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Covariant quantization of superstrings based on Becchi-Rouet-Stora invariance
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A manifestly covariant quantization of the superstring is presented in the Neveu-Schwarz-
Ramond formalism on the basis of the Becchi-Rouet-Stora (BRS) invariance principle. The critical
dimension D =10 and the correct Regge intercept are shown to follow from the requirement of the
nilpotency Qs ——0 of the BRS charge. A modified form of the subsidiary condition of Kugo and
Ojima Qe ~

phys) =0 to define the physical subspace is sufficient to demonstrate the no-ghost
theorem.

I. INTRODUCTION

It has recently become clear that superstring theories'
are promising candidates for consistent theories of quan-
tum gravity. These theories developed from the old
Neveu-Schwarz-Ramond (NSR) spinning string theories.
However, it has long been known2 " that these theories
can be consistent only if the space-time dimension D is 10
and the leading Regge intercept equal to —,, although
there is some recent work on string compactification. In
the light-cone gauge formalism in which unitarity is man-
ifest, this follows from the requirement of Lorentz covari-
ance. In the covariant formulation, on the other hand,
the generalized Virasoro conditions do not eliminate
negative-norm states unless these conditions are satisfied.

Another (and related) deficiency in the superstring
theories is the lack of a covariant formulation of second-
quantized superstrings (with manifest space-time super-
symmetry). In the original formulation of NSR models,
which describe the superstrings in their Majorana fermion
and even 6-parity sector, ' the D-dimensional space-time
supersymmetry is not manifest. The new Lorentz-
covariant action of Green and Schwarz' has a space-time
local supersymmetry built in, but this same local super-
symmetry turns out to be the obstacle to a covariant
quantization of the superstrings. Obviously covariant
quantization is most useful to the study of string interac-
tions and the above compactification problem. It is there-
fore desirable to find a covariant formulation.

Recently Siege& has succeeded in formulating covariant-
ly the second-quantized bosonic string s starting from the
covariant quantization based on the Becchi-Rouet-Stora
(BRS) invariance of Kata and Ogawa. ' One naturally
expects the extension of this formalism to the superstring
case. In view of the above-mentioned difficulty in the ac-
tion of Green and Schwarz, it is natural to consider the
problem in the original NSR models.

In this paper we take the first step in this direction.
Namely, we perform the covariant quantization of NSR
models in the light of BRS invariance, following the work
of Kata and Ogawa. An alternative formulation has been
given in Ref. 11, in which the fermion vertex operator is
also constructed. %e believe that our formulation, which
is very close to that in Ref. 10, together with their result,

will be quite useful to the covariant second quantization
of the superstrings. The second quantization along the
line of Siegel's work will be discussed elsewhere.

In order to perform the covariant quantization of a
superstring using a BRS symmetry, we start from the ac-
tion12, 13

Wo ——— e e,'e "8;x"3jx„
2K

+— 2P—r'd 0„+2 4, r'r'W'd x,

—&'g 0"4,4~ r'r j4

which is invariant under the general coordinate and local
Lorentz transformations. It is a classic result' that (1.1)
gives the correct equations of motion and constraints in a
special gauge for the NSR models, and that it is also in-
variant under the two-dimensional local supersymmetry
transformations

5e„=i',g;, 5';=2D;e, (1.2a}

(1.2b)

where D; =8;+—,
'

to;y5 with

which satisfies

5ieaj 5j ai i~abej +~j eabei = Pi Van2

However, as was already noted in Ref. 12, the algebra of
supergravity does not close off-shell. In this case it is well
known' that one cannot obtain the correct BRS transfor-
mation which should be nilpotent by simply replacing the
transformation parameter e(g') with A,C(g), where C is the
Faddeev-Popov (FP} ghost field and A, is an anticommut-
ing c-number parameter.

To find the correct BRS transformation, one should
have transformation rules which close off-shell. This
problem in our two-dimensional case was discussed in
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Ref. 15. It is shown that we need two-dimensional scalar
fields S and F», and (1.2) is modified as

5e„.=i ey, g;, 5$; =2(D;+ —,
'
y,S)e,

5/i ——A,[C Bjfi+(diC )QJ+ —,'CNbcr

+2i (D;+ —,
' yiS)C], (2.1b)

i; 15S = — Se—y'f; — e' ay 5(D;g D—P& ),
2e

5x»=ie+, ~= F»+y' Bix» — fg—Q e,

(1.3a)

(1.3b)

5S =A, CJBJS+ ,'S—Cyjg; —e'JCy, (D;QI D—;g;)2e

5x»=z(C'a, x» C~—),

(2.1c)

(2.2a)

5F»=icy' D;g —,'y~—8 x"— PJQ—

and there appears an additional (F„) term in the La-
grangian. We note in particular that (1.3a) contains in-
variance under

~=X C'a, ~+—'C„~'g
2

+i F»+y' 8;x» — P;g —C (2.2b)

5e„.=0, 5$; =y;e, 5S= — ey'P—;,
2

(1.4} 5F» =AC'd, ;F»

II. COVARIANT CANONICAL QUANTIZATION

In this section we perform the covariant quantization
using BRS invariance of the theory. Our procedure is as
follows. First, we determine the BRS transformation
which is nilpotent. Second, we choose the orthogonal
gauge in which the zweibein e"=g" and the Rarita-
Schwinger field P; =0. These conditions are imposed in a
BRS-invariant way. Finally, we give mode expansion of
the relevant variables and determine their commutation
relations by Dirac's quantization method.

The BRS transformation is defined by replacing the
transformation parameters with their respective ghosts
multiplied by an anticommuting c number A, :

5'( =~[C'dj equi+(dr C')em~+ Ca'eb; Cya 0;), —(2.1a)

because we are free to choose the constant value of S.
This scalar field S will play a crucial role in our formula-
tion.

With these symmetries manifest, we can easily apply
the techniques known in field theories such as the Kugo-
Ojima formalism of non-Abelian gauge theory, ' as in the
case of bosonic strings. ' We find that the critical dimen-
sion D=10 and the correct intercept follow from the con-
sistency that the BRS charge Qa indeed blames nilpo-
tent, in much the same way as the bosonic case.

The paper is organized as follows. In Sec. II we per-
form the covariant quantization of (1.1). We define the
BRS transformation such that it is nilpotent and quantize
(1.1) covariantly with BRS-invariant gauge fixing e„=rl„.
[=diag( —1,+1}]and g; =0.

In Sec. III we construct the Fock space and find the
BRS charge. We show that the nilpotency condition

Qe ——0 leads to the critical dimension. The physical state
condition is also specified.

In Sec. IV it is painted out that the proof of the no-
ghost theorem in our formalism goes through as for the
bosonic case' with minor modifications of transverse
operators3 for the superstrings.

Section V is devoted to conclusions.

1 7—Cy Dg yj —d&—x»

F»gi—1 (2.2c)

where C' and C'b are the anticominuting FP ghosts for
the general coordinate and local Lorentz transformations,
respectively, and C is the commuting Majorana spinor
ghost for the local supersymmetry transformation.

The BRS transfarmation of these ghost fields is deter-
mined by the requirement that the above BRS transfarma-
tion be nilpotent. The result turns out to be

5c'=x(c&ajc'+&Cy'c),

5C~ ——A(C'8;C~+C, 'C b+iCcr, bCS+Cy'Cro;e, b),

(2.3a)

(2.3b)

5C =A,(C'B(C+ —,
' C,bn C ——,QCy;C) . (2.3c)

In fact one can show that the above transformation is nil-
potent, which is to be expected since the algebra closes
off-shell.

Under the BRS transformation, the Lagrangian (1.1)
transforms into a total divergence'2'"

5~o=A3; C ~o+ Cy'y~P 8 x"
2~

0'
eCy&y'y»(iTJ~) (2.4)

This implies the BRS invariance of the action if we im-
pose the boundary conditions

C'=0,
Cy iy~P»"djx» =0,

(2.5a)

(2.5b)

at cr =0 and m, because the last term in Eq. (2.4) vanishes
in our gauge choice to be discussed shortly.

Before going into the gauge conditions, we should note
that our Lagrangian in fact has an additional invariance
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to those given above owing to masslessness of the sys-
tem. ' This invariance is under Weyl transformations
given by ~=e "4g, F ~=e'"r~, C=e "-"C,

(2.7)

Se =Ae;, 5$;=—,'Ag;,

5S =arbitrary, 5x"=0,
5+=——,'A((}i', 5I'"= AF—", 5C = —,

' AC .

(2.6)

and other fields remain unchanged. [One could also rede-
fine g; as P; =e ' (g; ——,

'
y;yjgj ) with final results un-

changed. ] The Lagrangian then takes the form

This is not included in our BRS transformation but is im-
portant in going to the orthogonal gauge in which e = i)';.
However, to simply add this transformation to our BRS
transformation invalidates its nilpotency since the algebra
then does not close off-shell. Indeed one can easily see
that the BRS transformation on the ghosts will not be-
come nilpotent. To include this transformation, one
would have to extend the algebra to the superconformal
algebra, but this method introduces many additional
ghosts and simply complicates the analysis without much
new insight into the theory.

This problem is easily avoided by fixing this conformal
symmetry from the start. That is, we redefine all fields so
that they do not transform under (2.6). This can be
achieved by the redefinition

Wo ——— e,'e J'8;x"Bjx„

—4 "—0,4 y'y'0 +~(de« —1» (2.8)

where y'—=e' y' and we have imposed the condition
dete= 1 by the multiplier field E because e,' satisfies it.
It is clear that this Lagrangian has no Weyl invariance as
long as we regard these fields as fundamental. The BRS
transformations of each field are then deduced from (2.1),
(2.2), and (2.3). Here we write down only those necessary
for later discussions:

5e"=k[CJ'8 e "+—.,'(Q.CJ)e"—,'Cy Jp e—" e'BJC—'+e 'C'b+e'Cy'p~], (2.9a)

5$;=A[cjd g; ——,'(8 CJ)g;+ —,'Cy Jg P;+(8;CJ)g + ,'C,so' f—;+2ie '~ (D;+ —,'y;S)e'~ C], (2.9b)

C'g,.y&+ .—,(g, C')y& , Cyi;y&—+——,C,&~'y"+i F"+y' a;x" g;p& C—— (2.9c)

5C =A,[c'B,.C——,'(B,.c')C+ —,
' C y '|(;C+ ,

' C„n C ———,g'C y;C], (2.9d)

5E =Xa, (C'E} . (2.9e}

A]+32,
Our gauge conditions are then

(2.10)

Notice that by this redefinition "effective" Weyl invari-
ance is introduced from the general coordinate transfor-
mations in the second terms in Eqs. (2.9). Note also that,
with (2.9a) and (2.9e), the last term in Eq. (2.8) transforms
into a total divergence which vanishes at boundaries ow-
ing to (2.5a), and hence it is BRS invariant by itself.
Clearly these transformations are nilpotent. We are now
ready to discuss our gauge choice.

By using the invariances under (2.9b}, it is possible to
choose the gauge in which P;=0 (Ref. 12). For the
zweibein, the general coordinate and local Lorentz
transformations allow us to set three components of e" to
zero. To impose these gauge conditions, let us decompose
the zweibein e ' as

Ai ——Ai ——Ag ——0, Qi
——0 . (2.11)

Together with the equation of motion dete= + 1, this
means that e,' =g,'.

Following the general prescription in Ref. 17, the
gauge-fixing and FP ghost terms are given concisely by

5 C, =ki8„5 8, =0 (a =1,3,4),

5 C~=AiB», 5 B',=0.
(2.13a)

(2.13b)

As usual, these fields are all real or Majorana. Explicitly
(2.12) has the form

A(WoF+WFp)= i5 (CiA—i+C3A3+C4A4+C', i}'r;),

(2.12}

where the BRS transformation of antighost fields C, and
C'„and multiplier fields 8, and 8 ', are defined by
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=s,A, +a,A, +a,A, +8',y, +ic, [c'a,A, +-,' A, (a,c' —a,c'+icy'y, icr'y, )

Cip+&Cr 4&) g Ac(apC —Cip+&Cy 1(p)]

+ic,[c'B,A, + ,
'

A-, (a,c'—a, c'+ic y'yp —icy'y, ) —A, (a,c' —c»+icy'yp)

+A2(apc'+Cip+&Cr i4p) l

+ic,[c'a, A, ,' —A,—(a,c' a,—c'+icy'y, icr'y, ) A,—(a,c'+c„+icy'y, )

—A, (a,c'+c„+icy'4i)]

iC—', [CJBJQ;+(a;C~)f&+ , C—~cr'sp;—, (BJC—J)g;+, Cyj—f&f;+2ie ' {D;+,'y—;S)e' C] .

(2.14)

Here and hereafter we drop the tilde on each field for sim-
plicity. By construction, (2.14) is manifestly BRS invari-
ant owing to the nilpotency of the BRS transformation.
This implies that the total action is BRS invariant if we
impose the boundary conditions (2.5). We also note that
the Lagrangian is Hermitian with our Hermiticity assign-
ment.

The Lagrangian is greatly simplified by the shift of
auxiliary fields 8„8~, and E; we can eliminate all terms
containing the fields Ai-A4 and g;. This amounts to
going to the orthogonal gauge (2.11), and the Lagrangian
now takes the form

{riap+rpa, )c=o. (2.21)

Also Eqs. (2.18b) and (2.20) give the equation for C p:
p

+c.(a,+y,a, ) =o . (2.22)

I

ly this ghost field C'„ together with the other ghost C
and two modes out of tI}i', falls into the "quartet" repre-
sentation of Kugo and Ojima' and all of them will

decouple from the physical subspace, but this would be
impossible if both C,' and C were independent modes.
Thus the introduction of this scalar field S is quite essen-
tial in our formalism.

The scalar field S in Eq. (2.18a} may be eliminated,
yielding the field equation for C:

+ F"F„+E(1—A2 )+BiAi+BsAi+84A4
The boundary conditions for bosonic fields are

aix"=0, C4 ——0, and C'=0, (2.23)

+8',Q;+ici{apc —aiC')+iCs(apc' Cpi )—

ic,(a,—c' c„)+—c'.(a, + ,'y, s)c-, (2.15)

( —a +a, )x"=0, y'a;p=o,
apC —aiC'=0, apci —Bid ——0,
apc' —Cpi =0, aiCi —apci ——0,
aiC —Cpi ——0, Cp ——C4,

(a, +-,' y, s)c =o,

A i
——A2 —1=A3 ——A4 ——g; =0,
=E =81——83 ——84 ——8 ~ =0 .

(2.16}

(2.17a}

(2.17b)

(2.17c)

(2.18a)

(2.18b)

(2.19a)

(2.19b)

where we have also rescaled the fields as Ci-+2Ci and
C', ~-,' C', .

The field equations and the boundary conditions to be
imposed on each field are then derived from the variation
of the action. The field equations are given by

at o =0 and ir. The reason why we do not have condi-
tions on C, is because we must take the variation 5C' in
accordance with (2.5a), i.e., 5C'=0. For fermionic fields,
we can impose two different types of boundary conditions,
Ramond (periodic) and Neveu-Schwarz (antiperiodic):

Pii i( r, w ) =eP(g i( f', ir ),
(2.24a)

(2.24b}

where the first and second components of a spinor are
denoted by (1) and (2), respectively, and e=+ 1(—1) cor-
responds to the Raiiiond (Neveu-Schwarz) model. i

The boundary conditions on ghosts need careful exam-
ination. The requirement of the BRS invariance of the
action (2.5b), together with (2.23) and (2.24), tells us that
me must impose

Ci i)(r,o) = —Ci2)(r, o),
C(ii(7 ir)= —ec(gi(r w) .

(2.25a)

(2.25b)

Since the variation of C must be made in accordance with
(2.25), we find from the variation of the action (2.15) the
boundary conditions on C,'

The constraint in Eq. (2.18b) arises from the variation
with respect to S and reduces the number of independent
modes. In fact, it leads to

C I, iii(r, o)=C,'~2i(r, o),

C,(i)(r, m) =ec,(i)(v, m ),
—

1
—

1

(2.26a)

(2.26b)

C~=C~y5 .1 0 (2 20) which in turn lead to

This is to be expected because, roughly spe;dang, eventual- C, (i)(~,0)= —C ~(2)(r,o),0 0 (2.27a)
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C «() )(r,w) = —eC «(2)(r, m) .0 0 (2.27b)

The consistency of these boundary conditions with the
BRS transformation further requires

80C'=0 at o =0 and m .

%'e can now derive the mode expansion of relevant
variables. For bosonic variables, they are

N3

C (r,o)= — g (c„e '"' —c„e'"')sinno,
~ n=l

(2.29c)

—in~ — in~Cl(r, a)= ~ c()+ ~ g (c„e '"'+c „e'"')cosna,
7T 1T

gg

Col(r, o)= — g n (c„e '"'+c„e'"')sinna, (2.29d)~ n=l

x»( T,a ) =(II) + P0 T
K

' 1/2

+ —" 1
(a„"e '"'+a„"e'"')cosna,

C3 (r,a) = C4(r, a )

(2.29e)

(2.29a)

C (r,a)= ~ co+ ~ g (c„e '"'+c„e'"')cosna,
fT K

pg

(2.29b)

CO

g (c„e '"'—c „e'"')sinno .
« =1

(2.29fl

The mode expansion for ferrnionic fields are different
for e=+1. For the Ramond model (e= + 1), the first
components are

oo

p» p ~ (d» —i«(r+O) +d»t (N (r+IT)
)5~ ne „e

n=1
(2.30a)

(N

(r a) f + g (f e
—m(r o)+f te&n(r n—))—

a=1
(2.30b)

C«())«a)= f0+ g (f.e '"' '+f.e'""
a=1

and their second components are obtained from (2.30) by

i(((3)(r a) (( (1)(r

C(2)(r, a) = —C())(r, —o"),

C «(3)(r,a) = —C «() )(T, —a) .0 0

(2.30c)

(2.31a)

(2.31b)

(2.31c)

(2.32a)

In Eq. (2.30a), I » and I 3 are the D-dimensional y matrices and y5 analogue, respectively. Because (I)» is a Majorana spi-
nor, I' should be taken to anticommute with fermionic variables c„but commute with other mode operators. On the
other hand, I 5 is here taken to anticommute only with I"" but d„" and d„" to anticommute with fermionic mode vari-
ables.

For the Neveu-Schwarz model (e= —1), the mode expansion is
' 1/2

(r ) g (b» e -im (1+0)+f »telm(r+«))
2 m =1/2

oo

(T a) g (g e im(r «)—+g't eim(r n))— —
~2lr

(2.32b)

2~ m =1/2
(2.32c)

and their second components are again obtained from (2.32) by the rule (2.31). Here the sum is taken over all positive
half-integers.

Note that there are constant modes in the expansion of FP ghosts. Since they are Hermitian, so are the constant
modes: cp =co, co ——c o, fo f0, and fo ——f0. Th——ese modes play special roles in the following discussions.

We now proceed to the determination of the canonical commutation relations. The canonical conjugate momentuln
for each variable is given by

1 .
H =—x"x (2.33a)

(2.33b)
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p
~C3, ~ 0= —~C1 ~C=C

rr —o& =sr& =or =o& ' =rr =rr& =rr =n =0
01 iz a e

(2.34a}

(2.34b)

Equations (2.33b) and (234) are the primary constraints. Applying Dirac s method of quantization, we see that all con-
straints are of second class and that the variables A„C„Coi, 8„8'„P;,C'„and E can be eliminated from the
theory. The Hamiltonian and the commutation relations are then found to be

~=—"ll,„ll. + '
a,x&a,x„+ '

y&y'a, y„—Il,p,c'—ll, ,a,c'—ll y,a'O, (2.35)

[m „(r,o ),x "(r,o')]= iri„—"5(o o'),—jP„(r,o),P"(r,o') j =~ri„"5(o o—'),
[II c,( r, o),C (r,o') j = i5—5(o o'—), [ll c(r,o), C(r,o')]= i5—(o o'—), (2.36)

and other (anti)commutators vanish. In deriving (2.35), use has been made of Eq. (2.20).
Substituting the mode expansion operators (2.29)—(2.32) into (2.36), we obtain the canonical commutation relations of

mode variables:

[pg,qo]= iri—i'", [a„",a" ]=rit""5 „, fb„",b" j =ili'"5„, [d„",d"
j =ri""5„

[co«coj =1, [fc«fc]= i, —(c „,cm j =[~n«c«n j =5„m,

[f «fnm] =[fn«fm]= i5nm«[gn«gm]= [g n«gm]= i5nm

(2.37)

and other (anti)casnmutators vanish. We can also derive the Hamiltonian in terms of mode variables. For the Ramond
model, it is

H = (pg)z+ g na„"tan&+ g nd„" d»+ g n(c„c„+c„c„)+ig n(f„f„—f„f„),
n =1 n =1 n~1 n=1

and for the Neveu-Schwarz model,

(2.38)

H= (pg)i+ g na&ta„&+ g rnb&tb &+ g n(c„c„+etc„)+i g ni(g g —g g ) . (2.39)

In the Neveu-Schwarz model, one can define the conserved 6 parity

iXbmbm+'X«m&m &mS ~—

which will be preserved by the interactions. '

(2.40}

III. CRITICAL DIMENSION AND PHYSICAL SUBSPACE

In this section we wish to first exhibit the interplay between the nilpotency of the BRS charge Qa ——0 and the critical
dimension, then discuss the Fock space in our superstring theories and specify the physical subspace.

The BRS charge Qa is found from the conserved Noether current JaRs..
p

Qs = do~aRs
0

= f, do — C'(a~&a~„+a,x&a,x„)— C'(a~ a,x„+a,x&a~„}— ' (C'y y'a, y„+C'y&y, a,y„)

+ Cy'y~—a;x„+iC,(C'a; C +iCy C)+iCi(C'a; C'+iCy'C)
K

—c (o'a;c+ —,c,y c——,a;o'c) (3.1)

This can be expressed in terms of the mode operators. We find, for the Ramond model,
1/2

1 1 —— K
Qa =coL, +coM+ f0~+ for'+ — Qa (3.2)
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+ g n (ctc„—c„ct +if„f„if—„f„) (3.3)

KF=
2m'

g nc.c.+ 2fo'+ g f.f.
n=1

' 1/2
00 00 00

po„l &+iI'5 g V n (a&dt„a„"—d„„)+2g (c„f„+c„f„)+—g n(c„f„c„f—„),
N =1 @=1 N=1

(3.4)

CO

F=—g n(c„f„c„f„—),
n=1

(3.6)

Qii ——— pe„g ~n(c„a„" c„a„—") i I'5—g (fndi' +fndl')
7r a=1 n=1

I g I 2[(n +m)pi] (cnan+mamp+cn m an+my) —+nnl (cm+nam anp+cm+namanp)I
1/2 p.P p,t f t p

1+ g [nl (c n +m cn cm —cn cm cn +m ) + ( n +21Fl )(c n cm cn +m +cn +m cm cn ))
m, n

+ I'z i g ~n(fna„" f„a„") ——,
' I

& g —n(c„d„" c„d„")—
K

2~K nm

0

+ ~ I s g [~n +ni (fnan+mdmyfnan+m, dms)
n, m

+~~(fnamdm+np+fm+namdnp fnam dm+np fm+nam dnp )l

+ g (ni + 2 n)(cnf mfn pm cnfmfn+m )+ T(n +3ni)(cn+mfnfm' cn+mf nfm )
& s,m

m ——(cf +f cf+f )—
1 t+ g (2cnfm ynfm +2cnfmfn+m +cm+nfmfn+c m+nfmfn ) ~ (3.7)

where all the sums are taken over positive integers. We note that I' is a generalized Dirac operator in the sense that

F =H,
which can be proved by using the commutation relations (2.37). Also one finds

F =0.
The BRS charge for the Neveu-Schwarz model is given by

1/2

(3.8)

(3.9)

K
Qg col. +coM +—— Qa (3.10)

where

+ g n (cnCn —cnC n )+i g pi (gmgm g mgm )
rc =1 m =1/2

(3.11)
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M= gncc+ g g g
2

n =1 m =1/2
(3.12)

CO

Qs= — '
p~ g v n(c„ai't —ctai')+i g (g bg +g b")

»=1 rn =1/2

1 g [2[(n+m}m] (C„a„+mam„+C„am a„+m„) «—nm (Cm+„am a„„+Cm+namanl )I1/2 pt t pt pet t t p

1 pt
2~K nm

g [(li +2m)(cnbm b n+ mp+C bnm+nb mp) li(Cm+nbm bnp cm+nbmbnp)]

1 -t -t+ g [m (c „+ c„c —c„c c„+ )+(n +2m)(c „c c„+ +c„+ c c„)]
K m, n

g [ v'n—+m (gnbgan+mp gnbm a„+m„)pc t t pet

K m, n

+ "~~&(gmbn+manp gmbn+manp+gm+nbmani gm+nbm anl }1pgt t p,
' t t p, pt

1+ ~ g —(m + & il)(cngn+mgm cng mg—n+m )+ i (ii +3m)(cn+mgngm cn+m—g ngm )
K n, m

t t-+ m (Cng m +ngm Cngmgm +n )

+ ~ (2C»gmgn+m+2C ngmgn+m +Cm+ngmgn+C m ~ngmgn ) ~

K n, rn

(3.13)

where the sums should be taken over positive integers or half-integers such that the indices on a„"and c„are integers and
those on bm and gm are half-integers.

The BRS charges formally derived above from the Noether current contain divergences in L because of the ordering
problem. It can be made well defined, however, by taking the normal ordering of L which is just H/v n. W—e thus
redefine L by

1
(H —ao), (3.14)

~here o',0 is a suitable constant.
Although we defined the BRS transformation to be nilpotent at the start, the BRS charges Qs in their well-defined

forms do not necessarily satisfy the nilpotency condition

=0, (3.15)

because of the ordering problem. In fact, using (3.14) in the definition (3.2) of Qq, we find for the Ramond model

(3.16)Qs ——— — g n C„C„+2ao g nc„c„+ g n f„f„+2ao g f„f„+ fo—
n=l n=1 n=1 n=1

For the Neveu-Schwarz model (3.10), the same procedure gives

D —10 ~ ~ &n&n-
n=1

D —2 —2CEO g llc»C»
n=1

m =1/2 m =1/2
gmgm (3.17}
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Equation (3.16} shows that the nilpotency of the BRS
transformation holds if and only if

D =10, ao ——0, (3.18)

for the Ramond model, while Eq. (3.17) tells us that this

is true for the Neveu-Schwarz model if

D =10, ao ———,', (3.19)

I
O,p )u (p), (3.20}

where u(p) is a commuting spinor satisfying the Dirac
equation

in agreement with the well-known result. ' %e shall see

that these intercepts are not directly related with the

masses of our ground states in the superstrings, but Eq.
(3.19) implies that the ground state in the Neveu-Schwarz

model is a tachyon, which can be eliminated by restricting

the theory to the even G-parity sector.
It may be interesting to note that (3.17) has a form

quite similar to the commutator [M',MJ ] in the

light-cone gauge formalism in which the no-ghost

theorem is manifest. There the Lorentz covariance of the

theory requires its vanishing, leading to the same con-

clusion. The author could not find a similar computation

of the commutator of angular moment in the light-cone

gauge in the Ramond model, but our results suggest that

it has a similar form and the theory is Lorentz covariant

only for (3.18},which was deduced by another reasoning

by Schwarz 's'3

Since the D-dimensional y matrices are necessarily in-

troduced as the zero mode of the g(r, cr} in (2.30a) in the

IMnond model, it is clear that the states in this model in-

volve spinors, and hence this model describes fermions.

The ground state is indeed given by~'

co because of the anticommutation relation I co,co I = 1.
The total Fock space is then spanned by the direct prod-
ucts of these doubly degenerate states and those construct-
ed from (3.20) or (3.23) by the standard procedure of ap-
plying creation operators.

The fact that the ghost constant modes have a doublet
representation causes a slight complication in defining the
inner product. It should be defined by using the metric
operator q =co+co as

Qq I phys) =0,
which is equivalent, for the Ramond model, to

L
I phys) =0,

M
I phys) =0,

(3.27)

(3.28)

(3.29)

(3.26)

where we have used the notation
I P)+ —

I P ) &&
I

+ ) with

I p) being the state other than the ghost constant mode.
Also one can construct the ghost number charge Q„
which has fractional eigenvalues on any state in the Fock
space because of the ghost constant modes.

It is weH known that our theory describes the super-
string if we restrict the Ramond model to the Majorana-
Weyl sector and the Neveu-Schwarz model to the even

G-parity sector, the fermions being contained in the Ra-
mond model and the bosons in the Neveu-Schwarz model.
The ground states of the theory are the massless fermion
coming from the Ramond model and the massless spin-1
boson from the Neveu-Schwarz model. There is no ta-
chyon in this theory, as we mentioned previously. Still,
the no-ghost theorem is true without this restriction.

Finally, our definition of the physical subspace is, as
usual, ' given by

p "I"„u(p) =0,
and

I 0,p ) is, as usual, characterized by

pg lop&=p" lo p&,
&" lo,p)=c, lop&=c„ lop&=0 for n&1,

(3.21) I'
I phys) =0,

F
I
phys& =O,

Qg I phys ) =0,
and, for the Neveu-Schwarz model, to

(3.30)

(3.31)

(3.32)

d."
I
0 P & =fn

I
0 p & -f. I o,p & =o f«n & 1 .

As for the zero modes fo and fo, we choose fo I
O,p ) =0.

On the other hand, the ground state of the Neveu-

Schwarz model

is defined by

(3.23)

pS I o,p&=p"
I
o,p&,

a„"
I o,p & =c„

I
o,p & =c„

I
o,p & =0 for n &1,

C IOP&=g Iop&=rim lou&=««~& 2

(3.24)

co I+&=0, (3.25)

gives another state
I
—)=—cubi I + ) which is annihilated by

In both models, the constant modes co and co require a
special consideration. As discussed in detail in Ref. 10,
they have a doublet representation; that is, the state

I
+ )

annihilated by co

L
I phys) =0,

M
I
phys) =0,

Qa I
phys&=o

(3.33)

(3.34}

(3.35)

Because Qz is nilpotent, one can show in both models
that Qz is also nilpotent on the physical subspace speci-
fied by (3.27).

We note that Eq. (3.30} is a generalization of the Dirac
equation, as can be seen from (3.8). Thus Eq. (3.28} is not
an independent condition but can be obtained from Eq.
(3.30). This is the mass-shell condition whereas (3.29) and
(3.31) restrict the excitation of ghosts. In the Neveu-
Schwarz model, Eq. (3.33) is the mass-shell condition and

Eq. (3.34} is the restriction on ghosts. In both models, Qz
contains terms of generalized Virasoro operators multi-
plied by the ghost modes, and hence Eq. (3.32) or (3.35} is
an analogue of the infinite number of generalized Virasoro
conditions
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L„
I phys) =0 for n &1,

F„
I phys) =0 or 6

I
phys) =0, (3.36b) A =0, AB +BA =0,

(3.36a) same order in P, we get

in the usual formalism. Here we have a simple condition
(3.27) owing to the presence of ghosts. In the next section
we briefly discuss that (3.27) is sufficient to eliminate all
ghosts.

BC+CB=0, C =0.

(4.7)

IV. NO-GHOST THEOREM

p;=0 for i =1, . . . , D —2,
and define the light-cone coordinate

u+ =(1/v 2}(uo+uD i)

Let

(4.1)

In this section we wish to discuss the no-ghost theorem
in our formalism. We restrict ourselves to the Neveu-
Schwarz model because the discussion on the Ramond
model should go through in much the same way by using
the physical particle operators similar to those in the
Neveu-Schwarz model. ' The machinery to prove this
theorem has been well developed for the bosonic case by
Kato and Ogawa. ' In fact our discussion up to here is
quite similar to theirs with some modifications. Here one
also easily recognizes the similarity. Therefore we only
briefly outline how its proof proceeds and refer the reader
to Ref. 10 for a more detailed discussion.

We choose a Lorentz frame in which

Now one can prove, by the same method as Kato and
Ogawa, ' that any state

I g) satisfying A
I f)=0 can be

written as

X(01bi j b( j ak ( ak (4.9)

Using these relations and assuming everything may be ex-
panded in P, one can then prove by mathematical induc-
tion that any state 1$(P)) in P i satisfying

Qi)(p)1$(p)) =0 can be written as'

I g(P) & =P(P) 1$(P)) +Qa(P) 1&(P)&, (4.10)

where P(p) is the projection operator onto the transverse
sector:

(4.8)

where P' ' is the projection operator into the subspace
generated by a„' and b':

k+=k;=0 fori =1, . . . ,D —2,

k = 1/p+,
(4.2)

P(~)= X ~
(k) ('4k ( ~((j( ' ~l j I

o&„m!n!

(4.11)

so that k~"=—1.
We can construct the subspace P"i, as a Fock space

spanned by redefined mode operators

i(en/n)k qg t i (nn/n)k —qf„-+e n& n n 7 (4.3)

where fn denotes a„", b„", c„, c„,g„, and g„. L, M, and

Qa remain unchanged by this redefinition. Since these
new variables (4.3) commute with L, any states in P"L au-
tomatically satisfy (3.33}as far as the vacuum satisfies it.

By making the rescaling

with A„( and 8 j being the transverse operators con-
structed by Brower and Friedman and by Schwarz and
suitably rescaled by P. Equation (4.8) is the n = 1 case of
Eq. (4.10) in the expansion in P.

Now that we have found the complete structure (4.10)
of the physical subspace satisfying (3.33) and (3.35), we
can prove the no-ghost theorem by simply putting P= 1 in

Eq. (4.10) and taking its norm

(4.12)

1 2 + 1K~ 2K' PO HIPPO ~ 90 ~ 290

Qa is put into the form

(4.4) where the first equality follows from the fact that

QaP =0, PQa ——0, (4.13)

Qi)
——A+PB+P C . (4 5)

Qg(P)2= I3 ML . — — (4.6)

Combining this with (4.5) and comparing terms in the

The lengthy explicit form of the operators /(, 8, and C is
not given here since it has a similar form to that given in
Ref. 10 with additional fermionic terms and may be ob-
tained easily from Eq. (3.13). The only point to be noticed
is that A has the same bilinear form as the usual asymp-
totic form of the BRS charge in ordinary gauge
theories. '0'6 Owing to the nilpotency of Qa, we have

because the transverse operators (anti}commute with Qa.
The last inequality is due to the positive definiteness of
the transverse state space. This completes the proof of
the no-ghost theorem.

V. CONCLUSIONS

We have thus performed the covariant qu mtization of
the superstring in the NSR formalism in the light of the
BRS invariance of the theory. The procedure is quite
similar to that of bosonic strings due to Kato and
Ogawa. '0 The critical dimension D= 10 follows from the
nilpotency of the BRS charge in spite of the fact that we
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started with nilpotent BRS transformation.
Although we have performed quantization by fixingIhe

Weyl transformation from the outset, it would be an in-

teresting problem to examine whether the theory can be

consistent outside the critical dimension if we keep the
conformal mode, as suggested by Polyakov. 2 We beheve

that our operator formalism is more suitable to investigate

this problem than the path-integral method.
A natural problem to be discussed is the extension of

our formalism to the covariant second quantization of the

superstring ' along the lines of Siegel's work on bosonic

strings, which is based on the formulation of Kato and

Ogawa. ' With such a covariant formalism, it would be

easier to reconsider the compactification of the super-
strings to four dimensions.
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