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Temperature-dependent anharmonic oscillator: A Hartree approach
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A temperature-dependent Hartree approach is studied with reference to the anharmonic-oscillator
problem and shown to provide a good upper bound to the exact free energy. Alternative upper

bounds are proposed and discussed.

I. INTRODUCTION

The generalized anharmonic oscillator poses a problem
of permanent interest for a variety of reasons, as, for ex-
ample, the prevailing belief that it may lead to a fuller
understanding of ‘“equivalent” models in field theory. A
vast literature is available, a small sample being some
works published recently.!=> The concomitant problem
that is posed when such a system is heated has received
less attention, although it certainly merits some considera-
tion.®—% Within this spirit, in the present effort we wish
to generalize to a finite temperature T a Hartree approxi-
mation for bosons recently proposed in Ref. 5.

The paper is organized as follows. The formalism is
developed in Sec. II, while specific applications that illus-
trate it are presented in Sec. III. Alternative upper
bounds to the exact free energies are discussed in Sec. IV
and some conclusions are drawn in Sec. V.

II. THE FINITE-TEMPERATURE
HARTREE APPROACH

Let us consider the Hamiltonian
H=1(P2+0H+V(Q)

aT+a

t 1
— iy
=a'a+3+ 2

» (1)

where V(Q), the potential, is assumed to admit a series
expansion, while @' and a are the usual boson creation
and annihilation operators:

a'=(Q—iP)/V32, a=(0+iP)/V2,
2)
O=w'+a)/ V32, P=(a—ahH/2i.

If we set both # and the Boltzmann constant equal to
unity, we can express the exact free energy F of our sys-
tem in terms of the (normalized) density operator p s as’

F=(F)=(H—T8)=MinTr(paF) , 3)
Ptrial

where S'= — Inp,y, is the so-called entropy operator. We
know from statistical mechanics that P, is proportional
to exp(—H /T) and that F is of the form

F=—ThnTr{exp(—H/T)] . (3"
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We wish here to develop a finite-temperature Hartree
approximation for F, on the basis of the ideas put forward
by Hsue and Chern,’ appropriately generalized so as to al-
low for thermal effects.

The central idea that underlies the Hartree scheme is
that of working with a one-body density matrix p. Conse-
quently, the temperature-dependent Hartree approxima-
tion (TDHA) for F will entail performing the minimiza-
tion of Eq. (3) within the set of one-body density opera-
tors:

po exp(—wb'b/T), @

where b' and b are boson operators related to the “old”
ones (a',a) by means of a Bogoliubov transformation:

b'= cosh(z)a*—— sinh(z)a ,
(5)
b= cosh(z)a — sinh(z)a" .

Both z and the frequency w are determined by the vari-
ational principle and are temperature dependent [z =z(T),
w=w(T)]. The transformation (5) is, obviously, a scaling
one, as it reads
Q "= exp( ——z)@, P'= exp(z)f’ ) (5"
in terms of the “new” coordinates Q "and P’ that can be
constructed, after the fashion (2), out of b’ and b. Nei-
ther (5) nor (5’) provide us with the most general transfor-
mation: for instance, a constant term might be added to
b and b in (5), which would account for a translation of
the coordinate system. This type of transformation will
be of no help here, as we shall deal only with symmetric,
even potentials V(Q):

V@)= 3 Vo092 /2n) . (1)

m=0
A straight. rward application of Wick’s theorem allows

us now to evaluate (H )= Tr(pH) by recourse to the
finite-temperature single-particle (SP) density matrix:

(b'p)=Tr(pb'p)
=[exp(w/T)—1]""
=f,

(b*2)=<b2)=0 N

where f is the Bose occupation number. Equation (6) al-
lows us to easily obtain all quantities of interest for our

(6)
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present purposes, as, for instance,
(0 ?)=-L[cosh(z)+ sinh(z)]*{(bT+b)?)

=2h(f+75), (7a)
with

= +[cosh(z)+ sinh(z)]*= 5 exp(+2z) , (7b)

and, more generally, by employing a well-known theorem
about normal orderings’ 10
nl

2 (b by U — (8)

(bT+b)=
j=o (n—2j)12/j!

(with n a positive integer), one finds
(Q™)=h"((b"+b)™)

!
—hf+ 2L ©
n!

In the last line of (9) we have used the result

(2n)

(6T +b)m)y === @)
n:

which Wick’s theorem gives in a straightforward fashion.
It is also obvious that

<Q2n+l) O ’
9")
(" =(g izt

2"n!

which implies that one might apply Wick’s theorem to the
Hermitian operator Q, as [(2n N/n12"] is Just the number

of possible (n) contractions (Q?) out of 2nQ s.
Analogously, we have

(PYy=(f++)/2h, (10)
(P2 =(4h)~"™(f++ )"(2")
_ (2’1)! "2 n
——- ()", (11
(P+ly=o0, (12)
and, using now the results (9),
A 27(0)
V =
(V@) ,.20 “am @™
= 3 VEO)F+ LY (h"/nl)

—x2/41)V(x)dx

2 ©
=V o

1 © V(Vis)
= fo exp(—s /4t) e

where the abbreviation t=h(f+ 3 ) has been utilized, to-
gether with the result

ds , (13)

—x2/4z)x2"dx=%(zn ). (13)

2 o
e e
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As the entropy attains the well-known SP result
S=—Trplnp
=—[fIn()—(f+DIn(f+1)], (14)

we are now in a position to evaluate F = (F) and perform
the corresponding minimization with respect to both A
and f (or, equivalently, z and w). Noticing that (V(0))
depends only upon ¢ we obtain the set of equations

_9F _ 4 —1/an?
0= O =(f+73) dt(V(Q))+l 1/4h* |, (15a)
—E—f———Tln[f/(l+f)]+l/2h (15b)
and, after solving for f in (15b), we find for w
w=1/2h, (16)
which implies
f=1/[exp(1/2hT)—1], (16
so that one is led to the following equation for A:
-1 A
4h2+1+ t(V(Q))-O. an

The method presented here provides us with an upper
bound to the exact free energy, since we are minimizing
(3) with respect to a restricted set of density operators.

It is worth noticing that, at T=0, f vanishes, so that
(13) and (17) yield expressions already obtained for the
ground state of an anharmonic oscillator by Bozzolo and
Plastino.!!

Our present expressions for finite-temperature expecta-
tion values [cf. Eqgs. (11) and (13), for instance] attain
identical aspect as the corresponding ones for T=0 (Ref.
11). More specifically, (13) yields the mean value of V(@)
for Gaussian wave functions (ground state of the harmon-
ic oscillator), but with a temperature-dependent width (or
standard deviation), which is a consequence of the scaling
operation (5'). One could thus speak, within the TDHA
framework, of “effective,” or “temperature-dependent”
wave functions, that are able to mimic some of the
features of statistical ensembles.

III. APPLICATION

As a Aspeciﬁc example, let us consider the particular
case V(Q)=AQ ?". By application of the recipes (7)—(17)
one is led to

F=(f+2)1/4h +h)+ A R"(f+3)"
+TIf In(f)—(f+DIn(f+ D], (18)

where A must satisfy
—1/4h* 4+ 14+nN[R(f+ )] V=0,

with A’=A(2n)!/n! and f defined in expression (16’).
These expressions may be simplified for T—0 and

T— . In the first case, we see from (16’) that f ap-

proaches O as exp(—1/2hT). Replacing for h the T=

(17"
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value we can easily obtain the limiting expressions
for various thermodynamics quantities. For instance,
the specific heat C,=T0dS/dT vanishes as
exp(—1/2hT)/(2hT)? which is indeed the appropriate
behavior.’

On the other hand, for T— », f— « while A—0.
From Eq. (17') we attain the asymptotic expressions

h___cT(l—n)/Zn, f=2hT=ch(n+l)/2n , (19)

with ¢ =1/[2(24,)"/")'/2. Utilizing (19) it is easy to ob-
tain

~ ~

ﬁ — Lz — 21/n

< . >—T/2, ( . >-—20 TV

(Q™y=T/2n , (20)
(n+1) n+1

S=1+ In2c + o In(T), C,= o

It is important to realize that the leading terms of these
limiting high-temperature expressions coincide with exact
results (which may be obtained using the classical parti-
tion function, as in Ref. 8). The TDHA approach is exact
in the classical limit. It is worthwhile mentioning that

IV. ALTERNATIVE UPPER BOUNDS

Some additional upper bounds to F,,. will now be in-
troduced, so as to place the TDHA in a clearer perspec-
tive. We start with the inequality'?

(n|exp(—H/T)|n)> expl—((n|H|n))/T], @1

where |n) stands for any normalized state. A simple
upper bound is thus immediately obtained by setting

_b™0)
|n)= e (22)
so that
Foa<—TIn| S expl—(n | A [n))/T)|. (23)
n=0

If we choose |0) and b’ as, respectively, the vacuum
and SP creation operator of the T =0 Hartree approach,’
requiring, that h verifies the T=0 extremum condition
(17), one finds

-—l/4h2+1+§?(V(Q))=O,

A (24)
formulas (20) are valid for any V(Q) which is a polyno- t=+h=1/4w .
mial of degree 2n as the high-temperature behavior is :
dominated by the highest term (AQ 2,1 > 0). For V(Q)=AQ *one is led to
J
F<—TIn| 3 exp{—[1/4h+h+6Ah*+2n(h+1/4h+ 12Ah%) 4+ 12Ah%n(n —1)]/2T} | . (25)

n=0

TABLE 1. Free energies (F), mean energies (E), and specific heats (C,) obtained for different

theoretical treatments in the case AQ* (A=1.0).

T Treatment F E C,
0.5 TDHA 0.80343845 0.848 54623 0.286 62594
Bound 1 0.803 388 25 0.848 81945 0.28913342
Bound 2 0.803 32245 0.849272 88 0.291274 81
Ref. 7 0.792 44559 0.84311195 0.31189355
Exact 0.793 35295 0.844036 66 0.31172643
1.0 TDHA 0.677 889 76 1.089759 1 0.605957 57
Bound 1 0.677 748 86 1.086 8876 0.584458 57
Bound 2 0.674274 48 1.098 814 8 0.598 457 37
Ref. 7 0.656 06008 1.0976758 0.62900901
Exact 0.657 104 88 1.098 003 4 0.627050 64
2.5 TDHA —0.470 869 06 2.1366460 0.73584156
Bound 1 —0.42961468 2.0390796 0.64293420
Bound 2 —0.499209 94 2.187 8289 0.69532142
Ref. 7 —0.54971611 2.1622275 0.74127561
Exact —0.546 264 65 2.1606959 0.741049 67
6.5 TDHA —6.2942336 5.1408776 0.756 42309
Bound 1 —5.7736375 45271774 0.604 886 74
Bound 2 —6.3987348 5.220946 5 0.701276 88
Ref. 7 —6.5471669 5.1758211 0.757709 74
Exact —6.5365213 5.1764607 0.75843893
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TABLE II. Free energies (F), mean energies (E), and specific heats (C,) obtained for different
theoretical treatments in the case AQ® (A=1.0).

T Treatment F E C,
0.5 TDHA 0.832 80399 0.860477 37 0.204 78461
Bound 1 0.832 75096 0.860 858 95 0.209 897 86
Bound 2 0.832 667 67 0.86151128 0.21359429
Exact 0.797038 80 0.837 659 64 0.269 14624
1.0 TDHA 0.74184963 1.0567151 0.51572382
Bound 1 0.74041402 1.0567714 0.49327733
Bound 2 0.733 90558 1.0795902 0.51531124
Exact 0.67975329 1.0675203 0.57297008
2.5 TDHA —0.19024249 1.9682712 0.64501009
Bound 1 —0.14089292 1.8269212 0.499 28327
Bound 2 —0.26415773 2.069 364 6 0.58248305
Exact —0.39315689 2.0251444 0.660 82598
6.5 TDHA —5.0940539 4.608 926 8 0.665907 19
Bound 1 —4.3354241 3.6566445 0.428 858 20
Bound 2 —5.379404 1 4.9030839 0.573176 69
Exact —5.7340146 4.6943943 0.669 477 54

This upper bound provides us with good results only at
small temperatures, and moreover, it demands greater ef-
fort than the one needed by TDHA, as the sum in (25)
must be performed numerically.

The bound (25) can be improved if one employs there
the TDHA frequency w(7T) instead of the T=0 one of
(24) [indeed the TDHA w(T) almost coincides with the w
value that one would obtain by minimizing (25) with
respect to h]. Actually, the upper bound thus obtained is
better than the TDHA one, as one includes now two-body
terms in the density operator. This latest bound is not,
however, easily dealt with in the case of more sophisticat-
ed V(Q)’s, as the evaluation of (n | ¥(Q)|n) will not al-
ways constitute a light burden. One faces the computa-
tion of

, (26)

A ! i m
(@7 (m)=280nm 527 T ]|,
while the TDHA requires only working with a Laplace
transform and just a single one-dimensional equation for
the scaling parameter h. The TDHA does also away with
any restrictions on the values that A may adopt, opposite
to what happens in the case of perturbative methods.
For future reference, the bound (25) will be referred to
as bound 1, while the improvement to it mentioned in the
preceding paragraph will be denoted as bound 2.

V. DISCUSSION AND CONCLUSIONS

Upper bounds to the free energy of the anharmonic os-
cillator have been studied, with particular emphasis on the
one provided by the temperature-dependent Hartree ap-
proach. A very simple algorithm is introduced in order to

deal with the TDHA, by appropriately generalizing the
T =0 method of Ref. 5. The corresponding results have
been compared, for the case k@ " with n =4 and 6, both
to the exact ones and to the alternative bounds of Sec. IV.
In the case n =4 we have also compared the results with
the ones that arise out of Eq. (4) of Ref. 7 (see also Ref.
13). Our exact results were computed by (i) first perform-
ing a Hartree rotation of the SP basis (so as to minimize
the ground-state energy) and (ii) diagonalizing H after-
ward in this undercomplete “dynamical” basis whose size
is so chosen as to obtain convergence within eight signifi-
cant digits. It is important to remark here that the corre-
sponding eigenvalues coincide with the very accurate ones
reported by Banerjee et al.,'* which constitutes an excel-
lent test for our calculations.

In Tables I and II, besides F, some additional quantities
are also compared to the corresponding exact values, such

as E=(H) and the specific heat C,=T3S/3T. The
TDHA values can certainly be regarded as satisfactory
ones, especially as regards E and Cv, and they improve
with temperature. One of the two additional upper
bounds introduced and discussed, constitutes an improve-
ment upon the TDHA for computing F, but it does not
provide one with a practical computational scheme for
general types of potentials. Finally, a physically appeal-
ing picture of the TDHA in terms of scaling and “‘effec-
tive” wave functions is suggested.
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