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%e consider the problem of quantizing gravity in a sirnplicial, Regge-calculus approach. Based
on the idea of invariants, we derive the metric and the measure for integrating over Regge mani-

folds. These results are general; in two dimensions they exhibit the necessary agreement with the
continuum (two-dimensional gravity and the Polyakov string model). This provides a basis for nu-

merical Monte Carlo studies.

I. INTRODUCTION

In his original paper Regge' developed a simplicial
discretization of gravity, formulated the Einstein-Hilbert
action for discrete simplicial manifolds, and constructed
the classical equations of motion. In this approach, the
basic variables are the lengths of links (one-simplices),
general discrete manifolds are built out of basic, flat sim-
plices, and the curvature is represented by the appearance
of deficit angles. Considerable work was done on approx-
imating known solutions of general relativity in terms of
Regge simplices (detailed references are given in earlier
papers2 9).

At present, there is much interest in the quantum appli-
cation of Regge calculus. There are a large number of im-
portant theoretical problems that can be approached
through the Regge approximation, the most notable being,
for example, the quantization of the lattice string, ' study
of higher-derivative gravitational theories, simplicial
minisuperspace, general Monte Carlo investigations,
dynamical generation of symmetries, and many others.
In general, one would like to sum over discrete manifolds
using a functional integral quantization. 'o This implies
summing over topologies and distinct construction ma-
trices, and most importantly one wants to integrate over
the Regge lengths I Lt j as dynamical variables. However,
as yet no systematic quantum formulation has been given.
Compared with the very successful Wilson lattice theory
of non-Abelian Yang-Mills fields, there are some very
basic issues in lattice gravity. They pertain to the origin
of general coordinate symmetry and the form of the mea-
sure. Namely, in Yang-Mills theories, one has group ele-
ments on links [ U(i, i +P) j and the Wilson lattice con-
struction possesses explicitly the gauge symmetry leading
then to the functional integral

f gdUe

with the group-invariant Haar measure.
In Regge calculus the basic variables are the lengths of

the bones IL;j, their physical interpretation being the
geodesic distance between vertices. The first basic ques-
tion is then on the analogue of general coordinate
transformations in Regge calculus. There are quite a few
interpretations of this issue in the literature. For example,

based on the phenomenon in flat space where the triangu-
lations are manifestly redundant, it was suggested that
certain changes of edge lengths IL; j ~ [(L j (which leave
the action unchanged) correspond to general coordinate
transformations. This means that one proposes the analo-

gy [Lt j~I Uj. It is clear, though, that changes of
lengths actually change the discrete manifold (with the ex-
ception of the already mentioned flat space). Approxi-
mate transformations were also suggested. s'7 To continue
along the line of exact symmetry one would need to argue
that other invariant quantities besides the action possess
the same symmetry and that there exists an invariant
measure for integrations. At present, the simple form

L,; I; was used. Other, di erent interpretations
on the form of general coordinate transformations were
also discussed, ' the last reference being most interesting
with the original proposal that randomness is the origin of
symmetry,

We shall in what follows present an interpretation of
Regge calculus based on the idea of invariants and follow
through with the corresponding approach to a functional
integral and the measure. Basically, one considers sum-
ming over all different simplicial manifolds. In the
present thinking, one would like to concentrate on the
nonperturbative region, that means genuinely curved
discrete manifolds. The magnitudes of lengths, [(L; j, to-
gether with the construction matrix then uniquely give the
manifold in question. In general, here (except for some
exceptions and obvious discrete symmetries), there are no
symmetry transformations and the interpretation is that
different lengths represent different manifolds. The
lengths are therefore thought of as invariants. General
coordinate symmetry would enter the picture only if one
would attempt to construct a metric for the manifold
g„„(x;L); it would come from arbitrariness associated
with a construction.

Our analogy is therefore with the invariant variables in
Yang-Mills theory. Those are the closed VAlson loops

IL;j IW, } .

In Yang-Mills theories, the set of loops is, in general, an
overcomplete set, with the fact that for N = 00 we have
no redundancy (only the inequalities, analogous inequali-
ties are present also in Regge calculus). Now in terms of
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Wilson loops, the Euclidean functional integral Eq. (1)
can be shown to become"

J ad%,J{W)e (3)

with a calculable, nontrivial measure J. It explicitly con-
tains the gauge group volume and the Jacobian of
transformations.

Therefore we come to think that quantized Regge grav-
ity is to be formulated and the lengths integrated with a
nontrivial measure

(4)

II. REDUCTION OF SYMMETRIES

This measure in a sense explicitly incorporates the
relevance of the general coordinate group. Once we con-
sider the premise that L s are invariants, the presence of
the measure is natural: indeed, one can present an argu-
ment for the measure in general. It appears always when
reducing a given system to invariants. The idea is to basi-
cally evaluate the effect of eliminating the variables cou-
pled with the additional effect of a change of variables.

Ga =(f,J",s» (9a)

(9b)

The first metric can be shown to be covariant; the second
wauld seem to depend on the gauge; we can convert it,
however, into a manifestly invariant form E =G ' with

BL BL„
Gltlll

g
GlJ

0)
(10)

the derivatives here are meant as covariant derivatives and
in the spirit of inversion one now considers the invariants

I L j as functions af the original variables I q j. This clear-
ly is a natural formulation which also exhibits manifestly
that G is a function of invariants only, G=G(L). Now
while the original integration measure was the usual form

t.(f,J; )L =~.Q.[H.
It would equal the charge associated with q, but the gauge
can be taken'~ that this vanishes. In the present case, this
is even more appropriate since one does not expect to car-
ry charge based on time dependence in the invariants. %'e

therefore have a decoupling with symmetry and invariant
variable metrics

We summarize now the general procedure for elimina-
tion of variables and reduction of a dynamical system to
invariants. Elements of what follows appeared in various
previous applications. ' ' The general result we reach
will be suitable for application to gravity and Regge cal-
culus.

Consider a dynamical system Iq;(t) j with a symmetry
group 6 parametrized by I a, j. One can think of t as ar-
tificial time; the group parameters and the symmetry are
time independent. Let the symmetry transformations
q;~f;{q,a) generate the orbits of G. Consider now a set
of invariant variables IL (t) j and the problem of specify-
ing the measure for this set. One starts from a given
metric product in terms of original {noninvariant) vari-
ables

{q q) =q'Gtj(q)q J

and performs a separation through a change

q;(t) =f;[q(L (t)),a(t)], (6)

where a=a(t) are now promoted to be dynamical and

q =q(L) is constructed from the invariants IL j. Clear-
ly, for this reconstruction to be unique, one ought to sup-

ply a set of subsidiary conditions. We shall comment on
these shortly. This issue was discussed in detail in Ref.
13. In the present case, we have the additional situation
that the new variables are taken to be the invariants: this
fact will allow an invariant final formula, the explicit con-
struction of the gauge will be avoided. Now a direct sub-
stitution leads to the metric

(q q)=L (f,&,.)L.+~.(f,d;b)~b

with a self-evident derivative notation. Most importantly,
one drops the cross term which would be of the form

detG '"
q;

it follows from the quadratic form (7) that the measure in
terms of invariants shall read

p I. = det ' ' '~'det -'" I.; . (12)

Concerning this result, we mention first the following.
Even though some nontrivial steps are required to reach
(12), this form could have been amved at through the fal-
lowing heuristic arguments. First, one has the contribu-
tion detG' ' representing the volume of the symmetry
group. Furthermore, one has detG corresponding to the
Riematinian nature of the space of invariants. The final
farmula (10) contains the following impartant require-
ment which could have been used for its independent con-
struction. Namely, concerning the choice of a set of in-
variants (it is not unique) one could consider either going
with a different set IL; j. Obviously, it must be related to
the set ILt j. One can always express one complete set of
invariants in terms of another

L; =Fg(L)

by a functional point transformation. The measure
should be form invariant under such point transforma-
tions. Indeed the form (10) assures this invariance.

In summary, let us emphasize that the major contribu-
tion (generally of nonlocal nature) is usually given by the
volume of the continuous group detG'~'. It is clear that
further contributions can arrive from the discrete sub-
groups which still could, in principle, remain in the prob-
lem. This last fact is relevant for proper understanding of
the loop-space measure and the Gribov problem in Yang-
Mills theories. In lattice gravity we shall not pursue it.
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III. REGGE GRAVITY f dp(L)= f gdL. (DetK)' '(DetG' ')'" (21)

(g,g)= f dx g„„(x)G"~~(g)g,Ii(x) (14)

which was jven by DeWitt' and discussed further by
Vilkovisky

GyvaP & ~~(g~gvP+gPPgve gyv~aP) (15)

Above, we again have an artificial fifth time parameter.
Now given a simplicial manifold specified by the lengths

IL, I one can in principle construct (in some gauge) a
metric tensor g„„(x;[L}); with subsequent gauge
transformations one could transform this into a general
configuration on the orbit:

Let us now go to the gravity problem. Actusd~y, it was
DeWitt who emphasized the fact that in gravity one has
first the manifold M of matrix functions g„„(x)and then
the orbits under the group of coordinate transformations
lead to the physical orbit manifold (Refs. 16 and 17). On
this manifold of orbits, one has an induced metric whose
form is rather nontrivial. In what follows we shall apply
the general procedure outlined above to the specific prob-
lem of discrete simplicial manifolds and exhibit the non-
trivial measure of Regge calculus.

The starting point is the simple metric on the space M
of metric tensors

The physical meaning of nonlocal determinant forms is
the following: K basically represents a Jacobian for a
change of L's while DetG'&' represents the volume of the
gauge orbits.

Let us now say a few words on the explicit form of the
measure. First of all, the metric E is in first approxima-
tion diagonal and the most important nonlocal effects are
given by the group volume determinant. The differential
operator G' ' acts on vector fields. It can be represented
in Regge calculus, it can be split into two parts: R&„(this
contribution can be written directly in terms of the paral-
lel transport matrix) and the derivative form:

Lq„—(gq„——V"Vi —Rq„) g2)

(dA)(„+ i)
——g g)'(n + 1)A~(„), (23)

where v) are coefficients found with the help of the
boundary map of oriented simphces

representing the I.ichnerowicz operator on vector fields.
This operator has an elegant representation on Regge sim-
plices. In Refs. 20—22 the simplicial version of the exteri-
or differential calculus was developed. Basically, one has
the exterior derivative d defined on a simplicial n-form as

g„„=gq„( x; Lg) (16)

+pi'(x)G'~'(px, vy)g "(y) . (17)

Here integration over x,y is assumed. Following our ear-
lier discussion, the invariant version for the first term
reads

with g&(x) representing the parameters of the transforma-
tion. Again, let the variables L;(v ), g&(r,x) depend on an
artificial fifth time. The metric for these new variables
follows after substitution in (14)

so that for enumerated set of basic n-simplices
Bcr'„=g&(n)irI„ i ~. One can also deflne the dual operator
5 and this can be used for constructing the I.aplacian:
L=d5+5d. This gives the explicit construction. One
could conclude with the following remarks. In the flat
limit the group volume could actually be thought of as a
Faddeev-Popov determinant, but this with some specific
way of eliminating the redundancy. For general mani-
folds, there is no need for such subsidiary conditions. It
might be useful to think in terms of a hybrid picture
treating separately the weakly curved and the strongly
curved contributions. Some numerical studies will en-
lighten these aspects. 23 2'

5L; 5L,
(18) IV. TWO DIMENSIONS

where G„„~ii is the inverse of G. X is invariant since L;
are and so is the derivative form in (18). This last step
avoids the explicit discussion of gauge fixing which would
be needed in a direct substitution.

Let us now concentrate on the metric of the group de-

grees. Using the infinitesimal traniiformation property

5g„„=V„g„+V+„,we have from (14) the form

Considerable explicit support and a nontrivial check for
the arguments presented come if one considers the prob-
lem of two-dimensional gravity (and the string model).
Here the fundamental work of Polyakov outlined the
nontrivial dyn imics of a matter and gravity system:

L =vgR+~g+vgg"" g d„P'dP'. (24)

4f„V„G""'~~V g'p—

which gives

(20)

This nontrivial dynamics comes from the measure in-
volved and the conformal anomaly. Already pure ravity
is nontrivial at the quantum level: even though g E. is a
topological invariant, dynamical terms come from the
measure given by Polyakov:

These arguments imply that, apart from local g g(x)
type of terms, ' the measure in Regge calculus should in-
clude the following:

f dg„„e = f dpexp (B{())2+e~ e (25)
48m
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in the conformal gauge. So overall one gets a Liouville
theory with nontrivial dynamics:

(26)

With matter fields, the integration over them provides
through the conformal anomaly an additional contribu-
tion to the kinetic term. This gives the coupling coeffi-
cient of (26—D)/48m", it is only for D =26 that a cancel-
lation occurs resulting in a simple theory.

Now on the lattice, the situation becomes analogous
and goes as follows: in our earlier work (Ref. 2) we have
considered matter fields on two-dimensional Regge nets
with emphasis on the string model and the conformal
anomaly. We argued that the conformal anomaly is there
and arrived to a discretization for the Liouville theory
which was shown to read

g e„(L}h (1.)e (1.),D

n

where e„(L)'s are deficit angles and 4 ( II ) ) is the prop-
agator on the Regge net. So in this matter contribution
we have appearance of the dynamical conformal anomaly
effect. Clearly, the gravitational lattice measure ought to
provide a matching contribution.

The functional integral measure of Regge manifolds
that we have established in the present paper indeed pro-
vides the necessary contribution in two dimensions.
¹mely, in two dimensions our group volume metric 6'@

given in Eq. (20) is the Polyakov determinant. Its explicit
form (in the continuum} is the Liouville Lagrangian
which can be represented through our discretization Eq.
(27}. We have the two-dimensional Regge calculus in-

tegral in the form

f g dL (De~) —i/2e( —26/48m)e a.e —s (28)

exhibiting the required effects. It provides the matching
of the conformal anomaly and the simplification of the
string model for D =26. We emphasize that the measure
(which is nonlocal in form) is crucial, however, for simu-
lation of two-dimensional gravity and any-dimensional
string model. It specifies the nontrivial universality class.

To summarize, we have in this work presented, in gen-
eral, a discussion of the measure and formulation of the
functional integral for Regge calculus. Apart from the
relevance of understanding some fundamental questions,
these considerations are of practical relevance. The mea-
sure being nonlocal is quite complex to handle. In turn,
however, it sirens necessary for approaching the continu-
um theory of quantum gravity.
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