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The quantum mechanics of the oscillator with anticommuting coordinates is discussed. The rela-

tion of this oscillator to the super Poincare group is described. In the analysis one is led to introduce
the Grassmann extension of Hermite and of Bargmann-%igner functions.

I. INTRODUCTION 5 JLCt=0. (2.3)

The familiar annihilation and creation operators of a
fermionic field theory are separately the generators of a
Grassmann algebra. This algebra is also encountered in
the various realizations of supersymmetry by fields and
strings and in the description of superspace. ' DeWitt has
given a general description of supermanifolds with some
applications to simple quantum-mechanical systems.
The use of simple supersymmetric quantum-mechanical
models also permits elementary proofs of the geometric
index theorems.

There is a very general investigation in which
Schwinger showed long ago how bosonic and fermionic
systems may be uniformly treated on the basis of an ac-
tion principle. Starting from this action principle we
shall here give a detailed discussion of the fermionic oscil-
lator, first as an illustration of Grassmannian quantum
mechanics and second as a useful tool for analyzing the
super Poincare group in d dimensions. Our treatment
will closely parallel the corresponding treatment of the
familiar bosonic oscillator and will depend on the use of
the Grassmannian generalization of the usual Hermite
functions. In the discussion of the super Poincare group,
we shall encounter the Grassmannian generalization of
the Bargmann-Wigner multispinors.

If the operator equations of motion are satisfied and only
the final state is varied, one has
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From (2.4), one finds the Schrodinger conditions on the
states
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Ii t

(2.5a)
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and the Schrodinger equation
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From (2.4) and the right-hand side of (2.1), one finds the
operator equations

II. THE SCH%'INGER ACTION PRINCIPLE and the operator Hamilton-Jacobi equation

Grassmannian quantum mechanics may be discussed in
just the satne way as the usual quantum mechanics. We
shall base our treatment on the Schwinger action princi-
ple:

aw awH, q + =0. (2.6c)

5(q2t2 I qiti ) =—(q2t2 I
&~'2i

I
q'iti ) (2.1)

The integration of the action principle leads to the
Green's function

where (qztz Iqit, ) is the transition amplitude between
the initial state

I
q'i ti ) and final state

I q2t2 ) and where
the action operator is

t2
W= I 1.(q, q, t)dt . (2.2)

This action principle relates variations of the states on the
left-hand side to variations of the operators on the right-
hand side. If Iqiti) and Iqzt2) are not varied, one has
the operator principle of least action

(q2t2 I qiti ) =exp (2.7)

~here P"2l is the time-ordered form of 8'2l.
The implementation of the formalism depends on the

nature of the coordinates q. In particular, the commuta-
tion rules between p and q depend on the commutators of
the coordinates according to (2.5b). If the coordinates
commute, then
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(q, qP) =0,

,q&a

(2.8a)

(2.8b)

The anticommuting q may be thought of as the fermion-
ic coordinates of superspace.

Define the symplectic adjoint by

(3.3)

(q,pp) =ifi5 p,
(p,pp) {2.8d)

and the corresponding scalar product

W =WaC =0 CaPV
a a P (3.4)

Also

(2.9)

On the other hand, if the coordinates anticommute (are
Grassmannian or fermionic)

Our convention for lowering an index is the same as in the
usual spinor algebra. Then

I.=—1 dq dq —N gg (3.5)
2 dt dt

(qa, qP)+ ——0,

qP 8P

(2.10a)

(2.10b)

Let pa be defined as the left derivative:

(3.6)

and

(q,pp)+ ———iNp

(p,pp)+ ——0, (2.10d)

(2.10e)

Then

p
'P

q
a (C—l )aPp

(3.7)

(3.8)

Equations (2.8c) and (2.10c) are the two implementations
of (2.51). In both cases p = —iiii8/Bq. In the Bose case p
is Hermitian, and in the fermionic case it is anti-
Hermitian as required by (2.8c) and (2.10c) and as further
discussed in the Appendix. With this single change, the
complete quantal formalism goes through in the same
way for both kinds of coordinates.

Hamilton's principle in an unsymrnetrized form is

5 J gq p Hdt=0— {2.11)

and Hamilton's equations are

(3 9)

(3.10)

dH

~pa
(pC ') =(C 'p—) (3.11a)

Define the Hamiltonian in accordance with (2.11) as

H=g Pa —L

Then

H= —,'( —pC 'p+co qCq) .

The equations of motion by (2.12) are

(2.12a)

= —co (Cq)a, (3.111)

a where 1 and r refer to left and right derivatives. Then

(2.12b)
"a 2 a= —ap g (3.12)

where i and r refer to left and right derivatives.

III. THE GRASSMANN OSCILLATOR

The n-dimensional bosonic oscillator is described by the
Lagrangian

H=O.

The following relations are also preserved:

ifiq=(q, H)

(3.13)

(3.14a)

I =T(X g~tX —CO X gtltX ),
where

gkl —gQ) ks/ —1) e e s s n o

(3.1a)

(3.11)

imp =(p,H) (3.14b)

and these are consistent mth the temporal independence
of (q,pp)+..

We shall describe the n-dimensional fermionic oscillator
by the analogous Lagrangian

i% (q,pp)+ ((—q,H),pp)++(——q, (pp, H) )+dt

L = —,{q C pq
P a) qaCapqP), — (3.2a)

+(H, (pp, q )+) (3.15)

where

Cap ———Cp, aP= 1, . . . , .n (3.21)

by virtue of the super Jacobi identities.
Although p is anti-Hermitian, the Hamiltonian is Her-

mitian. Since n must be even, we may choose C to be
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0 —i

i 0
0 —i
i 0

(3.16)
a exp( ——,coqq }=0

and the highest by

(4.8a)

In contrast with the bosonic case, the fermionic oscillator
has only a finite number of states. The lowest is deter-
mined by

If C =1, then

H = —,
'

( pCp—+co qCq) .

However, we shall keep the general form (3.10} to allow
for the possibility that C may depend on external or back-
ground variables to which the oscillator is coupled. C
must be purely imaginary so that both the Lagrangian and
the Hamiltonian are real and Hermitian.

a + exp( —,coqq ) =0 .

Then

H exp( —,' coqq —)= —,' n co—exp(——,
'

coqq ),
H exp( ,' coqq )—=,' neo exp—(—,

'
coqq ) .

$0——exp( ——,coqq )
1

(4.8b)

(4.9a)

(4.9b)

IV. SPECTRUM AND STATES OF HAMILTONIAN

Define

1

2
(coq+ iC 'p ),

1 . )

2
(coq iC —p) .

(4.1)

(4.1')

The operators a+ and a are Hermitian conjugates of
each other because C must be imaginary. Then

=exp( ——,
'

coqCq } . (4.10)

= ( —I /~2) exp( —,
'

coqq )
Bq~

Xexp( ——,'coqq) 1to (4.11)

Then $0 is the Grassmann Gaussian and the general
eigenstate is

a] ~ a~ a& a~"=a~ a+ ir'0

and

(a,a~ )+——0,

(a,a ~ )+ ——co5 ti,

(a,a +)+——neo,

(4.2)

(4.3a)

(4.3b)

Hy~i
' ' ' ~m E q~&

' ' ' ~m

Em Nf 2 neo

(4.12a)

(4.12b)

where a p+ =a+ C p and the Hamiltonian is

H= —,'(a Ca++a+Ca )

= —,
' (a +a —a a +

) (4.4)

The levels and states of the Hamiltonian are E and

m =0, . . . , n The num. ber of levels is just
n+1, the degeneracy of each level is C", and the states
may be written

1=a +a ——,ncu

= —a a ++ —,neo .1

(4.4a}

(4 4b) where

"=exp( ——,coqq)H
' (q), (4.13)

The commutation rules for H with a and a+ are the
same as for the bosonic oscillator,

Ha, a ( —) ~q
(~2) aq, a9a

—ruqq (4 14)

(H a )=—coa

(H,a+ ) =boa+,

(4.5)

(4.5')

Ha
(

n }=(e„—co)a
(

n },
Ha+ ( n}=(e„+~)~+(n} .

(4.6)

(4.6')

It is convenient to employ the following representations of
a and a+..

1 — a
exp( —Tcoqq ) exp( —,oiqq ),

and the eigenstates are generated in the famililar way by
raising and lowering operators according to the equations

H~ . . . (q)=H ' "Cp,~, Cp ~

The following orthogonality relations are satisfied:

J (dq)e ~H '
(q)Hp, . . . p, (q)

(4.15)

We refer to the completely antisymmetric functions
~ ~ ~ QH ' (q) as the Grassmann-Hermite multinoinials.

The state of the physical system may also be labeled by

~
nin2 ) instead of P ' where n, =0, 1 and

gn, =m. The n, are the population numbers for the
component oscillators.

Define

a+ —— exp( —,coqq) exp( —Tcoqq) .1 I 3
2 Bq where

PS I=BI B„A ep, . . . p (4.16a)
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8 =(—2co)"i2PfC,

A =co e'(m) e(m)=( —)~'~

(4.16b)

(4.16c)

Let the u ' (q) be normalized according to (4.17) so
that (4.18) is satisfied. Then

where Pf means Pfaffian and where a Berezin integration
is to be understood.

I,et

u ' (q)=(B„A ) '~'exp( ,'—coq—q)H
' (q)

1f /Pl
G(q, t;qp, tp) =exp —ncog g u . . . (q)

2 om!

Xu ' (qo), (5.5)

then

(4.17) where

A, =e ', r=t —fo . (5.6)

~

~ ~ ~ ~ ~ ~ ~

~ ~ ~

(dq)u ' (q)up . . . p (q)=pep'. . . p

V. TIME-DEPENDENT STATES
AND GREEN'S FUNCTIONS

(4.18} By (4.16), (4.17), and (5.5)
'm

G(q, t;q(), tp) =Kg 1 1e(m )exp[ ——,co(qq+ qoqo }]

Let the solution of the time-dependent equation belong-

ing to the energy E be
where

XH, . . . (q)H ' (q()), (5.7a)

(q, t)=exp . E t u ' (q) .
iA

(5.1) K = [(PfC)( 2co)"~—] 'exp(i ,
' ncor) —. (5.7b)

An arbitrary time-dependent state satisfies the integral
equation

P(q t}=f G(q t;qo to)4(qo to)(dqo} (5.2)

Then the particular solutions (5.1) satisfy

u ' (q) =f G(q„t;qo, tp)u
' (qo)(dqo) (5 3}

where

VI. CALCULATION OF THE GREEN'S FUNCTION

The Fourier transform of a Grassmann Gaussian is
given by the following equation:

e &&=k f -e2c«e ~&(dg), (6.1a)

where a Berezin integration is always to be understood
and

=exp . (t tp)E—1

i'
k = [(2co)" Pf(C)]

(5.4)
By (4.14)

(6.1b)

H ' (q) = ke "+ e~"% "~(dQ)gg o ~ ~ Q ()

aq. , aq.

H ' (q)= keqq f (2ico)Q ' (2ico)Q e ~+ '"qQ(dQ) .
(~2)m

The Green's-function series may now be rewritten with the aid of the Fourier representation of H ' (q)

G(q, t;qp, to) =Kk exP[ 2co(qq+qoqp)—]g e(m) f f (QQ'} e "(~ 2'qQ)e " ' o (dQ)(dQ')
m!

(6.2)

where

=Kk exp[ —,
'
co(qq+qpqp)]J,

I

and

(6.3a)

and

Then

f (dQ)eru( QQ+2&qQ)J(—Q)

( Q) f, m( —Q'Q'+2+()Q' —22.QQ')

(6.3b)

(6.3c)

—1 ~Oq ru((2. 2 1)QQ+2C(q—iqo)Q}—J=k e d e

After the Q integration, one finds

k —2( 1 g2)nl2 qoqo t(R—
where

(6.5}

ru(2.2QQ if&q 2i 2qoQ)——JQ=k e (6.4)

o

g2)1/2
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G(q, t;qp, tp)=IC(1 —A, )" exP ial (qq+qpqp)pg/2 1 — — ~ + ~

A, —1

44gqp
(6.6a}

Since the Green s function is a Berezin integral, the factor
(1—1l, )"/ appe;irs in the numerator instead of the
denominator. The Green's function itself now becomes

The phase is the same as the corresponding result for
the bosonic Green's function but the amplitudes are now
inverted. Since the square of the amplitude corresponds
to a density in phase space in the (&KB) limit, we see that
the density just found is limited as required by the ex-
clusion principle while the corresponding inverted ampli-
tude permits an arbitrarily high density in the bosonic
ca'se.

The Green's function for the Grassmannian free parti-
cle corresponds to the limit ai =0:

' n/2
i "/ sin(to~)

G(q, t;qp, tp) = e'~,
N

where S is just the classica1 action

(6.6b)

G(q, t;qp, tp) = r" exp (q —qp)(q —qo) . (6 7)

N
[(qq+qoqo)cos(ale) —2qqo] .

2 sin(tor)
(6.6c) The limit of G as r +0 is-a Berezin 5 function:

n/2 n/2
lim G(q, t;qp, tp) =lim H~ g, ——8 CapgP

o
'' '

~ oPC pm! 2~
I

galgPl. . . gan/2 n/2

Pf( 2n/2 (n /2)! alpi n/2pn/2

where H=q —qp, or

lim G(q, t;qo, to) =5(q —qp),
t-+0

where we have used

(6.8)

Then

1 N
[(qq+qoqo)cos(tot ) 2qqo—]+4(to, t ) .

2 sin(a)t)
(7.3)

5(8)=i "8'g ~ g =e(n }g'g g" (6.9}
fqp, qcos(alt—)] .

sin cot
(7.4)

The commutation rule for q and pp is

C =v'detC .
(n/2)! l 2 n —lan

(6.10}

VII. THE OPERATOR HAMILTON-JACOBI EQUATION

A second way of determining the Green's function is by
solving the operator Hamilton-Jacobi equation (2.6c). If
the solution is M2i then the Green's function is given by
(2.7)

(q,pp)+ —— i%5'p—.

By (74) the rule (7.5) implies

a p} @C—l)ap S (COt }

N

%'e have

BM 1 co
l~qq +qoqo)

(7.5)

(7.6)

l
G(q2t2 qltl } (q2t2 I qlti & =exp

fi
(7.1) —2qqpcos(alt)]+ . (7.7)

3t
where ~2i is the matrix element of the time-ordered ac-
tion between initial and final states.

The operator Hamilton-Jacobi equation is by (3.10)

5~(C—1)aP5~ l 2 aC P ~ 0 (7 2)
5 p +Tal qaPq +

According to (7.2}, (7.4), (7.6), and (7.7)

d4 i. d= —( Tink}—ln sin(cot ),
dt ' dt

4= ——,
' in%in sin(alt )+const .

To solve (7.2) try the ansatz Then
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( qt I qlitl) )- [sin(cot )]"/ exp in/2

where

1 coS=, [(qq +qoqo)cos(cot ) —2qqo]
2 sin(tot)

(7.8a)

(7.8b}

VIII. FEYNMAN PATH INTBGRALS

Let us introduce the eigenstates of q and p that satisfy

(q'
I q) =5(q' —q),

(8.1)

in agreement with (6.6). The constant of integration in
the solution of the Hamilton-Jacobi equation may be tak-
en from (6.8).

&qlp&=&plq& =e' =e"'

We now have

& p'
I p &

=f fdq]&p'
I q & &q I p &

=f [dq]e'" '"
( i )" —a, a„"(p-p'), (p-p') =5(p —p') .

To find the path-integral formula let us first compute

& q2(t+«)
I
qi(t) & = &q2 I

e '""
I qi &

ii/2)htpC ip ihtY)—q) )

2 le e ~~ q1

=f (dp)(q2 I

el /2)atpc 'pip)(p
I
e atY(-

After completing the square we find for the Berezin integral

2(t+nt)
I
qi(t) & = exp —(q2 —qi)(q2 —qi )/'bt ihtV—(qi)

( ibt)" — i
PfC 2

(8.2)

(8.4)

where PfC is given by (6.10). For a finite interval we have

& qf f I qlti & = »m f (dq~-)} (dq»&qf f I q)v-itiv-) & &qiti I qttt &N~ co

1V —1

= lim f g (dqk)
k=1

For a free particle this becomes

' n/2
i (tf t;)—

N
1

exp i dtL(q, q)
f

4 t

(8.5)

' n/2
i(tf t)—

(qftf I q t; ) = lim f g (dqk)S
~ %, 'F N —1
ltd' —1xexp (qfqf +qtql }—(qlK11 ql —2qiK)jq iqf+qj Kjt 1,N —iqf }+—g qjKjlqt

2(tf t;)— j,1=1

(8.6)

where the (N —1 }-dimensional matrix K is

2 —1 0 0
—1 2 —1 0

Therefore one gets for the free particle

(it)" i
(qt Iq 0) = exp —(q —q )(q —q )

2t

where we have used

(8.7)

pf(C+K) (pfC))V —1(det K)n/2 i)in/2(pfC)N —1

(8.8)

(8.9)

After C(t) is taken from (8.7), the final result containing
the inverted amplitude is

The sum over paths for the fermionic oscillator may be
found in the same way as for the free particle, and also in
the same way as for the bosonic oscillator except for the
Berezin integration. One obtains

e/2

(qt
I q 0) =C(t) sin(tot ) eis(,q, t)

6)E
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(qt ~qp0}=
1 sin(cot)

in agreeinent with (6.6b).

' n/2
iS{q,t)

terms of a modified angular momentum

U» =J»+(P /'P')(~E~Pp —JEpP~ )

—
4

t'(P /P )(Qrp»g) (10.6)

IX. REPRESENTATION OF LIE ALGEBRAS

The familiar representation of the generators of a Lie
algebra as bilinears in the absorption and emission opera-
tors of a bosonic oscillator holds also for the fermionic
case. Let X, be the generators of a Lie algebra

(X„Xb) =if,b'X, .

Then

(9.1)

(aXba, aX,a ) =ifb, aXga (9.2)

(ab,a')+ =5b' . (9.3}

%e shall next be interested in the case that the X, are the
generators of the (d —1)-dimensional rotation group.
This application arises in the study of the d-dimensional
super Poincare group and the associated rotational little
group.

X. RELATION TO THE SUPER POINCARE GROUP

The generators of the super Poincare group in d dimen-
sions include the Majorana spinor g in addition to the
momentum P„and angular momentum J». The corre-
sponding algebra may be enlarged by the addition of the
covariant derivatives D to these generators. %e are in-
terested in the irreducible representations of this algebra
on the space of the superfields. Then P is still a Casimir
operator and its eigenvalues M label irreducible represen-
tations of this superalgebra. Projection operators for posi-
tive and negative energy may be defined just as for the
simple Poincare case:

as discussed in Ref. 5. There it is shown how the Casimir
operators simplify in the subspace corresponding to zero
intrinsic spin, since in this case Uq~ reduces to

U» = .' t—(P—'/P")(DrE»D) (10.7)

This form of U» is analogous to the aXa in Sec. IX
because the a and the D are also analogues while the X
correspond to the generators of a (d —1)-dimensional ro-
tation group in the rest frame. For vanishing intrinsic
spin, it is shown in Ref. 5 that the quadratic Casimir
operator reduces to a function of DD only and that a large
class of representations of the super Poincare group is en-

tirely fixed by this single Casimir operator. The problem
of determining these special representations is then a
question of finding the eigenvalues and eigenfunctions of
DD:

gp(e, x )=exp( —,
' M88)F(x ), (10.9)

where F(x ) satisfies the d-dimensional Klein-Gordon
equation

(P —Mz)F(x) =0 .

Then

(10.10}

DDT(x, e) = , nMQ(x, e),— (10.11)

where n =2(~/z} and the most general solution to (10.8}is

=(—,'n —2m)M, m =1, . . . , n/'2 (10.12a)

(10.8)

At this point one comes back to the oscillator problem.
The highest eigenvalues correspond to the Grassmann
Gaussian functions:

A+ —— (M+P) .1

2M
(10.1) and

Then Q and D may be split by these projection opera-
tors and they may also be given a representation as dif-
ferential operators in superspace as follows:

Q+ i A+Q =i A——+ exp(+ —,'M88) exp(+-,'Mee)

(10.2)

D+ i A+D =i A+ —e—xp(+ —,'Mee) exp(+ —,'Mee)
88

(8,8P)+ =0,
8 =8 Cp, .

(10.4)

(10.5)

The complete set of Casimir operators is constructed in

(10.3)

where the 8 are the Grassmann coordinates of super-
space:

n/2

(x,e)= yg ' g 'D ' D exp( —,'Mee)

XF, . . . . .p, . . . p (x). (10.12b)

By introducing (10.2) and (10.3) the states (10.12b) may
be rewritten

In this expression each D lowers the eigenvalue by 2M.
Since the Q and D anticommute, multiplication by Q does
not change the eigenvalue and the Q product describes the
degeneracy. The total degeneracy of one eigenvalue is
then

n/2
Cn/2 ~ Cn/2 2n/2Cn/2

m ~ j ltd

i=0

and the total number of eigenfunctions is then

n/2
2n/2 y Cn/2 2n
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n/2

(x,8)=exp( —,M88} gH ' t' ' (8)
@=0
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XF, . . . p, . . . p (x),
APPENDIX

where

H ' s(8) =exp( ——,'M88)
t}8,

(10.13)

exp( —,'M88) .
ae.

When the q are anticommuting the consistency of the
Hermitian property of t)/t)q may be checked by verifying
the Berezin equality,

(10.14) f0', 0 (dq)= ft}q' aq'
(A 1 }

These are Grassxnann-Hermite multinomials. The

F, . . . , .p, . . . p (x) satisfy

CE
A s K

Q ~ ~ ~ Q e ~ ~ ~ +p ~ ~ ~ p 0
s p& 1 m

p
A+yE+ o ~ o z ~p e I ~ p ~ ~ ~ p 0 ~

1 p& 1 s e

(10.15a)

(10.15b)

These are like Bargmann-signer multispinors but com-
pletely antisymmetric in the sets a& az and P& P
separately. Only their completely antisymmetric projec-
tion contributes to 14't(x, 8). Thus the eigenvalues of the
quadratic Casimir operator of the super Poincare group
are essentially the energy levels of the Grassmann oscilla-
tor. The eigenfunctions of DD are given by the superfield
expansion (10.13) in the eigenfunctions of the oscillator.
As mentioned earlier and explained in detail in Ref. 5,
there is a large class of irreducible representations deter-
mined by this single Casimir operator.

Bq

=e(trt) f (dq)(q' q )(q +' q") .

On the other hand,

(A2)

where P and P are superfunctions. Let q' q be a
typical term of f. Then the only terms of P that multiply
the foregoing term of |t and also contribute to the integral
will be of the form q'q +' q". Without loss of gen-
erality we have chosen to differentiate with respect to q'
and also assumed that the factors q

'
q and

q~+' q" are arranged in their natural order. Then,
since the asterisk implies reversal of order,

f (dq)
aq'

0=f(dq}, (q' q } (q'q " q")
aq'

=( —)™le(m —1)f (dq)(q' q }(q +' q") .

The right-hand sides of (A2} and (A3) are the same except possibly for the numerical factors. But

( —)~ 'e(tn —1)=e(m) .

Hence (A 1 ) and the corresponding anti-Hermitian property of p are checked.

(A4)
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