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Temperature-dependent anhan lionic oscillator: A Hartree approach
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A temperature-dependent Hartree approach is studied with reference to the anharmonic-oscillator

problem and shown to provide a good upper bound to the exact free energy. Alternative upper
bounds are proposed and discussed.

I. INTRODUCTION

The generalized anharmonic oscillator poses a problem
of permanent interest for a variety of reasons, as, for ex-

ample, the prevailing belief that it may lead to a fuller
understanding of "equivalent" models in field theory. A
vast literature is available, a small sample being some
works published recently. ' The concomitant problem
that is posed when such a system is heated has received
less attention, although it certainly merits some considera-
tion. Within this spirit, in the present effort we wish

to generalize to a finite temperature T a Hartree approxi-
mation for bosons recently proposed in Ref. 5.

The paper is organized as follows. The formalism is
developed in Sec. II, while specific applications that illus-

trate it are presented in Sec. III. Alternative upper
bounds to the exact free energies are discussed in Sec. IU
and some conclusions are drawn in Sec. U.

II. THE FINITE-TEMPERATURE
HARTREE APPROACH

We wish here to develop a finite-temperature Hartree
approximation for F, on the basis of the ideas put forward
by Hsue and Chem, appropriately generalized so as to al-
low for thermal effects.

The central idea that underlies the Hartree scheme is
that of working with a one-body density matrix p. Conse-
quently, the temperature-dependent Hartree approxima-
tion (TDHA) for F will entail performing the minimiza-
tion of Eq. (3} within the set of one-body density opera-
tors:

p~ exp( wb b/—T), (+)

where bt and b are boson operators related to the "old"
ones (a,a }by means of a Bogoliubov transformation:

b = cosh(z)at —sinh(z)a,
(5)

b = cosh(z)a —sinh(z)a
Both z and the frequency w are determined by the vari-

ational principle and are temperature dependent [z =z( T),
w =w( T)]. The transformation (5) is, obviously, a scaling
one, as it reads

Let us consider the Hamiltonian
Q '= exp( —z)Q, P '= exp(z)P, (5')

H = —,(P '+Q ')+ V(Q)

=a~a+
~ + V

a~+a
2

a =(Q iP)lv 2, a=—(Q+iP)/~2,

Q=(a +a)/v 2, P=(a at)/~2—i .
(2)

If we set both R and the Boltzmann constant equal to
unity, we can express the exact free energy F of our sys-
tem in terms of the (normalized) density operator p,„.~ as

F= (F)=(H TS)= Min Tr(p,„.iF), —

where V(Q), the potential, is assumed to admit a series
expansion, while a and a are the usual boson creation
and annihilation operators:

in terms of the "new" coordinates Q
' and P ' that can be

constructed, after the fashion (2), out of bt and b. Nei-

ther (5}nor (5') provide us with the most general transfor-
mation: for instance, a constant term might be added to
bt and b in (5), which would account for a translation of
the coordinate system. This type of transformation will

be of no help here, as we shall deal only with symmetric,

even potentials V(Q):

V( Q ) —y V~ z"~( ())Q
z"/( 2n ) t (1')

A straight' rward application of Wick's theorem allows

us now to evaluate (H) =—Tr(PH) by recourse to the
finite-temperature single-particle (Sp) density matrix:

(b'b) = Tr(pb'b)

= [exp(w /T ) —1]

F= —Tln Tr[exp( —H/T)] . (3')

where 5= —1zp,„,~ is the so-called entropy operator. %'e
know from statistical mechanics that p,„„,is proportional
to exp( H/T) and that F is—of the form

(b ') =(b') =O,
where f is the Bose occupation number Equation (6) a. l-

lows us to easily obtain all quantities of interest for our
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present purposes, as, for instance,

(Q ) = —,[crt(z)+ sinh(z)] ((bt+b)2)

=2h(f+ —,
' ), (7a)

As the entropy attains the well-known SP result

5= —Trp leap

= —[fln(f) —(f+1)ln(f+ 1)], (14)

with

h = —,
' [cosh(z)+ sinh(z}] = —,

' exp(+2z), (7b)

and, more generally, by employing a well-known theorem
about normal ordering"

[n/2t n!
( bt+b }ll g .(bt+b )n 2j— (8)

j=0 (n —2j)!2jj!

(with n a positive integer), one finds

( Q
2ll ) h n ( (b t +b )

2ll )

=Tln[f j(1+f)]+1/2h, (15b)

and, after solving for f in (15b), we find for ic

we are now in a position to evaluate F= (F ) and perform
the corresponding minimization with respect to both h

and f (or, equivalently, z and ic). Noticing that ( V(Q))
depends only upon r we obtain the set of equations

0= =(f+ —, ) —( V(Q))+1—1/4h, (15a)
d'F l d 2

Bh
' dt

ll(f + i )II {
n!

In the last line of (9) we have used the result

(:(bf+b)2ll. )
2ii ' fll
n!

m =1/2h,
(9)

which implies

f= 1/[exp(1/2h T)—1],
(9') so that one is led to the following equation for h:

(16)

(16')

which Wick's theorem gives in a straightforward fashion.
It is also obvious that

—1 +1+—( V(Q) & =0 .
dt

(17)

(P2& =(f+-,' )/2h,

( P 2ll) (4h }
—ll(f + l )II

n!
(2n)! (P2)„
n !2"

( P 2s+ 1 ) 0

and, using now the results (9),

(10}

{12)

which implies that one might apply Wick's theorem to the

Hermitian operator Q, as [(2n }!/n!2"]is just the number

of possible (n ) contractions (Q ) out of 2nQ's.
Analogously, we have

The method presented here provides us with an upper
bound to the exact free energy, since we are minimizing
(3) with respect to a restricted set of density operators.

It is worth noticing that, at T=0, f vanishes, so that
(13) and (17) yield expressions already obtained for the
ground state of an anharmonic oscillator by Bozzolo and
Plastino. "

Our present expressions for finite-temperature expecta-
tion values [cf. Eqs. (11) and (13), for instance] attain
identical aspect as the corresponding ones for T=0 (Ref.
11). More specifically, (13) yields the mean value of V(Q )

for Gaussian wave functions (ground state of the harmon-

ic oscillator), but with a temperature-dependent width (or
standard deviation}, which is a consequence of the scaling
operation (5'). One could thus speak, within the TDHA
framework, of "effective, " or "temperature-dependent"
wave functions, that are able to mimic some of the
features of statistical ensembles.

III. APPLICATION

= g V' "'(0)(f+—,')"(h "/ii!)

J exp( x /4t }V(x )dx—

&nf exp( x /4t)x —"dx = (2n }!.
v'err n!

(13')

I exp( s /4t ) — ds, (13)
1 ~ V{V s)

v'err s

where the abbreviation t =h(f+ —,
'

) has been utilized, to-

gether with the result

—1 /4h +1+nA, '[hff+ —, )]'" (17')

with A, '= A(2n )!/n! and f defined in expression (16').
These expressions may be simplified for T~O and

T~lxl. In the first case, we see from (16') that f ap-
proaches 0 as exp( —1/2hT). Replacing for h the T=O

As a specific example, let us consider the particular
case V(Q)=AQ ". By application of the recipes (7)—(17)
one is led to

F=(f+ —,
' )(1/4h+h)+A, 'h "(f+ ,

')"—
+T[fln(f ) —(f+1)ln(f+1)],

where h must satisfy
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value we can easily obtain the limiting expressions
for various thermodynamics quantities. For instance,
the specific heat C„=TdS /d T vanishes as

exp( —1/2hT)/(2hT), which is indeed the appropriate
behavior.

On the other hand, for T +00—, f-mao while h —+0.
From Eq. (17') we attain the asymptotic expressions

cT(i n)/—2n f 2hT 2 T(a+1)/2n (19)

with c = I/[2(2A, „')'/"]'/. Utilizing (19) it is easy to ob-
tain

Z 2 2/ 2/ 1./rj

& Q'") =T/2n,

S=1+ ln2c+ ln(T), C„=
2n "

2n

It is important to realize that the leading terms of these
limiting high-temperature expressions coincide with exact
results (which may be obtained using the classical parti-
tion function, as in Ref. 8). The TDHA approach is exact
in the classical limit. It is worthwhile mentioning that

formulas (20) are valid for any V(Q) which is a polyno-
mial of degree 2n as the high-temperature behavior is

dominated by the highest term (A,Q ",A, & 0}.

IV. ALTERNATIVE UPPER BOUNDS

Some additional upper bounds to E,„„,will now be in-

troduced, so as to place the TDHA in a clearer perspec-
tive. %e start with the inequality'

(n [ exp( H—/T)
~

n ) & exp[ —((n [H
~
n))/T], (21)

F, , (—T ln g exp[ —((,n
~
H

~
n ) )/T) (23)

If we choose
~
0) and b as, respectively, the vacuum

and SP creation operator of the T=0 Hartree approach, '
requiring, that h verifies the T=O extremum condition
(17), one finds

—1/4h +1+—(V(Q))=0,

t = —,
'

h = I /4' .

For V(Q)=A, Q one is led to

(24}

where
~

n ) stands for any normalized state. A simple

upper bound is thus immediately obtained by setting

/n)=
btm

/
())

(22)
n!

so that

OO

E& —Tln g expI —[1/4h+h+6Ah2+2n(h+ I/4h+12kh )+12kb n(n —1)]/2TI
@=0

TABLE I. Free energies (F), mean energies (E), and specific heats (C„) obtained for different

theoretical treatments in the case }I.Q' (A, =1.0).

Treatment

0.5 TDHA
Bound 1

Bound 2
Ref. 7
Exact

0.803 438 45
0.803 388 25
0.803 322 45
0.792 445 59
0.793 352 95

0.848 546 23
0.848 81945
0.849 272 88
0.843 11195
0.844036 66

0.286 625 94
0.289 13342
0.291 274 81
0.311893 55
0.31172643

1.0

2.5

TDHA
Bound 1

Bound 2
Ref. 7
Exact

TDHA
Bound 1

Bound 2
Ref. 7
Exact

0.6?7 889 76
0.677748 86
0.674 274 48
0.65606008
0.657 104 88

—0.470 869 06
—0.429 61468
—0.499 209 94
—0.549 716 11
—0.546 264 65

1.089 759 1

1.086 887 6
1.098 814 8
1.097 675 8
1.098 003 4

2.136646 0
2.039079 6
2.187 828 9
2.162 227 5
2.160695 9

0.605 957 57
0.584458 57
0.598 457 37
0.629 009 01
0.627 050 64

0.735 841 56
0.642 934 20
0.695 321 42
0.741 275 61
0.741 049 67

6.5 TDHA
Bound 1

Bound 2
Ref. 7
Exact

—6.294 233 6
—5.773 637 5
—6.398 734 8
—6.547 1669
—6.536 521 3

5.140 877 6
4.527 1774
5.220 946 5
5.175 821 1

5.176460 7

0.756 423 09
0.604 886 74
0.701 276 88
0.757 709 74
0.758 438 93
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TABLE II. Free energies (F), mean energies (E}, and specific heats (C„) obtained for different
theoretical treatments in the case A,Q (A, = 1.0).

Treatment

0.5 TDHA
Bound 1

Bound 2
Exact

0.832 803 99
0.832 750 96
0.832 667 67
0.797 038 80

0.860 477 37
0.860 858 95
0.861 51128
0.837 659 64

0.204 784 61
0.209 897 86
0.213 594 29
0.269 146 24

1.0 TDHA
Bound 1

Bound 2
Exact

0.741 849 63
0.740 41402
0.733 905 58
0.679 753 29

1.056 715 1

1.056 771 4
1.079 5902
1.067 520 3

0.515 723 82
0.493 277 33
0.515 31124
0.572 97008

2.5 TDHA
Bound 1

Bound 2
Exact

—0.190242 49
—0.140892 92
—0.264 15773
—0.393 156 89

1.968 271 2
1.826 921 2
2.069 364 6
2.025 144 4

0.645 01009
0.499 283 27
0.582 483 05
0.660 825 98

6.5 TDHA
Bound 1

Bound 2
Exact

—5.094 053 9
—4.335 424 1

—5.379404 1
—5.734 014 6

4.608 926 8
3.656 644 5
4.903 083 9
4.694 394 3

0.665 907 19
0.428 858 20
0.573 17669
0.669 477 54

This upper bound provides us with good results only at
small temperatures, and moreover, it demands greater ef-
fort than the one needed by TDHA, as the sum in (25)
must be performed numerically.

The bound (25) can be improved if one employs there
the TDHA frequency io(T} instead of the T=O one of
(24) [indeed the TDHA w(T) almost coincides with the io

value that one would obtain by minimizing (25) with
respect to h]. Actually, the upper bound thus obtained is
better than the TDHA one, as one includes now two-body
terms in the density operator. This latest bound is not,
however, easily dealt with in the case of more sophisticat-
ed V(Q)'s, as the evaluation of (n

~
V(Q }

~

n ) will not al-
ways constitute a light burden. One faces the computa-
tion of

(„~Q2~~ ) ™hy 2
1=0

(26)

while the TDHA requires only working with a Laplace
transform and just a single one-dimensional equation for
the scaling parameter h. The TDHA does also away with
any restrictions on the values that k may adopt, opposite
to what happens in the case of perturbative methods.

For future reference, the bound (25) will be referred to
as bound 1, while the improvement to it mentioned in the
preceding paragraph will be denoted as bound 2.

V. DISCUSSION AND CONCLUSIONS

Upper bounds to the free energy of the anharmonic os-
cillator have been studied, with particular emphasis on the
one provided by the temperature-dependent Hartree ap-
proach. A very simple algorithm is introduced in order to

deal with the TDHA, by appropriately generalizing the
T=O method of Ref. 5. The corresponding results have

been compared, for the case A,Q" with n =4 and 6, both
to the exact ones and to the alternative bounds of Sec. IV.
In the case n =4 we have also compared the results with
the ones that arise out of Eq. (4) of Ref. 7 (see also Ref.
13). Our exact results were computed by (i) first perform-
ing a Hartree rotation of the SP basis (so as to minimize

the ground-state energy) and (ii) diagonalizing H after-
ward in this undercomplete "dynamical" basis whose size
is so chosen as to obtain convergence within eight signifi-
cant digits. It is important to remark here that the corre-
sponding eigenvalues coincide with the very accurate ones
reported by Banerjee et a/. , ' which constitutes an excel-
lent test for our calculations.

In Tables I and II, besides I, some additional quantities
are also compared to the corresponding exact values, such

as E=(H) and the specific heat C„=TBS/BT. The
TDHA values can certainly be regarded as satisfactory
ones, especially as regards E and CU, and they improve
with temperature. One of the two additional upper
bounds introduced and discussed, constitutes an improve-
ment upon the TDHA for computing F, but it does not
provide one with a practical computational scheme for
general types of potentials. Finally, a physically appeal-
ing picture of the TDHA in terms of scaling and "effec-
tive" wave functions is suggested.
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