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Baryonlike and mesonlike solitons in a one-dimensional Dirac model of extended particles
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A version in 1+1 dimensions of a recently proposed model of an extended particle with confined
constituents is presented. Several constitutive spinors, considered as classical c numbers, interact
through a vector coupling. There are no solutions in which only one field is nonvanishing, because
each of them acts as a source of the rest, so that they cannot be separated in any way. This gives a
mechanism of confinement which operates at the classical level. Moreover, the bound states have the
characteristic three-quark and quark-antiquark patterns and their analytic expression can be given

in terms of the Thirring sohtons. They keep their identity upon collisions, at least between particle-
like solutions of the same kind. Accordingly, they are called baryonlike and mesonlike solitons.

I. INTRODUCTION

This work continues the study of a recently proposed
unconventional approach to the problem of confinement
and of extended particles with structure. ' Its two basic
elements are the use of c-number classical spinors and the
representation of the interactions between them by non-
linear direct coupling, without any intermediate field.

The model, the details of which are explained in Refs. 1

and 2, makes use of six Dirac fields, g», P», k=1,2, 3,
which interact through fourth-order four-fermion forces.
The P» can be interpreted as quarks and the P» as anti-
quarks, since they contribute with opposite signs to the
conserved current. After defining an extended particle as
a particlelike solution (PLS) of the field equations, an ap-
pealing representation of confinement arises, since there
are no one-field solutions and the constitutive spinors can-
not be separated in any way. Moreover, all the solitary
waves are bound states of P» and P», either of three f's or
of one P and one P. Furthermore, its baryonlike solutions
obey the Pauli exclusion principle in a certain sense,
while the mesonlike ones do not.

The model seems worthy of consideration, but is diffi-
cult to handle since it cannot be solved analytically. As a
consequence, the behavior of the PLS upon collisions is
not easily studied and one has to resort to numerical
methods which are extremely complex in 1+ 3 dimen-
sions. For this reason it is convenient to develop a version
which admits analytic solution, even if the price to be
paid for it is reducing the dimensionality of the space-
time to (1 + 1) (Refs. 6 and 7). Fortunately enough, there
is a very interesting nonlinear Dirac equation in one-space
dimension, which has solitons and can be solved by the
inverse-scattering transform (IST) method. It is the mas-
sive Thirring model which will be used here as the basis of
an analytically solvable model.

The plan of the paper is the following. In Sec. II I will
describe a model of extended particle with spinorial inter-
nal structure, in Sec. III the properties of its PLS will be
discussed, and in Sec. IV several conclusions will be stat-
ed.

II. A DIRECT-COUPLING MODEL
OF AN EXTENDED PARTICLE

%'ITH CONFINED CONSTITUENTS

The Dirac-Thirring equation refers to a spinor field in
one-space dimension and has the form

i y"d&f mf+ 2A—+„gy"/ =0 .

It can be obtained from the Lagrangian density

L =I.D(4)+ ~fyi Ay"0

ez(1+u)'~
cosh[m y sin5(x xo ut )+Ie5/2]— —

Z{1 u)1/2

cosh[m y sii15(x —xo —ur) —je5/2]

(3)

where Z=(my/4
~

A,
~

)'~ sin5exp[ —immy cos5(t —ux)],
0 & 5 & m., e =sgn{ A, ). Its energy and charge are

E=E(5)=—sin5, 8=8(5)=—.
m . 6

(4)

The model presented in this work uses six spinors
k =1,2, 3, with a Lagrangian density with the

same structure as in Refs. 1—3:

where LrI(p) is the Lagrangian of the linear Dirac equa-
tion. It was proposed by Thirring in 1958, as a solvable
model in quantum field theory, in the case m =0 and with
a scalar nonlineiirity A{fp)2, instead of the vector non-
linearity, in (2). Its PLS s, which were first obtained by
Chang, Ellis, and Lee, have a curious and intriguing re-
lationship with those of the sine-Gordon equation, as was
shown by Coleman. ' ' Soon after, it was discovered
that (1) is solvable by the IST method, first by
Mikhailov' ' and independently by Kaup and Newell, '5

the associated spectral problem being now well under-
stood 16-18

spectral problem being now well understood. '

Our y matrices will be y =o 1, y' =i u2, y = I', y y'. In
this representation, the Thirring solitons have the follow-
ing expressions:
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L i = Q [Ln(A)+L 1}(0»)l

Li ———[V„(P}V"(g)+ V„(P)V"(P )
3

+2tr V„(f)V"(P)),

(5)

(5a)

will be called the baryonic charge or simply the charge.
The field equations (6) may be interpreted in an alterna-

tive way as those generated by the Lagrangian density
L i +Li, but with the fields submitted to the condition

g (X,iXti ) =0 .
i,j

t

&s =—$ (X;,XJ),
2 I )

where L~ is obtained from the usual Lagrangian density

of the linear Dirac field by changing the sign of the
derivative terms in B„P»,

V„(8}=+8;yq8;,

» t»s case, ho~e~e~, &' would be a Lagrangian multiplier
depending in general on x and t. Nonetheless, all the re-
sults in this paper are equally valid for both interpreta-
tions.

A solution of (6), in which only the spinors 8;,
i =1, . . . , n are different from zero, will be called an n

field solution or, more precisely, a (8i, . . . , 8„) solution or
of type (8i, . . . , 8„). They will play an important role in
the following.

Xjj Xi XJ III. PROPERTIES OF THE FIELD
EQUATIONS: BARYONLIKE A.ND

MESONLIKE SOLUTIONS

and o is a parameter which characterizes the strength of
the fP interaction. In Refs. 1 and 2 o =2, because this
implies that the mass of the baryon is —', times that of the
spin-1 meson. On the other hand, if o'=1, Li has the
simpler form

J,=—V V~

with V„=V„(P)+V„(P). The field equations derived
from (5) are

i yi'B„p, —m g, + [V„(g)+trV„(P)]y"P,
2

+23.' g (X,»X,»)X,» =0,
k

—iyi'B„p, —mP, + [trV„(g)+ V„(P)]y"P,
2

+2k, ' g (X,»X,»)y'X, » =o,

irked„g

m0+ ', ~—4r„Pr"0=0, (loa)

(lob)

The field equations (6) have several interesting proper-
ties which parallel those of the standard quark model, just
as in the three-dimensional case of Refs. 1 and 2. The de-
tails of the proofs are given in Ref. 6.

(1) There are no one field so-lutions. In other words,
none of the spinors may appear without being associated
with some of the rest, clearly because of the last term in
(6). This means that it is impossible that in a region of
space only one spinor is nonvanishing, so that they cannot
be separated in any way. As this applies, in particular, to
the special case of the solitary waves, the fields cannot
manifest themselves as particles, although they do appear
as constituents of composite systems. Following the ter-
minology of the quark model, it can be said, as in Refs. 1

and 2, that the fundamental fields P», P» are confined.
The proof is simple. If f is the only spinor different

from zero, (6) takes the form

where a =1,2,3.
As in Refs. 1—3, the nonlinear terms coming from L i

provide the necessary forces for localized solutions to ex-
ist, while the inseparability of the fields is due to L &. The
two basic aspects of confinement, localizability and in-
separability, are thus incorporated by the two pieces of the
Lagrangian density. It should be stressed that, although
Ls is very complicated (if fully developed it has 378 dif-
ferent terms), it vanishes in the case of the PLS. More-
over, because of it all the PLS's have zero triality.

The current

is conserved, although its separate terms are not. This
justifies our interpretation of p» as charge conjugate to
f». The corresponding conserved quantity

&= f g(Ping 4»4»)ti-
R

and it happens that its only solution is / =0. For, because
of (10b},f can be written as

.
& exp(i —', AE), A, B,FE-R (11)

and, after inserting (11) into (10a), it is easy to see that ei-
ther /=0 or

(B„B"+m )A =(8„&'+m )8=0,

a„F=~„y, a„a F=o.
(12)

It is clear, then, that F=f(t+x)+g(t —x) and that (the
prime means derivative with respect to the argument)

Prod=~'+&'=f'+g'

4r i4=~' &'=f' g' . — —

As A =f'(t+x), 8 =g'(t —x), A and 8 obey the classi-
cal wave equation and, since they also obey the Klein-
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Gordon one with nonzero mass (12), they must vanish so
that /=0. In a completely symmetric way, it can be
proved that there are no solutions in which only one»I) is
different from zero.

(2) The only two fie-ld solutions ioith finite energy are of
type (Pk, gk). Or, otherwise stated, there are no solutions
of the types (P;,P~), (P;,Pt) or (g;,Pi), i&j with finite en-

ergy. The reason is that, in these cases, the sources of
four fields must be zero and this gives four algebraic con-
ditions which happen to be incompatible with the two
reinaining differential equations, save for some exception-
al infinite-energy solutions. For instance, the only (ilii, 11»3)

solutions are of the form

exp(i —,AE),

A~ ——icosa, 8& ——Bsina,

A2 ——A sina, 82 ———8 cosa,

F=A (t+x)+8 (t —x)+C,

6+—Cr'0+dr'4=0 . (13)

There is a very interesting family of solutions of (6) which
verify (13) and have the form

' 1/2

238 F+ao,

where A, 8, C, and ao are real constants. Their energy
density is constant T = ——,A,(A +8 }.

The details of the proof can be found in Ref. 6 and are
omitted here for brevity.

(3) Mesonic and rnesonlike solutions. As a consequence
of (2), the finite-energy two-field solutions can only be of
type (Pk, Pk), k =1,2, 3. As in Refs. 1 and 2, they will be
called mesonic solutions, since they can be considered as
analogous to the qq states in the quark model. If 1lik ——g,
Pk =»I), the algebraic conditions expressing the annihila-
tion of the sources of the other four fields reduce to

(1) and e is an arbitrary constant phase. They have zero
baryonic charge, as is clear from (8). If gT is a Thirring
soliton (3},(14) is a mesonlike solution, its rest energy and
baryonic charge being equal to

E= E(5)= —sin5, 8=0.6 6 m

1+o. 1+o. A.
(15)

e1 (1'3 e3 iIT» I( k 0» k 1»2»3» (16)

where Pz is again an arbitrary solution of the Dirac-
Thirring equation. Their baryonic charge is positive as

8=3 f $3 $3'dx & 0 . (17)

If i)(z is a Thirring soliton, we obtain a baryonlike solution
with rest energy and baryonic charge given by

E=3E(5}=3—sin5 8=38(5)=—5 .

If ter is an n-soliton, (16) has the form indicated in Fig. 2
and can be interpreted as n baryons in elastic scattering.
Obviously there are also antibaryonic solutions whichif,
they have finite energy, are of the form

If QT is an n-soliton solution, (14) has the form indicat-
ed in Fig. 1 and can certainly be interpreted as a system of
n mesons in elastic scattering. It is convenient to stress
that these mesons are solitons in the strong sense, as they
recover their identity after colliding among themselves.

Are there other (gP) mesonic solutions? As (13) is very
restrictive, the conjecture that the answer is negative in
the sense that the only finite-energy two-field solutions
are of the form (14}seems plausible.

As in Refs. 1 and 2, there are also mesonic solutions
with two and three pairs (PP} (Ref. 6). They have the
same energy and charge as the two-field mesons.

(4) Baryonic and baryonlike solutions. The (gi, f3,$3)
solutions will be called baryonic solutions, as they are
analogous to the 3q states in the quark model. It is not
difficult to prove that all of them, having finite energy,
are of the form

e", (14) 0i 02 ((3 eT ek (19}

where QT is any solution of the Dirac-Thirring equation
They have the same energy, but opposite charge as the
baryonic ones built up with the same gr. An n

antibaryon solution is represented in Fig. 3.

»

+

FIG. 1. Shapes of the charge densities of the six spinors in
the case of an n-meson-like solution. Each solitary wave has
two constituents.

FIG. 2. Same as in Fig. 1, but in the case of an n-baryon-like
solution. The three constituents of the solitary waves are clearly
seen.
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FIG, 3. Same as in Fig. 2, but in the case of n-antibaryon-
like solitary waves. The three constituents are clearly seen.

IV. CONCLUSIONS

The particlelike solutions of the model presented in this

paper have a striking similarity with the real existing had-
rons. First of all, they can be classified in baryonlike and
mesonlike solutions, all of which are bound states of
several constituents with the characteristic pattern of
three-quark baryons and quark-antiquark mesons.
Second, the constitutive spinors are confined, since there
are no solutions with only one nonvanishing field, this
mechanism operating at the prequantum classical level.

These properties are shared with the three-dimensional
model presented in Refs. 1 and 2, in which the PLS's are
of three kinds: baryons, spin-l, and spin-0 mesons, their
masses and mean-square radii being of the right order of
magnitude. In the particular case of the vector coupling
in (1+ 3) dimensions, if m =286 MeV, A,m =6.5, the
masses of the three kinds of PLS are 1200, 800, and 582

MeV, respectively, which are close to those of 5, p, and g.
The mean-square radii are 1.2, 1.2 and 2.3 fm, respective-
ly.

The case of one-space dimension is less realistic, but, on
the other hand, has the appealing feature that not only the
PLS, but the states with n PLS of the same kind as well,
have analytic expressions in terms of the well-known solu-
tion of the massive Thirring model. ' ' As a conse-
quence, the baryonlike and rnesonlike solutions are soli-
tons in the sense that they are stable upon collisions be-
tween members of the same class.

Two problems arise naturally. The first one is to deter-
mine the behavior of the PLS in collisions between
members of different kind, between a baryon and a meson,
for instance. Second, to characterize the evolution from
initial Cauchy data in which only one field is different
from zero, since, if the final state contains PLS, this could
model the self-dressing of an isolated quark. These two
questions will be discussed in a forthcoming work.

To sum up, this paper proposes a model of a one-
dimensional hadron, based on a mechanism of confine-
ment which operates at the prequantum classical level and
in which the particles are represented by solitons with
internal structure. The main conclusion is that the use of
nonlinear direct coupling to represent strong interactions
should be seriously considered and that the confinement
might be described as a nonquantum effect.
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