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Quantum mechanics of measurements distributed in time. A path-integral formulation
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Consider measurements that provide information about the position of a nonrelativistic, one-

dimensional, quantum-mechanical system. An outstanding question in quantum mechanics asks

how to analyze measurements distributed in time —i.e., measurements that provide information

about the position at more than one time. I develop a formulation in terms of a path integral and

show that it apphes to a large class of measurements distributed in time. For measurements in this

class, the path-integral formulation provides the joint statistics of a sequence of measurements. Spe-

cialized to the case of instantaneous position measurements, the path-integral formulation breaks

down into the conventional machinery of nonrelativistic quantum mechanics: a system quantum

state evolving in time according to two rules —between measurements, unitary evolution, and at each

measurement, "collapse of the wave function" ("reduction of the state vector"). For measurements

distributed in time, the path-integral formulation has no similar decomposition; the notion of a sys-

tem quantum state evolving in time has no place.

I. INTRODUCTION AND OVERVIEW

In this paper I consider measurements that provide in-
formation about the position x(t) of a nonrelativistic,
one-dimensional, quantum-mechanical system. The stan-
dard lore of quantum mechanics provides a description'
of an instantaneous measurement of position —e.g. , a
snapshot of a pendulum boL or a sequence of instantane-
ous measurements. Such instantaneous measurements I
call samplings of x(t); each sampling provides informa-
tion about x (t}at a single instant of time. For a sequence
of sampling s the standard description ultimately
produces —after much clanking of machinery and turning
of gears a joint probability distribution for the possible
results, from which one can compute statistical correla-
tions among the samplings. This—and no more —is what
quantum mechanics allows. Indeed, one may take the
point of view3's'6 —I take it here that the "function of
quantum mechanics is to give statistical correlations be-
tween the outcomes of successive observations. "

How might one best display the advertised joint proba-
bility distribution'? An especially simple form, with a
natural interpretation, emerges from a path-integral for-

mulation. Let $0(x, to } be the wave function of the system
at some initial time to i.e., the—probability amplitude for
the system to be at position x at time to. Consider a se-

quence of Q samplings of x(t) at times t&, . . . , t(2
(to&ti « t(2) The s.amplings are made by some
measuring apparatus. Account for its irresolution or im-
precision by introducing a conditional probability ampli-
tude Y(X—x), which I call the resolution amplitude;
Y(x —x) is the amplitude to obtain the value x as the re-
sult of a sampling, given that the system is at position x
at the time of the sampling. The resolution amplitude is
the only way the measuring apparatus enters into the stan-
dard description. Its detailed form depends on the prop-
erties of the measuring apparatus. Crudely speaking,
however, the variance of the associated conditional proba-
bility distribution

~

Y(X—x)
~

is the resolution of the
measuring apparatus; the apparatus can resolve positions
that are separated by more than the variance. Define now
a probability amplitude 4(x, , . . . , x(2,x, t(1 ), the joint am-

plitude for the Q samplings to yield the sequence of re-
sults Xi, . . . , X& and for the system to be at position x at
the time of the Qth sampling. Write this fundamental
joint amplitude as a Feynman path integral:

{x,tg ) Q

4(xi, . . . , xtl, x, t~)= f, &x(t) ff Y(x~ —x(te)) e' "' (""'}go(x(to},to) .
q=1

(l.la)

Here the integral denotes a sum over all paths x (t) on the
interval [to, ttl], with arbitrary initial values x(to}, but
with final value x (t~ ) =x; and

fg
S[x(t)]=f dtL(x, x;t)

is the action for the path x (t), L (x,x;t) being the
system's Lagrangian. Finally, derive from 4 the desired

joint probability distribution

p(x„. . . , x(1)= f dx
i
4(x„.. . , x&',x, t~) i

(l.lb)

the probability distribution to obtain the sequence
xI, . . . , X~ as the results of the samplings.

Interpretation comes from Feynman's rules for com-
bining probability amplitudes. The amplitude of A given
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8 times the amplitude of 8 is the joint amplitude of A

and 8. Depending on whether 8 is potentially observable,
the probability of A is derived from the joint amplitude in
one of two ways. If 8 is unobservable, then the joint am-
plitude, summed over all values of 8, yields the amplitude
of A, whose absolute square is the probability of A. If 8
is observable, then the absolute square of the joint ampli-
tude is the joint probability of A and 8, which, summed
over 8, yields the probability of A.

Select a path x (t), and begin with the quantity
e" "' ( '"1, the familiar quantum-mechanical amplitude
for the path, conditioned on the initial value x(to} M.ul-

tiply by the initial wave function i))o(x(to), to), the ampli-
tude for the path's initial value x(to}; thereby obtain the
unconditioned amplitude

e tllti)$[x(t))y (x {t

for the path x (t). For each q =1, . . . , Q, multiply by the
resolution amplitude Y(xe —x (te)), the amplitude to ob-
tain the value xe in the qth sampling, given the path's
value x{te) wr, m=o=re generally, the amplitude to obtain
x&, given the path x (t); thereby find the joint amplitude

Y(xz —x(te)) e' "' {"")f(x(to), to)
q=1

for the sequence of results xi, . . . , x& and for the path
x {t). Apply Feynman's rules to compute the probability
amplitude 4(xi, . . . ,x~,x,ttt): sum over all intermediate
unobservable quantities; i.e., sum over all paths such that
x(t~)=x. Why not sum over final values x(t&) as well?
Because the system's final position is potentially observ-
able by an independent measurement. Hence, first square
4 to obtain a probability distribution; then integrate over
final values x to get the joint probability distribution
(1.1b).

How does the standard description of instantaneous
measurements arrive at the joint probability distribution
(l.lb)? By a route circuitous indeed when judged against
the simplicity of the path-integral formulation (1.1), but a
route well-traveled nonetheless. The standard description
constructs the joint probability distribution from parts—
conditional probability distributions manufactured by
the conventional machinery of nonrelativistic quantum
mechanics. To see this machinery at work, it is sufficient
to consider just two samplings. Begin by writing the am-
plitude (l.la) for Q =2 in the form

4(xt xt'x, t)=Y(xt —x) f dxodxt t'(& tt (x tt+t)i(tat@'(xt tt
(
too to)t(to(o to) (1.2)

where the sum over paths has been eliminated in favor of
the (nonrelativistic) propagator

(,x, t)
K(x, t lx', t')= , —, &x(t)e'~"' (1 3)

(,g', t')

The sum over paths in Eq. (1.3) includes all paths on the
interval [t', t] such that x(t') =x' and x(t) =x.
Feynman's rules imply that the propagator is the condi-
tional probability amplitude for the system to be at x at
time t, given that it was at x' at time t'. To describe the
first sampling, introduce the quantity

itlo(x ti}=f dxoK(x, ti Ixo to)go(xo to) (14a)

One can derive from Eqs. (l.lb) and (1.2) the probability
distribution P(xi) to obtain xi as the result of the first
sampling:

P(xi}=f dx2P(xi, xt)

x Y x1 —x o x, t1 . 1.4b

Equations (1.4) speak a familiar language. According to
Feynman's rules, fo(x, ti ) is the amplitude for the system
to be at x at time ti, it is the usual wave function of the
system at time ti. The evolution of the wave function
from to to ti using the propagator is equivalent to evolu-
tion via a SchrMinger equation. The probabihty distribu-
tion P(xi ) arises directly from Feynman's rules applied to
the joint amplitude Y(X, x)fo(x, t, ), ta—king into account
that the position x at the time of the first sampling is po-
tentially observable by an independent measurement.
Turn now to the second sampling, and introduce the
quantity

P~ (x,t2}= f dxi K(xot2 Ix»ti)gg, (xi ti) to

where

tPq (x,ti)—=Y(xi x)fo(x, t—i)/[P(Xi)]'

(1.5a)

(1.5b)

[Eqs. (l.lb) and (1.2)]. Equations (1.5) speak the same
language for the second sampling as do Eqs. (1.4) for the
first, if one interprets Pz (x,ti) as the wave function of

1

the system just after the first sampling, conditioned on the
result xi for the first sampling. Thus the standard
description posits a sudden change of the wave function
from tpo(x, ti) just before the first sampling to 1(t (x,ti)
just after. This sudden change, ' variously called "col-
lapse of the wave function, " "reduction of the wave pack-
et,"or "reduction of the state vector, " modifies the wave
function to be consistent with the known result of the first
sampling. The two samplings having now been described
in the same way, one has available two probability distri-
butions„P(xi ) and P(x2 I xi ); the joint probability distri-
bution is then constructed as a product
P(xi,x2)=P(Xz Ixi)P(xi).

Apparent now are the inner workings of the standard
description of instantaneous measurements. ' The basic

The conditional probability distribution P(xz I xi ) to ob-
tain xz as the result of the second sampling, conditioned
on x i as the result of the first sampling, is given by

P(x2 Ix))=P(Ãi,xt)/P(xi)

f xp —x „- xt2 15c
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parts are conditional probability distributions, one for
each sampling, each conditioned on the results of previous
samplings and each independent of the existence of subse-
quent samplings. These parts are manufactured by
machinery that one usually thinks of as being nonrela-
tivistic quantum mechanics. The fun amental quantity is
the quantum state of the system, here represented by a
wave function, ' which evolves in time according to two
rules: (i) between samplings the quantum state undergoes
unitary evolution, the wave function evolving according to
the time-dependent Schrodinger equation; (ii) at each sam-
pling the quantum state suffers an instantaneous, nonuni-
tary change, the collapse of the wave function, which
modifies the wave function to be consistent with the result
of the sampling. Unitary evolution and wave-function
collapse carry the wave function through as many sam-
plings as one desires. The conditional probability distri-
bution for a particular sampling arises from the proba-
bilistic interpretation of the wave function, supplemented
by a conditional probability distribution

~

Y(X—x)
~

that
accounts for the irresolution of the samplings. Finally,
the joint probability distribution (1.1b) is constructed as
the product of the conditional probability distributions for
the samplings. A route more circuitous —more like a
Rube Goldberg machine" —can scarcely be imagined.

Mention collapse of the wave function, and you are
likely to encounter vague uneasiness or, in extreme eases,
real discomfort. ' This uneasiness can usually be traced
to a feeling that wave-function collapse lies "outside"
quantum mechanics: the real quantum mechanics is said
to be unitary Schrodinger evolution; wave-function col-
lapse is regarded as an ugly duckling of questionable
status, dragged in to interrupt the beautiful flow of
Schrodinger evolution. The point of view taken here is
more benign: wave-function collapse is just a tool of the
standard description —but, within the standard descrip-
tion, an essential tool. Take a snapshot of a pendulum
bob; find the bob at a particular position. Take a second
snapshot immediately after the first; find the bob with
overwhelming probability at the same position, within the
resolution of the snapshots not at some far-away posi-
tion allowed by the bob's wave function before the first
snapshot. If one insists on using the standard
description —if one insists on attributing to the bob a
wave function —then there must be a sudden change in the
wave function after the first snapshot. Collapse of the
wave function is simply the formal device within the stan-
dard description which modifies the wave function after a
measurement to take into account the information ac-
quired in the measurement. It leads naturally to condi-
tional questions: what is the probability for this result of
this measurement, given the results of previous measure-
ments?

Ask not conditional questions. Ask instead questions
about the joint statistics of a sequence of samplings. Pose
the questions in terms of the path-integral formulation
(1.1). Then all reference to wave-function collapse disap-
pears. ' Moreover, this is not the only vanishing act;
disappearing also is the very notion of a quantum state
evolving in time — ither by unitary evolution or by wave-
function collapse. In the path-integral formulation there

are not two sorts of evolution. There is no evolution.
Nothing evolves. Mistrust wave-function collapse, and
mistrust as well the notion of a quantum state evolving
unitarily. These concepts are equally and only tools of the
standard description —tools used ultimately to construct
the joint probability distribution (1.1b).

The standard description, despite its cumbersome ap-
pearance, provides a practical method for analyzing a se-
quence of instantaneous measurements. Its chief draw-
back is not unwieldiness, but rather that it does not apply
to real measurements —even those intended to be nearly
instantaneous. Real measuring apparatuses have nonzero
time resolution; the best they can do is to approximate an
instantaneous value of position as some sort of average of
x (t) over a very short time. More importantly, in real sit-
uations one is often interested not at all in instantaneous
values of position, but instead in a particular behavior of
position as a function of time —i.e., in a signal with a par-
ticular time signature; one uses a measuring apparatus
carefully designed to pick out the desired signal. In gen-
eral, then, a real measurement is distributed in time; it
provides information about the behavior of the position
during some finite time interval in the past. It can be
described formally as a sampling (instantaneous readout)
at time t of a quantity y(t), which is a real functional of
x(t') for times t' in the interval [t —b„,t], b, being the
duration of the interval. A general functional is more
than I can handle; throughout this paper, therefore, I spe-
cialize y (t) to have the form

y(t)=5', [x(t')]= f dt' F„(x(t'))

= f, a dt'1'„(x(t')), (1.6)

where 9', denotes a real functional of x(t') which de-
pends on t, and F„den ot esa real function of position
which depends on both t and t' and which vanishes iden-
tically for t t'&0 or t t'&5—, .—The form (1.6) is "lo-
cal" in the time t' in the sense that y(t) is an integral of
separate contributions from times t', it corresponds to a
measuring apparatus that gathers information about x (t')
sequentially during the interval [t h„t] and adds—up the
information from different times t'. Despite this restric-
tion, the form (1.6) covers a wide class of measurements.
An important special case, which is particularly impor-
tant for linear systems (free particles and harmonic oscil-
lators), occurs when y(t) is related to x(t') by a time-
stationary linear filter [F„( (tx'))=g(t t')x(t'); b„=b,—
for all t]:

y (t) = f dt'g (t r')x(t')—
= f dt' g (t t')x (t') . — (1.7)

Here g (t t') is a "filter func—tion" satisfying g (t —t') =0
if t —t'&0 or t —t'&h. A good example, which often
occurs in practice, is the case ~here one wishes to detect a
periodic signal in x(t'); then one uses a filter function
designed to pick out the desired Fourier component
within some bandwidth.

To analyze real measurements —not just the theoretical
construct of instantaneous measurement. =requires a
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quantum-mechanical formulation for a sequence of sam-

plings of y(t) .The objective of this paper is to develop
and interpret such a formulation —at first sight a difficult
task indeed. The machinery of the standard description,
applied to the system alone, fails when confronted with
measurements distributed in time. A sampling of y(t)
provides information about x (r') at various times t' in the
past —perhaps a continuous interval of tiines t' H. ow cal-
culate, from a wave function, probabilities for various re-
sults? Use which wave function at which time'? Or
somehow average over times t'? How collapse the wave
function to be consistent with the result of a sampling?
Collapse which wave function at which tiine? Or
somehow collapse the wave function a little bit at each
time t'—perhaps continuously? How evolve a wave func-
tion? Use what combination of unitary evolution and
wave-function collapse'? These questions are manifesta-
tions of the wave function's tie to time; the quantum state
of a system at some time contains information —all
information —about the system at that time, but only at
that time. To use Schrodinger's term, the wave function
is an "expectation catalog"' —a catalog of possibilities-
for all possible measurements on a system at a particular
time. The concept of a quantum state is matched to a
description of instantaneous measurements it arises for
precisely that description —but it is woefully ill suited to
measurements distributed in time. Put the conclusion
baldly: the language of a system quantum state just will
not work for samplings of y (t).

One way out of these difficulties would be to abandon
temporarily a description in terms of the system alone.
Model an apparatus capable of measuring y(t), and
analyze quantum-mechanically the measuring apparatus
coupled to the system. Such a measurement model in
hand, one might then develop a more abstract formulation

in terms of the system alone —in much the same way one
might abstract the standard description from a mode] for
samplings of x(t). Should there be a more abstract for-
mulation for samplings of y(t), however, one is perhaps
just as likely to guess it directly from fundamental con-
siderations, without going to the trouble of developing
and analyzing a measurement model. The purpose of a
measurement model would be to check one's guess.

Another approach —a way to generate a guess —is to
abandon the language of a system quantum state evolving
in time in favor of a more general language —the language
of paths. Discard the tools of the standard description;
they are no longer useful. Hew closely to the path-
integral formulation (1.1); then one sees how to generalize
to samplings of y(t)

Consider a sequence of Q samplings of y(t) at times
t i, . . . , t~ (t, & t2 & & t&); the Q sampled quantities
are given by'

y(t&)=$', [x(t)]= I a dt 1;,(x(t)),

q = 1, . . . , Q (1.8)

[cf. Eq. (1.6)]. I.et to be a time preceding all times that
contribute to the sampled quantities (to&tv —b, , for

q = 1, . . . , Q), and let $0(x, to) be the wave function of the
system at time to Accoun. t for the imprecision of the
samplings by introducing a resolution amplitude Y(y —y),
the amplitude to obtain the value y as the result of a sam-

pling of y(t), given that y(t) has the value y. Define a
probability amplitude 4(yi, . . . ,y(?,'x, t&), the joint am-
plitude for the Q samplings to yield the sequence of re-
sults y), . . . ,y(? and for the system to have position x at
time t~. Write this fundamental joint amplitude as a path
integral'

e(ili))$[x(t)]y (x (t (1.9a)

which has the saine form as Eq. (l.la) and which reduces
to Eq. (l.la) when y(t)=x(t}. For each path x(t) on the
interval [ro, tg], y (t&) in Eq. (1.9a) is evaluated using Eq.
(1.8). Finally, derive from 4 the joint probability distri-
bution to obtain the sequence y), . . . ,y& as the results of
the samplings:

P(y, , . . . ,y~)= I dx ~4(y„. . . ,y~,x, t&) ~' (1..9b}

[cf. Eq. (l.lb)]. Interpretation of Eqs. (1.9) is word for
word the same as the interpretation given Eqs. (1.1)—
except that in the resolution amplitudes quantities charac-
teristic of y(t) replace quantities characteristic of posi-
tion.

Form the same. Interpretation the same. But conse-
quences profoundly different. A sampling of x(t) pro-
vides information about the system at a particular time;
the resolution amplitude Y(x& —x (tq)) depends only on a
path's value at the time of the qth sampling. The conse-

quences are an unrestricted sum over paths between sam-

plings, corresponding to unitary evolution, and a restric-
tion of the sum at each sampling time, corresponding to
instantaneous wave-function collapse. Thus find the key
to decomposing the path integral ( l. la) into the
machinery of the standard description —a system quan-
tum state that undergoes unitary evolution between sam-
plings, punctuated by wave-function collapse at each sam-
pling. A sampling of y(t) probes the history of the
system's motion; the resolution amplitude Y(yz y(tq})—
depends on a path's behavior at various times —perhaps a
continuous interval of time leading up to time tq

There is, in general, no period of unrestricted sum over
paths, no demarcation between unitary evolution and
wave-function collapse, no decomposition of the path in-
tegral (1.9a) into a system quantum state evolving in time.
For samplings of x (t), choice between the standard
description and the path-integral formulation is a matter
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of taste. For samplings of y(t), choice disappears: the
path-integral formulation cannot be broken down into the
conventional machinery of nonrelativistie quantum
mechanics.

W'hy is the language of paths inore powerful than the
language of quantum states? If one speaks the language
of quantum states, one's questions are restricted to infor-
mation contained in a quantum state, and that informa-
tion is restricted to instants of time. If one speaks the
language of paths, one's questions may deal with the his-

tory of a system's motion. One may query each possible
history individually: what is the amplitude for this result,
given this path's entire history? The amplitude for each
path, based on its entire history, is judged separately.

These views have been expressed forcefully by Aharo-
nov and Albert. ' " They note that the language of states
is inadequate for measurements distributed in time —what
they call measurements of "multiple-time observables"—
if one restricts consideration to the system alone, and they
point out that the more powerful language of paths allows
a description of multiple-time observables which refers
only to the system. Recently Aharonov, Albert, and
D'Amato' 'b' have given further consideration to the
question of measuring multiple-time observables. Peres
and Wootters' have also discussed finite-duration mea-
surements in quantum mechanics. Mensky'9'2 has used
path integrals to analyze various special cases of measure-
ments distributed in time; although his approach is dif-
ferent from the formulation (1.9), his work stimulated the
present discussion.

The remainder of the paper is organized as follows.
Section II considers samplings of position: Sec. IIA re-
views the standard description of instantaneous measure-
ments; Six;. II8 revives a model for instantaneous position
measurements —system coupled to a "measuring
apparatus" —and obtains from it the same results as the
standard description; Sec. IIC shows that the standard
description and the model lead to the path-integral formu-
lation (1.1). The purpose of this exercise is to build confi-
dence in the model. Section III considers samplings of
y (t): Sec. III A develops a model for samplings of y (r}—
a straightforward generalization of the model for sam-
plings of x(t)—and follows it to the path-integral formu-
lation (1.9}; Sec. IIIB discusses and elueidates the path-
integral formulation; Sec. III C specializes to several cases
of particular interest. In Sec. III C one discovers that for
some examples of samplings of y(t), the model of system
coupled to measuring apparatus has a curious conse-
quence: after interaction with the apparatus the system is
left uncorrelated with the apparatus, its quantum state the
same as if there had been no interaction; what has become
of the disturbance that is reputed to accompany a mea-
surement in quantum mechaniesP Section III C discusses
this curious situation. A brief Sec. IV offers concluding
thoughts.

II. SAMPLINGS OF POSITION

A. Standard description of instantaneous
measurements

Conventional nonrelativistic quantum mechanics pro-
vides a standard description' of an instantaneous mea-

surement or a sequence of instantaneous measurements. '

To formalize this description, consider a quantum-
mechanical system with an observable A. I refer to the
instantaneous measurements of A as samplings of A. Let
A be the Hermitic operator associated with the observ-
able A (throughout this paper operators are distinguished

by a caret), assume for simplicity that A is nondegenerate,
and let

l
A } denote the eigenstate of A with (real) eigen-

value A (A
l

A ) =A
l

A )). The eigenstates
l

A ) form an
orthonormal (&A

l

A'}=5&z ) basis for the Hilbert space
of state vectors; completeness of the basis can be ex-
pressed as the resolution of the identity

1=+ lA)&A l =gP„, (2.1)

where

P„—= lA}&A
l

(2.2)

is the operator that projects onto
l

A }. Notice that
P & ——P&. The operator A has the spectral resolution

A = g A
l

A ) &A
l

= gAPg . (2.3)

1. Sing1e measurement

Consider first a single, arbitrarily precise sampling of A

at time T. The standard description describes such sam-

plings in terms of the projection operators P„by using
two suppositions (i) the probability to obtain the
eigenvalue A as the result of the sampling is

(ii) if the result of the sampling is the eigenvalue A, then
the state of the system immediately afterward is

&A ly(r))
[P(A)]'"

l
&A lg(&)&

l

(2.5b)

Equation (2.5a) represents the probabilistie interpretation
of the state vector; the sampling is arbitrarily precise be-
cause P(A) depends only on the state vector of the sys-
tem, with no further uncertainty due to some measuring
apparatus. Equation (2.5b) is the usual collapse of the
wave function (reduction of the state vector) since the
sampling is arbitrarily precise, knowledge of the result A
tells one that the system is left immediately after the sam-
pling in the state

l

A }.
Turn now to a generalization of the above, which arises

naturally to describe imprecise measurements. The gen-
eralization uses "effects" and "operations" in place of
projection operators. It is particularly appropriate for

The system's quantum state at time t is described by a
state vector'

l P(t) },which has the decomposition

(2 4a)
A A

normalization implies

(2.4b)
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observables with a continuous spectrum of eigenvalues

(see Sec. IIB), for which an arbitrarily precise measure-

ment is an unrealizable idealization. To deal with this
generalization, let A label the possible results of a sam-

pling of A. For each A posit an operator Then Eqs. (2.9}can be rewritten as

(2.10)

W„-(P)—:Y—„PY~——g ~

A )Y-„„(A ~P~ A')Y~~„,(A'~

Y„-= g Y-„„~A ) (A
~

= g Y-„„P„, (2.6) P(A)=tr[p(T)F „]=-tr[P„-(p(T))], (2.11a}

which is diagonal in the basis of eigenstates
~

A ). The
Hermitian operators

F~ =Y~ Y~ = 2 l Y~~ I
'P~ (2.7)

A

are assumed to satisfy a completeness condition

(2.8a)

which is equivalent to

1= X I Y~~ I

'
~ (2.8b)

Each operator F„is an e-xample of an effect. For a
sampling of A at time T, the standard description now re-
lies on the following two suppositions: ' ' (i) the proba-
bility to obtain the value A as the result of the sampling is

P(A)=(1t(T) ~F-„~ y(T))

(2.9a)

(ii) if the result of the sampling is the value A, then the
state of the system immediately afterward is

Y-„~ y(T))
„-(T))= = A)

[P(A)]' [P(A)]'

(2.91)

p„-(T)—=
~
y-„(T))(q-„(T)

~

=Y„p(T}Y„/P(A)--
be the density operator just after. Define for each 3 a
linear mapping on density operators:

Equation (2.9a) generalizes the usual probability (2.5a).
The quantity

~
Y-„„~ can be interpreted as a conditional

probability, normalized by Eq. (2.81); it is the probability
to obtain A as the result of the sampling, given that the
system has the eigenvalue A. It introduces imprecision
into the sampling; one cannot predict the result with cer-
tainty even if

~
g( T}) =

~

A ). Equation (2.91) generalizes
the usual collapse of the wave function [Eq. (2.51)]. Be-
cause of the imprecision of the sampling, the system is not
left in an eigenstate of A immediately after the sampling.
The projection-operator description of precise measure-

ments is recovered by choosmg Yw =
w ' Yw~ =5

Even though the collapse {2.9b) takes pure states to
pure states, it is useful to write it in terms of density
operators. Let p(T)—:

~
1((T)) (g(T)

~

be the system densi-

ty operator just before the sampling, and let

~-„(p(T) )
P~(T) =

tr[p q (p{T))]
(2.11b)

The mapping W-„ takes the density operator before the
sampling to the density operator afterward (within nor-
malization), given that A is the result of the sampling.
Each map W-„ is an example of an operation. z2 The ef-

feet F„is as-sociated with the operation W„—by the rela-

tion tr(pF-„) =tr[Wz (p) ]. The operations considered here
are of a very simple sort, called pure operations, because
they map pure states to {unnormalized) pure states. The
discussion above can be generalized to more complicated
operations mixtures of pure operations —which produce
mixed states from pure states, but this generalization is
not needed here. Even in the case of pure operations,
there are many operations that correspond to the same ef-

fect; the effect F„is deter-mined by the magnitudes of the
complex numbers Y-„„[Eq.(2.7)], whereas the operation
W„- depends on the phases of the Y„-„aswell [Eq. (2.10)].
Put another way, the probability P(A) is determined by
the effect F„and, hence-, depends only on the magnitudes

~
Y„-„~, whereas the post-measurement state p-„(T} is

determined by the operation P z and, hence, depends on
the amplitudes Y-„„. A complete characterization of the
imprecision of the sampling requires the amplitudes Y-„„,
not just the probabilities

~ Yz„~ 2.

How might one best understand the role of wave-
function collapse in the standard description (2.9)? A
starting point for understanding is a quantum-mechanical
version of the usual relation between conditional probabil-
ities:

(2.12)

[Eq. (2.91)]. Both sides of Eq. (2.12) are unquestionably
the joint probability for the system to have eigenvalue A

and for the sampling to yield the result A, yet the relation
is not trivial. The left-hand side refers to the situation
just after the sampling; it expresses the joint probability
as the product of a conditional probability

I (A ~g~(T)) ~'—the probabihty that the system has
eigenvalue A just after the sampling, given the result A—
and the probability P(A) for the result A. The right-
hand side refers to the situation just before the sampling;
it expresses the joint probability as the product of a condi-
tional probability

~ Yz„~ —the probability to get the re-

sult A, given that the system has eigenvalue A—and the
probability

~
(A

~
f(T) )

~

that the system has eigenvalue
A just before the sampling. From Eq. (2.12) comes a
quantum-mechanical version of Hayes's theorem:
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(2.13)

%%en one uses the collapse (2.9b), one declares an interest
in the consequences of a particular result A—and not oth-
er results; questions after the sampling are to be condi-
tional questions, conditioned on the result A. Hayes's
theorem (2.13) gives the answer to conditional questions
about the relative probabilities of different eigenvalues
just after the sampling. It says that the probability of A,
given the result A, is proportional to (normalization sup-
plied later} the a priori probability of A—probability of A

before the sampling —weighted by the probability to get
result A given A:

This same conclusion would come from a classical Bayes-
ian analysis, with one crucial difference: in a classical
analysis one would not just infer information about the
observable A after the sampling, but would also infer
what was "really happening" before the sampling; in
quantum mechanics no inference about the "real situa-
tion" before the sampling is possible.

These considerations acquire real power when general-
ized from probabilities to amplitudes. For that purpose,
notice that Y„-„canbe interpreted as the amplitude to ob-
tain A as the result of the sampling, given that the system
has the eigenvalue A (see Ref. 23 and Sec. II 8 1). Then
Eq. (2.9b) can be written as the amplitude analog of Eq.
(2.12}:

comes from applying a Bayesian analysis to amplitudes in
the same way one usually applies a Bayesian analysis to
probabilities.

2. Seqttence of measurements

To describe a sequence of samplings of A, add unitary
evolution between samplings to the description (2.9) of a
single sampling. The samplings are made at times tq

(q = 1,2, . . .}where tq & tq ~. Label the possible results of
the qth sampling by Aq. At some initial time tp &t„ let
the state of the system be

~
1(p(tp) & ~ Consider now the

first q —1 samplings with results A~, . . . , Aq ~. The
state of the system just after the (q —1)th sampling de-
pends, in general, on the results of all previous samplings,
so denote it by

~ f„.. . —„-(tq ~}&. Then the state just
1 q —1

before the qth sampling is given by

,(tq)&=«tq tq ~) IA, "~, ,(tq-~)&

(2.18)

where U(t, t') is the system's unitary evolution operator.
Equation (2.9a) provides the conditional probability to ob-
tain Aq as the result of the qth sampling, given the results
of previous samplings:

P(Aq
~
A), . . . , Aq ))

(t ) ~+g ~y„- . . . —„(t )& (219)

&A ~1(„(T}&[P(A)]'"=Y»&A~y(T)&. (2.15)
Equation (2.9b) provides the state just after the qth sam-
pling:

Both sides are the jqint amplitude of A and A, but the
two sides refer to the situations before and after the sam-
pling. From Eq. (2.15) comes an amplitude version of
Hayes's theorem,

&A ~y-„(T)& &A ~1((T}&Y„-„

&A'~y„(T)& &A ~y(T)&Y»,
'

which is the key to understanding collapse. It says that
the amplitude of A, given the result A, is proportional to
the a priori amplitude of A—amplitude of A before the
sampling —weighted by the amplitude to get result A

given A:

Y„- ~fz . . . —„(t,)&

[P(Aq
~
A), . . . , Aq ))]'~

„- . . . „- (t, )&=

Iterating Eqs. (2.18) and (2.20) yields
)'

'fg U t„t„) o to

I A, ".~,(tq}&=
[P(A „.. . , A, )]'"

(2.20)

(2.21)

where the product in the numerator is ordered with in-
creasing times in the evolution operators on the left, and

&A ~1(-„(T)&~&A ~y(T)&Y» . (2.17)
(2.22)

This amplitude relation describes how collapse takes into
account the information acquired in a sampling of A. It

I

is, the joint probability for the sequence of results
A ~, . . . , Aq. That the state (2.21) is normalized implies

P(A„. . . , A )=(() ((o) II'T„- (J(t„(, )
r=l

IIV'- U(t t, ) p (( ))„.,
r=I

(2.23)

This form for the joint probability is trivially normalized
by the condition (2.8a).

Equation (2.23} is an example of a famous formula,
ftrst given by Wigner ~' in the case of measurements that
can be described by projection operators (see Ref. 4 for the

case of general operations). Explicit reference to wave-
function collapse disappears from Eq. (2.23). What the
standard description ultimately produces is a method for
computing statistical correlations among the samplings in
a sequence, with no explicit reference to collapse. 3 56
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Within the standard description, wave-function collapse is
the formal device which takes into account the informa-
tion acquired in a sampling and, hence, which describes
correlations among successive samplings. Everett real-
ized that collapse disappears from questions about joint
statistics, and he dispensed with it in the many-worlds in-
terpretation of quantum mechanics. ' '

Perhaps the most important property of the joint proba-
bility (2.23) follows from a reduction in the number of
samplings: the joint probability for the first q —1 sam-
plings, defined as always by

P(Ai, . . . , Aq i)—= QP(Ai, . . . , Aq),
A

(2.24a)

B. Model for samplings of position

In this subsection I review a model for position rnea-
surements which goes back to von Neumann. ' The sys-
tem under consideration is a one-dimensional quantum-
mechanical system with position x, momentum p, and
Hamiltonian H. The operators x and p satisfy the canon-
ical commutation relation [x,P]=ii}t', and the 5-function
normalized eigenstates of x I denote by

~

x ). To model
an instantaneous measurement of x, use the canonical
model of the quantum theory of measurement: first cou-
ple the system to a "measuring apparatus" at some instant
of time, the coupling producing a correlation such that
some property of the measuring apparatus acquires infor-
mation about x at that instant; then apply the projection-
operator description (2.5) to a "readout" (arbitrarily pre-
cise measurement) on the measuring apparatus. The
model incorporates automatically imprecision due to the
measuring apparatus, and it leads ' naturally to the
standard description (2.9) involving effects and operations.
Reviewing this model builds confidence in it, so that a
generalization can be used without qualms in Sec. III A to
model samplings of y (t).

1. Single sam@/ing

The objective here is to model a single sampling of posi-
tion at time T. For that purpose one needs a single
measuring apparatus, here modeled as a one-dimensional

has the form (2.23) with q replaced by q —1. This reduc-
tion property is obvious from the procedure leading to Eq.
(2.23); it follows formally from Eq. (2.8a). The property
conforms to the usual notion of time ordering; it means
that the joint probability for a sequence of samplings is
independent of the existence of subsequent samplings.
Moreover, it allows the joint probability (2.23) to be con-
structed as a product of conditional probabilities [Eq.
(2.22)], one for each sampling, each independent of the ex
istence of subsequent samplings The c.onditional probabil-
ity (2.19), given as always by

P(Ai, . . . , Aq)
P(Aq

~
Ai, . . . , Aq i)=, (2.24b)

P(Ai, . . . , Aq i)

is clearly independent of the existence of subsequent sam-
plings. This important reduction property does not hold,
in general, for samplings of y (t) (see Sec. III B).

quantum-mechanical system with canonical coordinate x
and canonical momentum P. I refer to this measuring
system as a "meter"; it can be regarded as the first stage
of a genuine macroscopic measuring apparatus. The

~ A A
operators x and P satisfy [x,p]=i%, the 5-function nor-

malized eigenstates of x I denote by ~x), and for con-
venience the self-Hamiltonian of the meter is assumed to
be unity, so that x and P are conserved in the absence of
interactions. The interaction between system and meter is

described by an interaction Hamiltonian 5(t —T)x p; this
coupling of the meter to x, localized in time by the 5
function, ensures that the meter coordinate acquires infor-
mation about the position of the system at time T The.

total Hamiltonian is given by

H„,=H+5(t —T}xp . (2.25)

where the latter equality follows from

—{i/A]xP x x &
—{i/ )xP x (2.27)

By using the displacement property

( X
~

e '/+"i'
~
Y) = (x —x

~

Y) =Y(x —x),
one finds the wave function corresponding to

~ %f ):
( x,x

~
4f ) =Y(X x}f(x,T)—

= (x
~

Y(x —x}
~
g(T)) .

(2.28)

(2.29)

The interaction does indeed produce a displacement of the
meter coordinate by x. This correlation of the meter
coordinate with the position of the system does not, how-
ever, constitute a measurement. For that, proceed to the
final step of the measurement process.

The final step is the readout of the meter coordinate,
which is an arbitrarily precise, instantaneous measurement
of the meter coordinate, made by subsequent stages of the
macroscopic measuring apparatus. The readout is
described by the projection-operator formalism (2.5) ap-
plied to the total state

~ %f ). The probability distribution

To avoid confusion, let me emphasize that in this subsec-
tion a superposed bar designates meter quantities; since
the value of the meter coordinate will be the result of the
sampling, this notation dovetails nicely with that of Sec.
II A.

The first step in the measurement process specifies un-
correlated states for system and meter just before the in-
teraction at time T. Denote the system state by

~

g(T) ),
with corresponding wave function P(x, T) = (x

~
f( T) ).

Prepare the meter in a state
~
Y), with wave function

Y(x)= (x
~

Y). Hence, the total state of the system plus
meter just before time T is

~

qI; ) =
~

Y)
~
f(T) ), with

wave function {x,x
~

'II; ) =Y(x )P(x, T).
The second step takes into account the interaction

5(t —T)x p. The effect of the interaction is to produce a
sudden change at time T, so that the total quantum state
just after time T is given by

ip )
—(ilii)xp

~

+ )

xe ' "'"& Y (3) x x,t, 2.26
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to obtain the value 7 as the result of the readout is

P(x)= f dx I(x,x I+f&I

dx

= (it(T) I [Y(x—x)]'Y(X—«)
I

1/I(T) & (2.30a}

(2.30b)

[cf. Eq. (2.9b)], with wave function

[cf. Eq. (2.9a)]; this probability distribution describes an
imprecise measurement, with

I
Y(x —x)

I
interpreted as

the conditional probability distribution to obtain the result
x, given that the system is at position x. The state of the
system just after time T, if the result of the readout is the
value x, is obtained by projecting

I %f ) onto the eigen-
state

I
x ), tracing out the meter, and normalizing

[equivalently, by evaluating the total wave function (2.29}
at 7 and normalizing]; the result is the state

First, P(x) is obtained by integrating the corresponding
conditional probability distributio~

I
Y(x —x)

I

over

I g(x, T)
I [Eq. (2.30a)]. The upshot is imprecision; the

result of the sampling cannot be predicted with certainty
even if

I P(«, T)
I

is a 5 function. Why square and then
integrate instead of integrating and then squaring? Be-
cause the position of the system is potentially observable

by an independent measurement. Second, the system is
not left in an eigenstate of x after a sampling [Eq.
(2.30b)], but has its post-sampling wave function fz(x, T}
spread by Y(x —x) [Eq. (2.31)]. Note again that the
post-sampling wave function depends on the resolution
amplitude Y(x —x), whereas the probability distribution
P(x) depends only on the absolute square

I
Y(X—x}

I
.

Finally, recall the Bayesian analysis of Sec. II A 1, which
describes how wave-function collapse takes into account
the information acquired in a sampling. The amplitude
for the system to be at x, given a sampling with result x,
is proportional to the a priori amplitude of x—amplitude
of x in the absence of a sampling —weighted by the reso-
lution amplitude:

=Y(x x)P(x, T—)/[P(x )]'~2 . (2.31)
Pz(x, T) ~ g(x, T)Y(x —x) (2.32)

As far as the system is concerned, this entire process,
summarized by Eqs. (2.30), is equivalent to the standard
description (2.9) of a single sampling of x (T}. Equations
(2.30) are identical to Eqs. (2.9), with Y(x —x } playing the

role of Y-„. The Hermitian operators Fs = [Y(x
—x)] Y(X—x) are effects (strictly speaking, an "effect-
valued measure" ' ), satisfying 1= dxFz, the map-

plngs

P, (P)=Y(x —x)P[Y(x —x }]t

are corresponding operations (strictly speaking, an
"operation-valued measure" ' }. In terms of initial and
final system density operators, p( T):

I
P(T) ) (tl (T—)

I
and

pit( T) =
I gz ( T) ) (

&PAL
( T) I, one can write

P(x) =tr[p(T}F~]=tr[W„(p(T))]

[cf. Eq. (2.17)].

2. Sequence of sarnplings

To analyze a sequence of samplings of x (t), extend the
above model by adding unitary evolution between sam-
plings. The ultimate results of the model must duplicate
the results of Sec. IIA2, obtained using the standard
description, but here these results emerge without use of
wave-function collapse. Consider then a sequence of sam-
plings of position at times tq (q =1,2, . . . ) where tq y tq

Each sampling requires a separate meter with canonical

coordinate Xq and canonical momentum pq ([xq,p, ]
=ik5q„) Each mete. r is coupled to the system at the ap-
propriate time, so the total Hamiltonian for the first q
samplings is

and
l7

Hu„=H+ g 5(t t, )x p, — (2.33)

p~(T) =~„(p(T))/tr[~~(P(T))]

[cf. Eqs. (2.11)]. Everett pointed out that this model of
a position measurement includes imprecision, and he
showed that it cannot be described by projection operators
applied to the system alone.

The most natural interpretation of this sampling of po-
sition comes from noting that the total wave function
(X,x

I %f) =Y(x —«)g(«, T) is the joint amplitude for
the readout to yield the value x and for the system to be
at position x. Thus one may interpret Y(x —x) as a con-
ditional probability amplitude —the amplitude for a sam-

pling to yield the result x, given that the system is at x.
%ithin the standard description, the conditional ampli-
tude Y(x —x), which I call the resolution amplitude,
characterizes the irresolution or imprecision of the
measuring apparatus. It is useful here to review its roles.

with wave function

I Yq &
I fo(to) &

(X„.. . ,x,x I+(t ))= g Y(x, ) P(x, t }. (2.34b)

The unitary evolution operator corresponding to the to-
tal Hamiltonian (2.33) can be written in the forms

(unity self-Hamiltonian for the meters).
At some initial time to & ti, let the state of the systein

be
I
Po(to)), with wave function go(x to)=(x

I fo(to)),
and prepare the rth meter in the state

I Y„), with wave
function Y(x, )=(x„

I
Y, ) (all meter wave functions the

same). The initial state of the system plus q meters is
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U„,(tq+, to) = e "U(t„t, ))
r=1

—(i/A}x(t )P=Ut t, T e

The state of the system plus q meters just after time ts is

(%(t +)}=Uo(t + to) ~+(to)} (2.37a)

(2 35} with wave function

(x, , . . . ,x,x
i
%(t +))=—4(x, , . . . ,x;x,t ), (2.37b)

x(t)=U (t, t, )xU(t, t, ) . (2.36)

where tq+ denotes a limit to tz from above, and U(t, t') is
the system's evolution operator (Hamiltonian 8). In the
first form for U„,(ts+, to), the product is ordered with

increasing times in U(t, t') on the left. In the second
form, T denotes time ordering (increasing times on the
left) of the interaction-picture operators

which is the joint amplitude just after time tz for the me-
ter coordinates to have values xi, . . . , x~ and for the sys-
tem to be at x.

More broadly, C((xi, . . . , x&,x, t&) can be interpreted as
the joint amplitude for the first q samplings to yield the
sequence of results x ~, . . . ,x~ and for the system to be at
position x at time ts. Using Eqs. (2.27) and (2.28), one
can write 4 as

4(x„.. . Ãz x,&) (=',
(,
x Q Y(x, x) U()—t&) „$,0((0 ))r=1

x U tq tp T Yxr —x tr ptp
r=1

(2.38a)

where the comments about time ordering following Eq. (2.35) apply here as well. The joint probability distribution to ob-
tain the results xi, . . . , xv for the first q samplings can now be derived as

P(X), . . . ,xq)= f dx ~4(X„.. . , Xq,x, tq)
~

T

p tp Y x x U tr tr 1 Y x x U t t 1 p tp
r=1 r=1

ptp T Yxr —x
r=1

T Yx, —x tr oto
r=1

(2.38b)

This model makes no reference to wave-function collapse, but it yields the same joint probability distribution as does the
standard description [cf. Eq. (2.23)], with Y„—replaced by Y(X,—x ).

r

C. Path-integral formulation

Consider now a sequence of Q samplings. The fundamental quantity is the amplitude 4(Xi, . . . ,x~ ,x, t~) of E'q.
(2.38a); it was introduced in Sec. I [Eq. (1.1a)] as the joint amplitude for the sequence of results xi, . . . ,x~ and for the
system to be at x at time t&. The joint probability distribution P(xi, . . . , x~) is derived from 4 according to Eq. (l.lb)
[cf. Eq. (2.38b)]. By defining the (nonrelativistic) propagator for the system,

K(x, t
i
x', t')=(x

i
U(t, t') ix'), (2.39)

the fundamental amplitude can be written as

Q4(x„.. . xx())=()(x(,()'ti,()Y(x~ x)U((~(~, ) —$0((0)),
q=l

Qg Y(x~ x~)E(xq, tv ~ xq —i, ts i)dxq i $0(xo, to)
q=l

(2.40)
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(changing x to x& is just a label change, intended to make
the right-hand side neater). This form for 4 has a simple
interpretation. Begin with the product of propagators,

K(xq, tq ~ xq ), tq i),
q =1

the amplitude for the system to assume the positions

x&, . . . ,x~ at the sampling times, given that it was at xo
at time to. Multiply by the initial wave function to obtain
the joint amplitude

K(xqxtq ~ xq i tqxi } 1(0(xopto )

for the sequence of positions xo,xi, . . . ,x~. For each
tt =1, . . . , Q, multiply by a resolution amplitude to find
the joint amplitude

Y(xq —xq)K(xqxtq
~ xq iytq i) I/r 0( xone to)

for the sequence of results 7&, . . . , x(2 and for the se-
quence of positions xo,x&, . . . , x&. Finally, integrate
over unobservable quantities i.e., integrate over the posi-
tions xo,x], . . . ,x~ &

—to obtain the probability ampli-
tude (2AO).

Equation (2.40) can be translated immediately into the
language of paths: use Eq. (1.3) to write the propagators
as sums over paths, and then incorporate the integrals
over xo,x„.. . , x~ i into the sum over paths. The result
is the path-integral formulation (l.la) for 4, whose inter-

pretation follows Eqs. (1.1).
The path-integral formulation (1.1) nowhere invokes

wave-function collapse, yet hidden within it must be a
way of thinking in terms of collapse. To discover that
way of thinking, a key idea is to ask conditional questions:
pick a sampling —call it the qth —from among the total of
Q samplings, and ask for its statistics, conditioned on the
results of other samplings. For samplings of position, the
joint statistics of the first q samplings are independent of
the existence of later samplings; thus a natural question
asks for the statistics of the qth sampling, given the re-
sults of previous samplings. Though natural, this is not
the only conditional question one might ask; one could
condition the statistics of the qth sampling on the results
of subsequent samplings or on the results of all other sam-
plings in the sequence of Q samplings. These more gen-
eral questions, conditioned on the results of future as well
as past measurements, have been investigated by Aharo-
nov, Bergmann, and Lebowitz (see also Ref. 17); I do not
pursue them here.

Consider then the first q samplings, and think in terms
of a conditional probability amplitude

4(xq, x, tq
~
Xl, ' ', xq —1),

the amplitude for the qth sampling to yield the result Xq
and for the system to be at x at time tq, given the se-
quence of results xi, . . . , xq i for the first q —1 sam-
plings. In the language of the standard description (Sec.
II A 2), this conditional amplitude can be written in terms
of the system state

~ f, „(tq)) just before the qth

sampling:

4(xq, x, tq ~xi, . . . , xq ~)=Y(xq —x)(x
~ f, „(tq))=(x

~

Y(xq —x)
~
P„„(tq)). (2.41)

Equation (2.19}supplies the conditional probability distribution,

P(xq [xt, . ,xq g)=(f- „- (tq)
/
[Y(xq —x)] Y(xq —x)

x 4Xqx tq X&, . . . „x (2.42)

the probability distribution to obtain xq as the result of the qth sampling, given the previous results x~, . . . , xq ~. By
using Eqs. (2.18) and (2.21), one can write the conditional amplitude (2.41) in terms of the joint amplitude (2.38a):

4(xq,'x, tq ~
xi). . . , xq ))=

4(xi, . . . , xq, x, tq)

[P(x), . . . ,xq i)]'~
(2.43)

Equation (2.43) is actually a direct consequence of the definition of the conditional amplitude; it says that the conditional
amplitude 4(xq, x, tq ~

Xi, . . . , xq i) is proportional to the joint amplitude 4(x&, . . . , xq;x, tq), the normalization factor
being the square root of the joint probability distribution for the first q —1 samplings [cf. Eqs. (2.24)]. Since one can al-
ways supply normalization at the end, it is convenient to write

4(xq,x, tq ~
x~, . . . , Xq ~}~4(x». . . , xq,'x, tq)

(x, t ) q —]
=Y(x —x}I & (xt }'e"' ("'")g (x(t ), t ) g Y(x,—x(t„)),

r=1
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where Eq. (l.la) provides the path integral.
Though the path-integral forms of the conditional and

joint amplitudes are the same, their interpretations are dif-
ferent. Interpretation of the conditional amplitude (2.44)
relies on the Bayesian analysis developed in Sec. IIA1.
Begin with the amplitude e"~"+( '"4(0(x(to), to), the a
priori amplitude (amplitude in the absence of observa-
tions) for the path x(t). For each r =1, . . . , q —1,
weight the a priori amplitude by a resolution amplitude
Y(X,—x{t„)) to take into account the information ac-
quired in the rth sampling; thereby find (within normali-
zation) the conditional amplitude

q —1

e' "' "'"
1( (x(t ),t ) g Y(x„—x(t, ))

for the path x(t), given the results xi, . . . ,x~, for the
first q —1 samplings [cf. Eq. (2.32)]. Sum over all paths
such that x (t~) =x; thereby obtain (within normalization)
the amplitude for the system to be at x at time t~, given
the previous results x, , . . . , x~ i. In the language of the
standard description (Sec. IIA2), this amplitude, propor-
tional to the sum over paths in Eq. (2.44), is the system
wave function (x

~
f„„(tv))just before the qth

sampling [cf. Eq. (2.41}]. Finally, multiply by the resolu-
tion amplitude Y(xv —x) to obtain

4(xq, x, tq ~xi, . . . , xq i)

within normalization. Lack of normalization throughout
this procedure is an inherent feature of a Bayesian
analysis, which furnishes only relative amplitudes.

In this Bayesian analysis of Eq. (2.44), the resolution
amplitude Y(x, —x (t„)), for r = 1, . . . , q —1, restricts the
sum over paths to be consistent with the result of the rth
sampling. Because Y(x, —x (t, ) ) depends only on a path's
value at time t„ the sum over paths is restricted only at
the sampling times ti, . . . , tv i. Thus, from Eq. (2.44)
emerges the picture painted by the standard description:
between samplings an unrestricted sum over paths, corre-
sponding to unitary evolution of a wave function; at each
sampling a restriction of the sum, corresponding to an in-
stantaneous disturbance of unitary evolution, the collapse
of the wave function.

Restriction of the sum over paths, disturbance of uni-

tary evolution, collapse of the wave function —all of these
describe a single characteristic quantum-mechanical
phenomenon, which is often described in still another
way —as an inevitable "back-action disturbance'* due to a
system's interaction with a measuring apparatus. Return-
ing to the model of Sec. II B2, one notices that the resolu-
tion amplitudes in Eq. (2.44) do indeed arise from the
system's interaction with the meters; for the first q —1

samplings they can be thought of as describing a back-
action disturbance due to the interaction. In the language
of the standard description, this same back-action distur-
bance appears in the guise of the collapse of the wave
function. Instantaneous measurements have an important
property: a given measurement feels a back-action distur-
bance only from previous measurements. In Eq. (2.44),
which describes the qth sampling, this property shows up

in that the sum over paths is restricted only by resolution
amplitudes for the first q —1 sarnplings.

III. SAMPI. INCUS OF y(t)

A. Model for samplings of y(t)

In the case of samplings of x(t), one can base an
analysis on the standard description or on the model of
Sec. IIB. The two analyses give the same results, and
both lead to the path-integral formulation (1.1}. For sam-

plings of y(t), no standard description exists. One looks
to a model to generate the path-integral formulation (1.9}.
In this subsection I develop a model for samplings of y (t);
it is a straightforward generalization of the model used
for samplings of x (t) in Sec. II B. The system considered
here is the same as in Sec. II B: a one-dimensional system

with position x, momentuxn p, and Hamiltonian H. The
approach here is also the same: couple the syste~ to a
"meter" in such a way that some property of the meter
acquires information about y (t) evaluated at a particular
time. From the resulting model one abstracts the path-
integral formulation for samplings of y(t), in the same
way one might abstract the formulation (1.1) from the
model of Sec. II B.

Ultimately one wants to model a sequence of Q sam-

plings of y(t) at times ti, . . . , t~ (ti &ti & &tg). »
this subsection I write the sampled quantities y(tq) as
discrete-time sums; i.e., the integral in Eq. (1.8) is approx-
imated as a sum of contributions from a set of discrete
times:

N

y(tq)= g F~(x(t~)) . (3.1)

I. Single sampling

The objective here is to model a single sampling of y (t)
at time T. One can drop the reference to the qth sam-
pling in Eq. (3.1) and write the sampled quantity as

y(T)= g I' ( (JTxi)),
j=l

(3.2)

where FJ. denotes a real function of position, and the
times Tj satisfy T —ET & Ti . . « TN & TN+i=T.
Required for the single sampling is a single meter, a one-
dimensional system with canonical coordinate y, canoni-
cal momentum p, and unity self-Hamiltonian. The opera-
tors y and p obey [y,p]=i', and the 5-function normal-

ized eigenstates of y I denote by
~ y ). In this subsection a

Here Yz denotes a real function of position, and the times

t~ {1=1, . . . , X&) that contribute to y(t~) are temporally
ordered within the interval [t~ —b, , t~ ]—i.e.,

tz —6, &t&, . « tqN &t&. I regard the discrete-time

sum (3.1) as equivalent to the integral (1.8) in the sense
that the integral can be approximated arbitrarily well by a
discrete sum with times spaced sufficiently closely.

Before dealing with a sequence of samplings, consider
first a single sampling.
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superposed bar designates meter quantities; the value of
the meter coordinate will be the result of the sampling.
The symbols y(T) and y are reserved for the sampled
quantity —i.e., the quantity (3.2} constructed from posi-
tions at the times TJ.

The interaction between system and meter is described
by an interaction Hamiltonian

p g 5(t —TJ)Y(x),

which leads to a total Hamiltonian

H„,=H+p g 5(t —TJ}YJ(x) . (3.3)

Why choose this form? Each term in the interaction acts
on the meter like the single interaction term in thc Hamil-
tonian (2.25). The jth term displaces the meter coordinate
by YJ(x(TJ)); the net effect of all the terms is to displace
the meter coordinate by y(T). The Hamiltonian (3.3) is
chosen because it ensures that the meter coordinate ac-
quires the desired information.

At some initial time To & Ti, specify uncorrelated
states for system and meter. I.et the system state be

I italo(TO)), with wave function ({({o(x»o)=(lx
I
go(TO)&.

Prepare the meter in a quantum state
~
Y), with wave

function Y(y)=(y
~
Y). The total initial quantum state

is
I
(Ii(To) &=

I
Y& 140(To) & with wave function

~y x
I %(TO)) =Y(y)fo(x, TO)

The evolution operator corresponding to the total Ham-
iltonian (3.3) has the forms

where T+ denotes a limit to T from above, and U(t, t') is
the system's evolution operator. The first product in Eq.
(3.4) is ordered with increasing times in U(t, t ) on the
left; in the second product, T time orders the interaction-
picture operators

x(TJ)= U (TJ, TO)xU(TJ, T()) .

The total qum&turn state just after time T is

~
+(T+))=U,(T+,T.)

~
q(TO)) .

The corresponding wave function,

(3.5)

(3.6)

(y,x ~%'(T+))=(y, x~ U( i(T+,To) ~%(TO))

C)(y;x—, T), (3.7a)

a(y)= f dx ~C(y;x, T)(' (3.7b)

[cf. Eq. (1.9b) with g = lj.
Now construct for 4(y;x, T) an explicit form by using

in Eqs. (3.4) and (3.7a} the relation

is the fundamental amplitude introduced in Sec. I [Eq.
(1.9a) with g =1]—the joint amplitude for the sampling
to yield the result y and for the system to be at x at time
T. From this fundamental amplitude comes the probabil-
ity distribution to obtain the value y as the result of the
sampling:

U, ,(T+,T )=U(T, T ) g e ' U(T, T, ) —(i/ )Fi)&(x)y, {i/s)r (x—)p,e ' = dx x)e ' ' {x.J J
J (3.8)

T

(i/ti) Y&—(x( Ti ))))

j=1
(3.4) the displacement property (2.28), and the definition (2.39)

of the propagator. The desired form is

4(y;xtt+„T)= f Y y —g YJ(xJ)
%+1
Q K(xJ, TJ ~xJ i TJ —{)~xj—1 (J)o(xo To}
j=l

(3.9)

(recall that T~+ i
=T; the change of x to x)v+ i is a label

change which makes the right-hand side neater). The
quantity

y= g YJ(xJ}

in Eq. (3.9) one recognizes as the sampled quantity corre-
sponding to the sequence of positions x i, . . . , xt/ at times
ti, . . . , t~ [cf. Eq. (3.2)]. The displaced meter wave func-
tion, Y(y —y), one calls on again to be a resolution
amplitude —the conditional amplitude to get y as the re-
sult of the sampling of y(T), given that y(T)=y. With
these identifications Eq. (3.9) acquires a simple interpreta-
tion. Begin with the product

%+1
K (xJ TJ ( xJ' i TJ i ) 1'(xo T() )

j=1 Xe(i/s)s[x(t)}y (x (T ) T (3.10)

the joint amplitude for the sequence of positions
xo,x1, . . . , x~,x~+1. Multiply by the resolution ampli-
tude

N
Y y —g YJ(xJ}

j=1
the amplitude to obtain y as the result of the sampling,

given the sequence of positions x), . . . , xtt; thereby find
the joint amplitude for the sampling to yield the result y
and for the sequence of positions xo,x), . . . , xi', x~+{.
Finally, integrate over the unobserv able quantities

xo,xi, . . . ,x)){ to obtain the amplitude (3.9).
Translation of Eq. (3.9) into a path integral is immedi-

ate. Using Eq. (1.3}for the propagators, one finds that
(r, T)

4(y;x, T)= f &x (t) Y(y —y ( T) )
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This path-integral form for 4(y;X, T) is identical to the
formulation (1.9a) with Q = 1. For each path x (t}on the
interval [Tp, T], y (T) in Eq. (3.10) is computed from Eq.
(3.2). The total amplitude summed in Eq. (3.10) is the
joint amplitude for the result y and for the path x(t);
summing over all paths x (t) on the interval [To, T] such
that x ( T)=x yields the ainplitude 4(y;x, T).

2. Sequence of samplings

Generalize now to a model for a sequence of Q sam-
plings of y(t) [Eq. (3.1)]. For that purpose use Q meters,
one for each sampling, with canonical coordinates y «and
canonical momenta p «([y «,P, ]=i fi5«„) Co. uple the me-
ters to the system so that the total Hamiltonian is

H„,=H+ g p«g 5(t t~)F~—(x); (3.11)
q=1 j=l

for each meter the interaction with the system has the
form used in Eq. (3.3}to model a single samphng.

At some initial time tp &t«i, for q =1, . . . , Q, which
precedes all times that contribute to the sampled quanti-
ties, let the state of the system be

I Pp(to)&, with wave

function po(x, tp) = &x
I 1(p(tp) & and prepare the qth meter

in a state
I Y«&, with wave function Y(y «) = &y « I Y» &.

'

The total initial quantum state is

I
p(to) & =

I Yi & ' '
I Yg &

I 40(to) &

with wave function

Q

&yi, . . . ,yg, x Iq'(tp)&= g Y(y«) ito(x, to) . (3.12b)
q=l

The evolution operator for the total Hamiltonian (3.11)
has the form

—(i /0) Y (x(t& ) )p
Uiot(tg+ to)=U{tg to) T g e

q=l j=l
(3.13)

where T time orders the interaction-picture operators
(2.36). The total quantum state just after time t{i is

I +{tg+) &
= U .(tg+ to)

I
q'(to }& . (3.14)

The corresponding wave function,

y g» I
q'(tg+ }&=&y i y g x

I Ut.t(tg+ to}
I
q'(to) & =@(y i y g', x.tg» (3.15)

is the fundamental amplitude introduced in Sec. I [Eq. (1.9a}]—the joint amplitude for the samplings to yield the se-
quence of results y i, . . . ,y (2 and for the system to be at x at time t'ai The pro.bability distribution P(y i, . . . ,y {2) fol-
lows from Eq. (1.9b).

When one considers more than one sampling of y (t), an important new possibility emerges —overlapping of the inter-
vals [t« —h, , t«] for different q and consequent interleaving of times tz that contribute to different sampled quantities

ig

y(t«}. Interleaving makes it inconvenient to write explicitly an expression for U „,(t(2+, tp) [Eq. (3.13)] analogous to the
first form in Eq. (3A}or an expression for 4(y i, . . . ,y {2,'x, t(2) [Eq. (3.15)] analogous to Eq. (3.9). To write such expres-
sions requires a tedious specification of the temporal order of all the times te. On the other hand, one can construct
such expressions in imagination, and from the latter imagined expression one can proceed directly to the path-integral
formulation (1.9a). The path-integral expression for 4(y i, . . . ,y ~,x, t~) can be written conveniently because the path
integral handles automatically questions of time ordering.

B. Path-integral formulation

Having developed a model that leads to the path-integral formulation in a discrete-time approximation, return now to
the general formulation (1.9) for samplings of y (t):z

(r, tg ) Q
4(y, . . . ,y g,'x, tg)= f, &x(t) ff Y(y —y(t )) e"~~i ("'")P (x(t ), t ),

q=l
(3.16a}

P(y i, . . . ,yg)= f dx I4(y i, . . . ,yg'x tg) I (3.16b)

Recall that for each path x (t), y (t» ) in Eq. (3.16a) is evaluated using
t

y(t»)=9', [x(t))= I Ct F, ,{x(t})=J dt F, ,(x(t)) (3.17)

[Eq. (1.8}]. In this subsection focus on the properties and interpretation of the formulation (3.16). At the same time,
keep in mind the model, because some properties are transparent when viewed in terms of its intermediate results (3.13)
and (3.15). A good example is the normalization of the fundamental amplitude 4(y i, . . . ,y &.,X,t&). Not clear from the
path-integral formulation (3.16), the normalization is obvious from Eq. (3.15},because U„,(t~+, to) is unitary. Thus
one can write immediately
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f dyi . dygP(y i, . . . ,yg)= f dyi' 'dygdx I@(yi »g xtg)I

f dyi' 'dygdx ~(yi, . . . ,yg, x ~%(to}}~

f dy i
Y(y) [ f dx

i $0(x, to)
i

(3.18)

Provided the resolution amplitude is normalized to unity (assumed throughout this paper}, the normalization of the fun-
damental amplitude reflects the normalization of the initial wave function $0(x, to)

A minor point involves the upper time limit tg for the path integral (3.16a). It should be obvious, either from Eq.
(3.16a) or from the discrete-time results (3.13) and (3.15), that the upper time limit can be pushed forward to a time
t & t~, thereby yielding an amplitude

,yg', x, t)= f dxg&( xt ixg, tg)4(y i, . . . ,yg ,xg,'tg), (3.19)

from which the joint probability distribution follows just as in Eq. (3.16b}.
A more substantial issue concerns the reduction property discussed at the end of Sec. II A 2. The joint probability dis-

tribution for the first Q —1 samphngs, defined as always by

yg i)—= f dygP(yi yg} (3.20)

[cf. Eq. (2.24a)], cannot in general be derived from Eqs. (3.16) with Q replaced by Q —1. The joint probability distribu-
tion for a sequence of samplings of y (t) does not in general have the reduction property that applies to a sequence of in-
stantaneous measurements. That it does not means that the joint statistics of a sequence of samplings of y (t) can depend
on the existence of subsequent samplings. Is there a violation of causality here. No, because the measurements are not
instantaneous. The influence of a sampling of y(t} extends over the interval [t —b,„t] from which y(t) acquires infor-
mation about the position. Suppose the interval for the Qth sampling overlaps the interval for the (Q —1)th sampling-
i.e., tg —6« tg i , then on'e should not be surprised that the joint statistics for the first Q —1 samplings depend on the

existence of the Qth sampling. In terms of the path integral (3.16a},the resolution amplitude Y(y g y(tg )—) for the Qth
sampling influences the sum over paths at times preceding tg i. There is no violation of causality, because a decision to
make the Qth sampling must be made before the (Q —1)th sampling is completed. On the other hand, if the Qth sam-
pling does not overlap previous samplings, a reduction property should hold. In this case, i.e., t~ —5, g t~ ~, split the

Q

sum over paths in Eq. (3.16a) into two parts with respect to time tg i asum—over paths on the interval [to, tg i] and a
sum over paths on the interval [tg i, tg]:

[rt )

e(y i, . . . ,y g,x, tg)= f &x(t) Y(yg —y(tg)}e'~sis("'")e(y i, . . . ,yg i,x(tg i), tg i) .
Q —1

(3.21)

Here the integral denotes a sum over all paths x (t) on the
interval [tg i, tg ] such that x ( tg ) =x; the quantity
4(y i, . . . ,yg i,x, tg i) is defined by Eq. (3.16a) with Q
replaced by Q —1 and contains the sum over paths on the
interval [to, tg i]. Notice that Eq. (3.21) looks like the
path-integral expression for a single sampling [cf. Eq.
(3.10)]; the fundamental amplitude @(y i, . . . ,y g
x,tg, ) for the first Q —1 samplings, regarded as a func-
tion of x alone, serves as initial wave function at time
tg i Thus the norm. alization property (3.18) implies that
the joint probability distribution (3.20) is given by

,yg i)= f dx IC'(yi, ,yg —ix g —1) I

(3.22}

[cf. Eq. (3.16b)]. Equation (3.22) is the desired reduction
property for the case that the Qth sampling does not over-
lap the (Q —1)th sampling.

These ideas can be extended in the following way. Pick

y, (t„t,)= f dt Y, ,(x(t)), (3.24a)

t

y, (t„t,)= f dt Y, ,( (tx}) .

Here y & (t„tq) is the contribution to y (t, ) from times be-
fore tq, and y&(t„tq) is the contribution to y(t ) from
times after tq. One can characterize overlapping of sam-
plings precisely by saying that for r ~q there is no over-
lap between the rth sampling and the qth sampling if and
only if y & (t, tq ) =0 for all paths x (t). Now split the sum
over paths in Eq. (3.16a) into two parts with respect to
time tq, thereby obtaining

(3.24b)

a particular sampling —call it the qth —from among the
total of Q samplings. For samplings after the qth sam-
pling (r =q+ 1, . . . , Q}, decompose the sampled quantity

y (t„) [Eq. (3.17)] with respect to time tq:

y(t, )=y (t„tq)+y (t„,tq), r =q+1, . . . , Q, (3.23)
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(x, tg)y». &yg&x&tg)= f dyq+1' ' ' dy g t

Q
g — + (t t ) ) (tlti)S[x(t)]

r =q+1

X+y 1»3 q&yq+1»' 3 Q&x(tq)& q) & (3.25)

where

(x, t )

4(y i, . . . ,y „'y +i&, . . . y(),,x t, ) f—= &x(() ff Y(yy, (—()),
0 r=1

Q

Y(y,' —y (t t )) e' "' ("'"'p,(x(t, ), t, ).
r=q+1

(3.26a)

In Eq. (3.25) the sum over paths includes all paths x(t) on the interval [tq, tg] such that x(tg)=x; similarly, in Eq.
(3.26a) the sum over paths includes all paths x (t) on the interval [to, tq] such that x (tq )=x. A generalization of the nor-
malization property (3.18) yields the joint probability distribution for the first q samplings:

~(3» 3,)= f dy, d3 Q~(y 1 3 g)

= f dy', dy Qdx ~4(y, , . . . ,yq, y' „.. . ,y Q,x, t )
~

(3.26b)

Equations (3.26) generalize the basic equations (3.16) to the case where one is interested in the joint statistics of the first q
samplings in a sequence of Q samplings. One sees clearly that a sampling after the qth sampling influences the joint
statistics of the first q samplings if and only if it overlaps the qth sampling.

Equations (3.26) can be derived directly using the model of Sec. III A 2. The amplitude (3.26a) is the total wave func-
tion for the system and the Q meters, evolved to time tq+; it leads to the joint probability distribution (3.26b) in the ob-
vious way. One can obtain the path-integral form (3.26a) for the total wave function at time tq+ in the same way one
obtains the path-integral form (3.16a) for the total wave function (3.15) at time tg+.

Interpretation of Eqs. (3.26) generalizes the interpretation given Eqs. (3.16). Select a path x (t) on the interval [to, tq J,
and begin with the amplitude e "~") ("("~$0(x(to), to), the unconditioned amplitude for the path. For each r =1, . . . , q,
multiply by the resolution amplitude Y(y, —y(t, )), the amplitude for the rth sampling to yield the value y „given the
path's value y (t ) for the sampled quantity; further, for each r =q + 1, . . . , Q, multiply by Y(y „' y& (t„,tq—)), the ampli-
tude for the rth sampling to yield the value y „', given the partial information y& (t„tq) available from the path up to
time tq', thereby find the joint amplitude for the sequence of results y i, . . . ,y q, for the sequence of "partial results"
y q+1, . . . ,y g, and for the path x (t). Sum over all paths such that x (tq ) =x to obtain the amplitude
C)(y i, . . . ,y q,'y q+1, . . . ,y 'g, x, tq) [Eq. (3.26a)], the joint amplitude for the results y 1, . . . ,y q, for the partial results
y q+1, . . . ,y g, and for the system to be at x at time tq Finally, .square and integrate over the partial results and the po-
sition of the system to obtain the joint probability distribution P(y 1, . . . ,y q ) [Eq. (3.26b)].

Suppose now that the qth sampling overlaps no later samplings [y & (t„tq ) =0, y (t, ) =y & (t„tq ), for r =q + 1, . . . , Q].
Then Eq. (3.26a) simplifies to

r+a I q~(y 1& ~ &3' q&y q+1* &y g&x&tq)=
Q

Y(y ) C)(y 1, . . . ,y;x, t ),
r =q+1

(3.27)

where 4(y i, . . . ,y q;x, tq) is the fundamental amplitude for the first q samplings, defined by Eq. (3.16a) with Q replaced
by q. In this case the joint probability distribution (3.26b) for the first q samplings becomes

P(3T„.. . ,yq)= f dx ~4(yi, . . . ,yq;x, tq) ~', (3.28)

a result that generalizes the reduction property (3.22). Notice also that in this case Eq. (3.25) takes the form

'Q
N(yi, . . . ,y g,x, tg)= &x(t)

Q
Y(y„—y(t )) e' "' "'"4(y . ,yq;x(tq), tq)

r=q+1
(3.29)

[cf. Eq. (3.21)], a form that looks like the path-integral expression for a sequence of Q —q samplings, with the role of ini-
tial wave function at time tq played by 4(y i, . . . ,y q;x, tq).

For samplings of position the path-integral formulation conceals a way of thinking in terms of wave-function collapse.
Is there some similar way of thinking —some analog of wave-function coHapse —buried within the path-integral formula-
tion for samplings of y (t). To investigate this question, adopt the approach used in Sec. III C: ask conditional questions,
and apply to the conditional questions a Bayesian analysis. Consider then the qth sampling, and ask for its statistics,
conditioned on the results of previous samplings. The required conditional probability distribution
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~(y q I y i» «3' q —i) = «3'q)

«y q —i}
(3.30)

[cf. Eqs. (2.24)] is the probability distribution to obtain y q as the result of the qth sampling, given the previous results

y, , . . . ,y q, . Think in terms of an associated conditional probability amplitude

m(y i« ~ ~ ~ «3 q«y q+1« ~ ~ ~ »3 Q»x»tq )
@(y q«3' q+» . »y g»x«tq Iy i««y q —i)= 1/2[~(y 1 . ~ . 3 I)]

[cf. Eq. (2.43)], from which the conditional probability distribution (3.30) can be derived as

~(3 q ly i»' ' '»yq —i}=f dye+i' '' dygdx l~(yq«yq+i ' 3 g x tq 13Ti »
. «3 q —i}l

(3.31)

(3.32)

[Eq. (3.26b); cf. Eq. (2.42)]. It is convenient to use relative amplitudes (normalization supplied later} and to write the am-
plitude (3.31) as

Q
Y(y'„—y (t„t ))

r =q+1

q —1

X&" "' (""}f(x(to), to) g Y(y, —y(t, ))

(xt )

C'(yqyq'+i, yg x t, lyi y, i) f, ~x(t)Y(yq y(t, }—)

(3.33)

[Eq. (3.26a};cf. Eq. (2.44}].
Interpretation of the conditional amplitude (3.33) is the

same as that given the joint amplitude (3.26a), except that
the resolution amplitudes Y(y „y(t,)) —for samplings be-
fore the qth sampling (r =1, . . . , q —1) require a Baye-
sian interpretation appropriate for conditional questions.
As in the analogous expression (2.44) for samplings of
x(t), these resolution amplitudes weight the a priori am-
plitude for a path and thereby restrict the sum over paths
to be consistent with the results of the first q —1 sam-
plings. Each of these amplitudes produces a disturbance
of the system —a back-action disturbance —which, in gen-
eral, affects the qth sampling. Analogy with samplings of
x (t) might suggest viewing these resolution amplitudes as
generalizing the notion of wave-function collapse to sam-
plings of y (t). There is, however, a crucial difference: the
resolution amplitude Y(y „—y ( t, ) ), for r = I, . . . , q —1,
depends on a path's history", it restricts the sum over
paths —it disturbs the system —not just at a single time,
but at all times from which y(t, ) acquires information
about x (t). In Eq. (3.33) one finds no sharp demarcation
between unitary evolution and the disturbances produced
by measurements.

Moreover, there is another difference between sam-
plings of y(t) and samplings of x(t). Equation (3.33)
presents a new phenomenon, absent from Eq. (2.44)—
restriction of the sum over paths due to the qth and later
samplings. In Eq. (3.33) the resolution amplitude
Y(y q

—y (tq) } for the qth sampling restricts the sum over
paths and produces a back-action disturbance by which
the qth sampling disturbs itself. Nothing comparable
occurs for samplings of x(t), because the resolution am-
plitude Y(x q

—x) in Eq. (2.44) does not affect the sum
over paths. If a sampling after the qth sampling
(r =q+1, . . . , Q} overlaps the qth sampling, then its
resolution amplitude Y(y ', —y & (t„tq ) ) also restricts the
sum over paths in Eq. (3.33}; it produces a back-action
disturbance of the qth sampling by a later sampling —a
situation that cannot occur for samplings of x (t). In Eq.

(3.33) the restrictions on the sum over paths due to the
qth and later samplings should not be thought of as some
sort of generalized wave-function collapse, partly because
they have no analog in samplings of x(t), but more im-
portantly because they do not have the Bayesian interpre-
tation that goes with collapse.

Restriction of the sum over paths, disturbance of uni-
tary evolution, back-action disturbance due to the act of
measurement —these phrases apply to all the resolution
amplitudes which appear in Eq. (3.33). Use these phrases,
and discard the notion of wave-function collapse as not
appropriate for measurements distributed in time.

All these considerations speak now to the same con-
clusion. For samplings of position, Eq. (244) breaks
down into the conventional machinery of nonrelativistic
quantum mechanics —a system wave function that under-
goes unitary evolution, punctuated by wave-function col-
lapses. For samplings of y (t), Eq. (3.33) offers no way to
introduce a system wave function evolving in time. The
language of quantum states, confronted with measure-
ments distributed in time, yields to the more powerful
language of paths.

y(t)= x (t) x(t —e)—
E'

(3.34)

Assume that e &0 is small enough that during an interval
of duration e, the system acts essentially like a free parti-
cle; then a sampling of y (t) can indeed be construed as a
sampling of velocity. In addition, assume that the sam-
pling times are sufficiently far apart that there is no over-

C. Speciaj cases

In this subsection I examine several examples aimed at
illustrating peculiar features of the path-integral formula-
tion (3.16).

As an interesting first case, consider a sequence of Q
samplings of velocity. For that purpose, choose as sam-
pled quantity a two-point approximation to velocity:
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U„,(t&+,t, )= g e q U(t„t, e)—
q=1

[i/A)x p /e ~
Xe q U(tq e, tq i)—, (3.35}

lap between samplings (tq —e& tq i, for q =1, , Q).
An obvious question asks whether this sequence of

velocity samplings is equivalent to a sequence of momen-

tum samplings —-or, rather, a sequence of samplings of
p/p, where y, is the mass of the system. The fundamental
amplitude and joint probability distribution are, of course,
given by the path-integral formulation (3.16), with y(tq)
in Eq. (3.16a) evaluated using Eq. (3.34). Samplings of
pip, can be given an independent analysis, based on the
standard description of instantaneous measurements (Sec.
IIA). Thus the question may be phrased more precisely:
does the pat¹integral formulation (3.16) applied to the
case (3.34} yield the same probability distribution as does
the standard description applied to a sequence of sam-

plings of p/p, ? To investigate this question, use the
model of Sec. IIIA2 to write the fundamental amplitude
C)(y i, . . . ,y ~,x, t&) in a form that allows direct compar-
ison with the standard description.

The case (3.34} fits the model nicely, because y (t) has
the discrete-time form (3.1}, with tz tq

———(2—j)e
(j =1,2; Nq=2) and I'qi(x}= —Fqi(x)= —x/e. The to-
tal evolution operator (3.13) can be written as

where each factor in the product arises from a particular
sampling, and the product is ordered with later samplings
on the left. Now simplify each factor in the product.
First, move the system evolution operator U(tq, tq —e) to
the right by using the relation

U(tq, tq e)x—U (tq, tq e) —=x (p—/p)e, (3.36)

—(i/A)P 2/2pege (3.37)

which looks much the same as the evolution operator
(2.35} for a sequence of samplings of position, except for

-(i/A)P /2p, a
the presence of the meter operator e q in each
factor. By plugging the evolution operator (3.37) into Eq.
(3.15) for the total wave function and following the steps
that lead from Eq. (2.35) to Eq. (2.38a), one finds for the
fundamental amplitude

which restates and makes precise the assumption that the
system acts like a free particle during the short time inter-
val [tq —e, tq]. Second, combine the two exponentials in
each factor by using the Baker-Campbell-Hausdorff rela-

tion: e"e =e"+ e("' 1 if 2 and 8 commute with

[A,B]. The resulting form for the evolution operator is

—(i/4)(p/p)p
&

~
U ...(r&+,t, ) = e 'U(t, , t, , )

q=1

ttt(y „.. . ,y(),x, ttt)=(x

x

Y(y t p/p)U(—tttt, ) tp,( P))ttt
q=1

(3.38a)

where the product is ordered with increasing times in U(tq, tq, ) on the left, and

(3.38b)

Q
Y(y —P/tt)U(t, t ) tPo(to))

q=2

The form (3.38a} for the fundamental ainplitude is equivalent to the path-integral form (3.16a). From it comes a joint
probability distribution [Eq. (3.16b)]

Q

p(y, . . . ,y )=(tpo(to) ii Y(y, p/p)U(t„t, )—
q=1

city cou ling plus a negative capacitance in the readout
circuit. " Translation into present language goes as fol-
lows. To achieve a sequence of samplings of p/p with
resolution amplitude Y(y —y}, give each meter negative
mass —pe for a time of duration e; i.e., give the qth me-

ter a self-Hamiltonian Pq/2pe during the i—nterval
[tq, tq —e]. This self-Hamiltonian cancels the effect of the

—[i/4)P2/2p, e .
culprit operator e ' in Eq. (3.37). Thus formu-
late the present language: a momentum sampling is
equivalent to a velocity sampling plus a negative meter
mass.

As a second example, consider the problem of detecting
a force acting on a free particle. For that purpose, spe-
cialize the system to be a free particle with mass (M, ex-
posed to a classical force F(t); the corresponding system
Hamiltonian is

[cf. Eq. (2.38b}]. Comparison with the standard descrip-
tion [Eq. (2.23)] shows that this is the probability distribu-
tion for a sequence of samplings of p/p, with Y(y —y)
playing the role of resolution amplitude, the amplitude for
a sampling to yield the value y, given that the system has
momentum p =py.

The conclusion of this exercise is somewhat surprising.
A sequence of samplings of velocity with resolution am-
plitude Y(y —y) is equivalent to a sequence of samplings
of momentum with a different resolution amplitude
Y(y —y), related to Y(y —y) by Eq. (3.38b). The culprit is

not hard to find; for each factor in U „,(t&+,to), it is the
—(i/A)p 2 /2p

meter operator e q, which in effect endows the
qth meter with mass pe during the interval [tq e, tq]. —
Language used previously to describe this curious result
holds that "a momentum coupling is equivalent to a velo-
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H =P /2p x—F(t) . (3.39)

In addition, choose the sampled quantity to be

y (t)=x (t)—2x (t r—}+x(t —2T)

= [x (t) x—(t —~)]—[x (t T—) x—(t —2T}], (3.40}

where ~&0. In the language of Eq. (1.7), this choice for
y(t) corresponds to a time-stationary linear filter with fil-
ter function

g(t —t )=@t—t }—28t t' &—)+—5(t t' —2r) —.

Why consider the form (3.39)? Because y(t)/9 is a
three-point approximation to acceleration. Thus sampling
of y (t}gives direct information about F(t) for frequencies

v & r '. Indeed, Eq. (3.39) corresponds to the simplest ex-
perimental procedure for detecting a force. Unruh has
stressed that for analyses of force detection, one should
consider experimental procedures which are directly sensi-
tive to the fore(~not procedures sensitive to position or
velocity.

For simplicity in this example, restrict consideration to
a single sampling of y(t) at time T. The path-integral
formulation (3.10) provides the fundamental amplitude
4(y;x, T) for a single sampling, but here focus instead on
an equivalent form for 4(y;x, T), which comes from the
model of a single sampling in Sec. III A 1. The model ap-
plies directly to this example, because y(T) has the
discrete-time form (3.2), with T, = T —(3—j)T (J=1,2, 3;
N =3) and Y'i(x)= —F2(x)/2=F3(x)=x. For this case
the total evolution operator (3.4) becomes

(i/h)x(T3—)ti 2(i/h)x(T&)p (ilh—)x(T()t)
U,o,(T+,To ——U T, To e

= U(T, T0) exP( (i/fi)—[x+(P/l2)(T2 —Tp)]P J ex PI2(i /iI}[x +(P /tu)(T 2
—Tp)]P]

X expt (i/fi)—[x+(p/l2)(T) —T())]p]e (3.41)

For the system Hamiltonian (3.39), the interaction-picture
operators (3.S) are given by

~
y(T)) = U(T, T())

~
$0(T0))

~

@) e (ilh)(t—i /2P)2r (i/h)0—P
~
~)

(3.46b)

(3 46c)
x(TJ)=U (TJ Tp)xU(TJ Tp)

=x+(ply)(TJ —To)+k(TJ Tp)

where

(3.42)

g( t, t') = f, du (t —u)F(u) lp,

Q UF U p (3.43)

is the classical motion induced by the force during the in-
terval from time t' to time t [g(t', t') = =0/(t', t')]. In the
second part of Eq. (3.41), the quantity

9=PT3 TO} 2PT2 Tp)+AT) Tp)

=g(T2, T))—2$(T2, Ti) (3.44)

Surprising because U«, (T+,Tp) factors into a product
of the system evolution operator U(T, T0) and a meter

operator e '/""~ &) 'e " ")& . The total quantum state
at time T+ [Eq. (3.6)] similarly factors:

is the classical value of the sampled quantity y(T) [cf. Eq.
(3.40)]; the second form for ri shows explicitly that it de-
pends only on what the force does during the interval

[T, , T3]. Now simplify Eq. (3.41) by using the Baker-
Campbell-Hausdorff relation to combine the exponentials;
thereby find the surprising result

+ T ) U( T T )
—(i /h)(p /2p)2s —(i/h)gp

(3.4S)

4(y;x, T)= (y,x ~
%(T+ ) ) =4(y )f(x, T), (3.47a)

g(», T}=(x
~
P(T))

= f dxol(" (», T exp Tp)gp(xo, To)

@(y)=—(y
~
@)

= f dy'&yl "'"'" ' '"Iy')&(y' —n). (347)

The probability distribution (3.7b) to obtain y as the result
of the sampling,

p(y)= f dx i@(y;»,T)
i

= i(p(y)
i

After the interaction, particle and meter are left uncorrelat-
ed. The particle proceeds along its way in precisely the
state

~
li)(T)) it mould have been in had there been no in

teraction, and the meter is in a state
~

(I) ) that is indepen
dent of the particle's initial state All this d. oes not mean
that the interaction has no effect. During the interval
[Ti,Ts], particle and meter are correlated. Although the
particle eventually escapes the interaction bearing no
trace, the meter bears the interaction's imprint in two

ways: (i) the operator e '/")&& displaces the meter coor-
dinate by Tl, the quantity one wants to determine; (ii) the

—(i/4)( ~/2 )2~operator e """~ &' 'changes the meter state as though
the meter had mass )u during the interval [T, , T&].

The total wave function corresponding to the state
(3.46)—i.e., the fundamental amplitude (3.7a)—has the
form

[
~(T+))=

[ +) ( f(T)), (3.46a) is independent of the particle s initial state. This is un-
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doubtedly the most fehcitous feature of this example. No
preparation of the particle's initial state is required;
preparation is directed wholly at preparing the meter's ini-
tial state. This situation corresponds closely to what hap-
pens in real experiments to detect a force acting on some
system: elaborate procedures are used to prepare the
measuring apparatus; the system takes care of itself.

Contrast this example with the language used by the
canonical model' ' of the quantum theory of measure-
ment (see Sec. IIB1 and Ref. 23). There one imagines
coupling the system to a measuring apparatus. The cou-
pling produces a correlation between system and ap-
paratus, so that some property of the apparatus is corre-
lated with the desired information about the system. A
"readout" of this property completes the measurement
and disturbs the system —i.e., collapses the system's wave
function. Essential to this language is correlation between
system and measuring apparatus, as expressed in the total
quantum state. No way can be found to fit the example
considered here into the language of the canonical model;
particle (system) and meter (measuring apparatus) are un-
correlated after their interaction. Within the language of
the canonical model, no correlation means no possibility
of a measurement. Yet the example has clear potential for
a measurement, manifested in the displacement of the me-
ter coordinate by i}. Within the language of the canonical
model, no correlation means no possibility to disturb the
system; in the example, readout of the meter coordinate
after time T+ can have no effect on the particle —cannot
disturb it, cannot affect its wave function. Yet the exam-
ple incorporates a back-action disturbance, manifested

—[&lR)( 2/ )2rafter the interaction in the operator e '/""& /&)2', which
spreads the meter wave function as though the meter had
mass p, during the interval [T(,Ti]. Recall now how
these features are manifested in the path-integral formula-
tion (3.10). There one looks to the resolution amplitude;
its restriction of the sum over paths expresses both the po-
tential for measurement and the back-action disturbance.
Thus reinforce an argument made in Sec. III8. Drop the
phrase "collapse of the wave function"; in this example it
can have no meatung. Adopt the phrases "restriction of
the sum over paths" and "back-action disturbance"; they
apply to measurements distributed in time and character-
ize the role of the resolution amplitude in the path-
integral formulation.

The preceding is not an isolated example, but rather ex-
hibits properties that characterize a class of force-
detection schemes for linear systems. To investigate these

schemes, let the system be a simple harmonic oscillator
with mass p, and frequency t(), exposed to a classical force
F(t) For a path x (t) on the interval [to,t~], the action is
given by

fg
S [x (t)]=S()[x(t)]+ J dt x (t)F(t),

where

(3.48a)

fg
S()[x(t)]= J dt —,'(M(x —co x ) {3.48b)

to

is the action for a free (unforced) oscillator. Throughout
this discussion let x,(t) denote a classical path for a Pee
oscillator on the interval [to, t~] (x, +co x, =0). The
space of all paths on the interval [to, t&] can be divided
into equivalence classes by defining two paths to be
equivalent if they differ by a free classical path. Each
equivalence class contains one path for every set of initial
and final values. A class is specified uniquely by its ele-
ment X(t) that satisfies X(to) =X(t~)=0; it consists of the
paths x(t)=x, (t}+X(t), where x, (t) runs over all free
classical paths {arbitrary initial and final values). The
specifying path X(t) can be regarded as a particular kind
of deviation from free classical motion. A special feature
of linear systems is that

S[x,(t)+X(t)]=S[x,(t)]+S[X(t)]. (3.49)

Now choose the sampled quantity y (t)=9',fx (t')] [Eq.
(1.6)] to have the property that it has the same value for
all paths in the same equivalence class (one must assume
t &t, +5,}:

(3.50a)

For convenience, also choose the sampled quantity to be
zero for the equivalence class of free classical paths
[specified by X(t)=0]:

9't[x, (t')] =0 . (3.50b)

This sort of sampled quantity is clearly designed to reveal
the presence of a force F(t), since it is sensitive only to
deviations from free classical motion. The simplest way
to devise a sampled quantity of this sort is to use a time-
stationary linear filter [Eq. (1.7)] whose filter function
g(t —t') has the property that its Fourier transform van-
ishes at frequency to.

The fund;unental amplitude (3.16a) for a sequence of Q
samplings can be written in the form

@(g (y ~ ~ . ,p g;X,tg)= dxo tpo(xo, to) &X (t)
'Q Q

[x (t}]) e(&lt))s[x(t)]

q=1
(3.51)

where the sum over paths includes all paths x(t) on the interval [to, tt}] such that x (to) =xo and x(t&)=x (one from
each equivalence class), and the dependence of the sampled quantity on the path x (t) is indicated explicitly. Now use a
trick that works for linear systems: let x, (t) be the free classical path that satisfies x, (to) =xo and x, (tg ) =x, and write
each path x (t) as x (t)=x,(t}+X(t),where X(t}is the specifying path for the equivalence class of x (t). Then, using Eqs.
(3.49) and (3.50a), one can write the fundamental amplitude as
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(O, tg ] Q

4(y „.. . y, (),x )()) =f dxoe ' $0(xo )0) ft„, &y()) it Y(y, —5', [x())]) ~""' '""",
q=1

(3.52)

where the sum over paths includes all specifying paths X(t)—i.e., all paths on the interval [to, tQ] such that
X(to) =X(tQ) =0. For hnear systems the propagator is given by7

(i/A)s[x (t)]
K(x, tQ ~

xo, to) ere (3.53)

[obvious from Eq. (3.52) in the absence of samplings]. Thus one can write Eq. (3.52) as

4 (y i). . . )y Q )xt)Q) =C (y 1). . . )y Q)f(x t)Q) )

where

f(xytQ)= f dxoE(x)tQ
~
xo, to)i(('o(xo, to}

(3.54a}

(3.54b)

is an oscillator wave function, and

(O, tg ) Q

@(y, . . . ,yQ) f. . . &X(t) g Y(y —p, [X(t)])(0 '0) q=1
~ (i/a]s[x(~]] (3.54c)

(path integral not normalized) is a probability amplitude
that is independent of the oscillator's initial state. The
joint probability distribution (3.16b) for the Q samplings
becomes

J'(y i y Q)= I@'(y i y Q) I

'
~ (3.54d)

This class of force-detection schemes for a harmonic
oscillator shares with the preceding example the pleasant
property that the sampling statistics are independent of
the system's initial state. In these schemes the force re-
veals itself by the deviation it produces from free classical
motion. How is the deviation to be judged? Which free
classical path is to be held up as fiducial, relative to which
the deviation is reckoned? Independence of initial state
means that it matters not which free classical path is
chosen as fiducial. In particular, one may always choose
to judge the deviation relative to the path of an oscillator
at rest at its equilibrium position. This possibility receives
explicit expression in the amplitude (3.54c}, where the
fiducial free classical path is clearly that of an oscillator
at rest.

Independence of initial state has a further important
consequence for the case where the qth sampling overlaps
no other samplings —mrlier or later —in the sequence of Q
samplings. In this case, repeated use of Eqs. (3.29) and
(3.54) shows that the qth sampling is statistically indepen-
dent of all the other samplings. Its statistics are deter-
mined by the absolute square of a probability amplitude

(O, ~ )

4(yq) cc f,VX(t) f(yq —3', [X(t)])

These force-detection schemes share with the preceding
example another important property. Factoring of the
fundamental amplitude (3.54a) means no correlation after
time tQ between the oscillator state and the sampling
statistics [cf. Eq. (347a)]. Just after time tQ, one may re-
gard the oscillator as having wave function f(x, tQ), the
same wave function it would have had in the absence of
samplings; the sampling statistics, contained in the ampli-
tude 4(y i, . . . ,y Q}, are independent of the oscillator's
state after time tQ Factorin. g means that none of these
force-detection schemes can be fitted into the language
used by the canonical model of the quantum theory of
measurement. These schemes thus illustrate again the
power of a path-integral formulation. The language of
the canonical model fails not because the model is bad,
but because the language is bad. The language is the
language of quantum states, which severely restricts the
notion of correlation. When the canonical model speaks
of a correlation between system and measuring apparatus,
it means a correlation at a particular time, embodied in
the total quantum state at that time. In these force-
detection schemes, one may say that the sampling statis-
tics are correlated with the oscillator's behavior—
correlated with what the oscillator was doing during the
interval [to, tQ ], but correlated not at all with the
oscillator's behavior after time tQ. This kind of correla-
tion with past behavior is characteristic of measurements
distributed in time. It finds its natural expression not in
the language of quantuin states, but in the more powerful
language of paths.

~~(i/A)S[X(t)] (3.55) IV. CONCLUSION

where the integral denotes a sum over all paths X(t}on the
interval [tq i, tq ] such that X(tq i ) =X(tq )=0 One.
recognizes Eq. (3.55) as Eq. (3.54c) specialized to a single
sampling. This result has an obvious generalization to a
sequence of samplings, none of which overlaps samplings
before or after the sequence.

The only reality permitted by quantum mechanics is
tied directly to the network of observations we make. No
hidden reality lurks behind the observations. As
Wheeler ' puts it, "What we call 'reality' consists of an
elaborate papier-mache construction of imagination and
theory fitted in between a few iron posts of observation. "
Quantum mechanics describes reality by giving statistical
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correlations among observations. ' ' The path-integral
formulation provides a route straight and true, leading
directly to these correlations. An alternate, more circui-
tous route exists for instantaneous measurements; it con-
structs the same correlations by using the conventional
machinery of quantum mechanics —a system quantum
state evolving in tifne. How much simpler to go directly
to the result. Hove much more elegant not to watch the
conventional machinery clanking, its gears straining to
crank out a simple result. For measurements distributed
in time, not just simpler, not just more elegant —there is

no machinery to clank, no gears to turn. The route to
reality is the path-integral formulation.
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y(t~) contains information about x(t) only for times t &t~.
This causal time labeling ensures —as must be true —that t~,
the upper time limit for the path integral (1.9a), is greater
than or equal to all times t that contribute to the sampled
quantities y (t~ ).

~~Implicit in this discussion is the assumption that the sampled
quantities y (t~) are measured by apparatuses having identical
properties. The path-integral formulation (1.9a) need not be
restricted to this situation. The sampled quantities could be
measured by apparatuses with different properties; moreover,
the sampled quantities could be so different that their mea-
surements would require apparatuses with different proper-
ties. One could handle this more general situation by intro-
ducing a different resolution amplitude Yq(y ~

—y~) for each
sampling.

'7(a) Y. Aharonov and D. Z. Albert, Phys, Rev. D 29, 223
(1984); (b) Y. Aharonov, D. Z. Albert, and S. S. D'Amato,
Phys. Rev. D 32, 1975 (1985).

~ A. Peres and W. K. Wootters, Phys. Rev. D 32, 1968 (1985).
~9M. B.Mensky, Phys. Rev. D 20, 384 (1979).
AM. B. Mensky, Zh. Eksp. Teor. Fiz. 77, 1326 (1979) [Sov.

Phys. JETP 50, 667 {1979)].
~The restriction to instantaneous measurements is a bit too

severe. If the measured observable is conserved, then the
standard description applies even to measurements of finite
duration. This paper is primarily concerned with measure-
ments that provide information about position, which is not
conserved; then, as has been emphasized by Wigner (Refs. 3,
5, and 6), the standard description applies only to instantane-
ous measurements.
Readers interested in effects and operations and their role in
quantum mechanics are urged to consult the review by K.
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of Quantum Theory (Springer, Berlin, 1983}.
The description (2.9) arises from the canonical model of the
quantum theory of measurement (Refs. 1—4 and 22): first the
system is coupled to a "meter, " the coupling producing a
correlation, and then the projection-operator description (2.5)
is applied to a "readout" (arbitrarily precise measurement) of
some property of the meter (see Sec. EI B 1 for the example of
a position measurement). Let the meter have a complete,
orthonormal set of states

~

A ). An initial, uncorrelated state

)
A & ss

( p T) & = g„~ A &ss
(

A & & A
( @(T) &, where

~

A ) is a
meter state, evolves during a short interaction time to

X I
Y~ &ss

I
A & &A

I
W(T}&= X I

A &ss
I

A &Yg, &A 10(T}&

where
~
Y~ &

= g-„~ A )Y» is a meter state correlated with

A (different
~
Yq ) are not necessarily orthogonal). Notice

that Y-„„&A
~
g(T}) is the joint amplitude of A and A; hence,

Y—„„can be interpreted as the conditional amplitude of A,

given A. The probability to obtain A as the result of a
readout on the meter is P (A )= g„~Y» ) [ & A

) 1{( T) ) )

[cf. Eq. (2.9a)]. The state of the system after a readout yield-

ing A is obtained by projecting onto
~

A ), tracing out the me-

ter, and normalizing:

~
+(T))= g ~

A )Y—„„&A ~

P(T))/[P(A)]'~2

[cf. Eq. (2.9b)].
2"One way to generalize to mixed operations is to introduce into

the description {2.11) a further "classical" irresolution. Let A

label the possible results of a sampling, and introduce a condi-
tional probability W(A

~
2)—the probability to get A as the

result, given the value A. Define a new set of operations

W„-(p)—:g~ W(A
~

A )'l{"-„P'F-„and associated effects

F——:g-„W(A
~

A }1—„1-„.Equations (2.11) are replaced by

the following: (i) the probability to get A as the result of the
sampling is

P ( A ) =tr[p( T)P „-]=tr[W-„(p( T) )]

= g W(A
i
A)P(A);

(ii) the state of the system just after a sampling with result A

is

p -„(~)=~-„(p(~))/P(A )

= g [ W{A
~

A )P(A )/P(A )g—„{T) .

The operations W- are mixed operations. Though not the

most general operations, they are the most general that can be
easily interpreted as describing a measurement of a single,
conventional quantum-mechanical observable A. This
description arises from the model in Ref. 23 by adding a
second "meter" that "measures" A just as the first meter
"measures" A. %'hen this description is applied to a sequence

of samplings, the resulting joint probability P(A &, . . . , A ~)
is related to the joint probability (2.23) in the obvious way.

2 H. Everett, Rev. Mod. Phys. 29, 454 (1957).
~ Equation (2.26) can be derived as follows: (i} consider an in-

teraction Hamiltonian x p /e, turned on from
t =T—e/2—=T to t =T+e/2=—T+,. (ii) obtain the total

evolution operator 0„I{t, T ) for T (t & T+ by solving

i'd&„,(t, T )/dt=(8+x p/e)ONB(t, T ),
with initial condition [&„,(T,T )=1; (iii) let e go to zero.
Physically, as e goes to zero, the interaction becomes so strong

that it dominates the system Hamiltonian 8, which can then

be neglected. Formally, one can introduce a new time vari-

able ~=(t —T)/e, which varies from ~= —1/2 to ~=+1/2;
letting t. go to zero, one finds the equation

ibid&„,(T+er, T )/dr=xp t&„I(T+er,T ),

with solution f) „,(T+,T ) =e
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134, 81410 (1964).
In addition to irresolution characterized by the resolution am-

plitude, one may introduce a further "classical" irresolution
into the path-integral formulation {3.16) for samplings of
y(t). Let y label the possible results of a sampling. Charac-
terize the classical irresolution by a conditional probability
distribution W(y ~y)—the probability distribution to obtain
the value y as the result of a sampling, given the value y. A
joint probability distribution P(y &, . . . „y ~) can then be de-

rived from Eq. (3.16b) in the obvious way. Including this
classical irresolution is analogous to a procedure, sketched in
Ref. 24, for going from pure operations (pure states) to mixed
operations {mixed states) within the standard description.

29C. M. Caves, K. S. Thorne, R. %. P. Drever, V. D. Sandberg,
and M. Zimmermann, Rev. Mod. Phys. 52, 341 (1980).
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