"—1

2[Ho(m}+c]
(4.3) x x+2Q

H i(Q) = I dx (x +Q), (A2}

If the approximations used are not misleading, tempera-
ture might play a far more important role in the construc-
tion of interacting field theories than what is generally
thought. We have seen that it might even be the very
source of stability and interaction.

These results are qualitatively different from the ones
of perturbation theory, as we saw in Sec. III. At finite
temperature our approach is just essentially different from
a perturbative one. Our results should therefore be taken
with care, but they indicate that very likely also the per-
turbative results should not be taken for granted. We do
not have the means in this work to settle this question.
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where Q is
~
Q

)
.

They have the following properties:

Ho(0)=, H i(0)=1

12
' 30

Ho( oo ) =H i ( oo ) =0,
dHi(Q)

Hi(Q) =— =Q Ho(Q) —QHo(Q),0
Ho(Q) (0
Hi(0) =0,
Ho(Q)) 0.

Finally, using (A7) and (AS) one sees that

0
Hi(Q) —Hi(0) ——Hi(Q) (0 .

2

(A3)

(A4)

(AS}

(A7)

(A8)

(A9)
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