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Following the work of Lund and Regge for homogeneous spaces, we construct the action for
Regge calculus in its three-plus-one form for general space-times. This is achieved in two ways: a
first-order formalism and a second-order formalism. %e describe the Regge-calculus analogue of
solving the initial-value equations using conformal transformations. The second-order formalism is

used to study the time development of two simple model universes.

I. INTRODUCTION

Regge calculus' is an approach to general relativity
in which simplicial decompositions of space-time are
studied. Instead of considering n-dimensional smooth
Riemannian manifolds, one investigates spaces which are
flat everywhere except on (n —2)-dimensional subspaces.
These may be regarded as approximations to smooth man-
ifolds, which become more and more accurate as the sim-

plicial decomposition becomes finer.
The study of four-dimensional space-times in Regge

calculus involves dealing with four-dimensional blocks.
In this three-plus-one formalism three-dimensional space-
like hypersurfaces are divided into simplices and the evo-
lution of the hypersurfaces is described by the time
development of the edge lengths in the simplicial decom-
position. (Note that curvature is distributed discontinu-
ously in the spacelike directions, but continuously in the
time direction. } Just as in the three-plus-one continuum
case' and unlike in the four-dimensional Regge calculus
where all equations have the same structure and status,
singling out the timelike direction here makes apparent
the distinction between evolution equations and constraint
equations. The three-plus-one Regge calculus provides an
alternative approach for numerical relativity and it might
also provide a potential, gauge-independent, basis for
canonical quantization of gravity.

In an unpublished paper, Lund and Regge set up a for-
malism for three-plus-one Regge calculus for homogene-
ous spaces. This forms the basis for the second-order for-
malism which we have set up for general space-times (see
Sec. III). We have also constructed a first-order three-
plus-one version of the theory involving the Hamiltonian
and the conjugate variables (see Sec. IV). Which formula-
tion will be more useful in practice will depend on the
particular problem being studied.

As in the continuum three-plus-one formalism we de-
fine the lapse function, which determines the distance be-
tween successive spacelike hypersurfaces. As a scalar

field, the lapse is defined naturally on the vertices of the
simplicial decomposition. The transcription is not so sim-

ple for the shift vector which describes how the coordi-
nate system changes between different spacelike hypersur-
faces. One would like to argue that the absence of spatial
coordinates means that the shift vector (and therefore the
momentum constraint) is redundant. However one can
also see that the shift vector is related to the association of
arbitrary velocities with the vertices of the simplicial
decomposition ( and the momentum constraints somehow
ensure the compatibility of these velocities). Therefore,
one would like to include the shift vector in the formal-
ism. Our difficulties in doing so seem to stem from the
fact that although we know how to represent scalars and
symmetric tensors on the simplicial decomposition we
have not found a consistent way of representing vectors.
Because of this difficulty the shift vector does not appear
in our formalism which therefore contains a Hamiltonian
constraint but not momentum constraints. As a result of
that the Hamiltonian constraint will not be strictly con-
served during the evolution. This may not be a serious
problem if we consider this formalism as a method for ap-
proximating general relativity. It is a severe obstacle,
though, if it is considered as a fundamental theory. In
any case, a possible remedy for this problem was suggest-
ed by Friedman and Jack and will be discussed else~here.

In a three-plus-one formulation of general relativity, it
is necessary to solve the constraint equations on the initial
hypersurface in order to specify proper initial data. In the
continuum theory one can solve the Hamiltonian con-
straint using conformal transformations. We describe
in Sec. V the Regge-calculus analogue of this procedure.

A simple testing ground for a three-plus-one formula-
tion is the time development of model universes. We have
used our second-order formalism to study both homogene-
ous and inhomogeneous, anisotropic universes containing
massive scalar fields. The equations and the numerical re-
sults are presented in Sec. VI. The first-order formalism
could also be tested on such models.
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II. SIMPLICIAL CALCULUS

Consider a simplex of dimension n and let l,' denote the
ith component of edge a, which has length l, . Choose a
coordinate system (see Fig. 1) in which one vertex 0 is
represented by the origin and the other vertices 1,2, , n

by the points (1,0,0, . . . , 0}, (0, 1,0, . . . , 0),
(0,0, 1, . . . ,0), . . . , (0,0,0, . . . , 1). Since

l, lb ggq——lalf,

the metric tensor g,J for that simplex is given by

grq
= T(log + log —lij ),1 2 2 2

where l,j is the length of the edge from vertex i to vertex

J
Given any symmetric tensor TJ, define the —,

' n(n +1)
components of T,

&
along the edges of a simplex by

~ ~

T, =T,jl,'l,' . (2)

In particular, the g, 's associated with the metric tensor
are given by

)ga=aglala=la .

The number of independent components of a symmetric
tensor ecp!a&s the number of edges of a simplex of the cor-
responding dimension. Therefore the quantities

I T„a6aJ describe uniquely a constant tensor inside the
simplex a. We will use, in what follows, the index a,
1(a & ,

' n(n —+1),to replace the component indices of a
symmetric tensor and in this sense g, is the metric tensor.

The identity

8 lnV

suggests the definition of a double-component index-
raising operator

8 lnVa
6CMb g

CM

d&a dgb dgb

The trace of a tensor T in a simplex a is then given by

(TrT) =g™T,

(TrTi) =GaabT T

A proof of these formulas, which were first derived by
Lund and Regge, b is given in the Appendix.

While the matrix G raises indices a,b, . . . within
simplex a, indices will be lowered by the inverse matrix
G~ which satisfies

g g abc Sa

Using G~ and g™we define the DeWitt matrix (for
symmetric tensors only)

(9)

For A, = 1, which we need for TrKi —(TrE) terms, this
becomes

(10)

The density equivalent to Vg G'& is defined by

p cab V yaab

Note that the inverse of 9'~ is given by

which follows from Euler's theorem, suggests the defini-
tion of g as the inverse metric in the simplex a:

8lnV
g (4)

1

+aab Gaab 2, &agb

and that

~aab= +aab .1

y CM

(12)

[In what follows, we shall use (unless stated otherwise} the
convention of summation over reputed lower and upper
edge indices a, b, . . . within a given simplex. ] Similarly
the identity

(TrT) =g, T' (14)

Sometimes it is natural to define T', and not T„as the
basic quantity (in which case T~ =G~b T depends on a).
%e then have

8 lnV

dg dgb
gb (TrT2) =G~bT'T (15)

3 (0,0,1) III. SECOND-ORDER FORMAI. ISM
FOR 3 + 1 REGGE CALCULUS

(o,o,o)

(o,i,o}
2

The starting point for most work on Regge calculus so
far has been the expression in terms of a simplicial
decomposition of the continuum Einstein action

s= J d x&( —g)R, (16)

FIG. 1. A typical tetrahedron, arith a particular choice of
coordinate system.

where R is the four-dimensional curvature scalar and g
the determinant of the four-dimensional metric tensor.
An alternative is to take the action in its 3+ 1 form, in
which time has been singled out as a preferred coordinate
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(see, for example, Chap. 21 of Ref. 3}:

5= t x N g
' R+TrE —TrK

+2N [( g}"(K' -g''K)~
~, I,

where

1Kt a

&J 2~ lJ i J J(~ N "——N )

(17)

(18)

(22)

V' being the volume dual to edge a, corresponding to
g d x (Ref. 10). Hence

d g' XR=2 Pfg '

is the extrinsic curvature of a hypersurface of constant
time, which has metric 3g;J and scalar curvature R. The
overdot denotes differentiation with respect to time and
the vertical bar covariant differentiation within the hyper-
surface; N and Ni are the lapse function and the shift vec-
tor, respectively. Time will be singled out further here as
it will be kept continuous, while the spacelike hypersur-
face will be divided into flat simplices.

One may then prociMxi in two possible ways. First one
may vary the action, written as in (17) as the integral of
the Lagrangian, with respect to the basic variables (gi~ in
the continuum theory, g, here) to obtain second-order dif-
ferential equations for the time development of these vari-
ables. Alternatively, one may express the action in its
Hamiltonian form, written in terms of the basic variables
and a set of conjugate variables. Variation of this action
with respect to both sets of variables produces two sets of
coupled first-order differential equations for the time
development of the variables. (One set may be regarded as
the definition of the conjugate variables. ) This section
will be concerned with the first of these alternatives.

The spacelike hypersurface is taken to be a surface
composed of tetrahedra and the squared edge lengths, g„
are the dynamical variables of the thcxiry. The lapse func-
tion is defined on the vertices (labeled by 1u, v, . . .) and its
value on edges or inside tetrahedra will usually be ob-
tained by linear interpolation:

[Tr(K} —(TrK)2)
~

~= g~bK, Ks,

where, in the absence of the shift vector;

(24)

(25)

Integrating (24) over the volume we obtain

f d xN( g)' [Tr(K ) (TrK) ]=——'g —9 g g
a

(26)

Since the factor 9 g,gs is constant for a given simplex,
we interpret the 1 jN factor as

=gN„g g. '/2e, .
p, Ga

To evaluate the part of the action involving the extrin-
sic curvature, we use the formalism set up in Sec. II.
From Eqs. (6), (7), and (10), we see that within a tetrahed-
ron a,

N, = —,
' g N„,

p, Ea

N~—= 4 gNp.
p, 6a

(20}

1 i 1=-X
N

Our final form for the action is then

(27)

p, =2~—g (dihedral angle in a at a ) .
aalu

(21)

Regge's formula for the integral of the scalar curvature,

Iy 3~ (3g )1/2 3g 2 y g 1/2e

suggests the identification of the curvature on edge a as

The shift, which is a vector, might also be naturally de-
fined on the vertices, but it is not clear how to relate a
vector on a vertex in one simplex to its counterpart in
another simplex. Furthermore, as we saw in Sec. II, sym-
metric tensors and scalars appear naturally in Regge cal-
culus but this is not the case for vectors. Therefore we
have chosen to omit the shift vector from our formalism.

Curvature resides at the edges, and the deficit angle e,
at an edge a, which gives a measure of the curvature
there, is defined by

S= fdr 4 g 9 gggb+ gN~ g gg Eg

a aEp,

—16 gN. V.(W „„,). (28)

where (W „~) is the Regge-calculus analogue of the
continuum matter Lagrangian. We do not include this
term in what follows in this section. [For a homogeneous
space, the action (28) reduces to the Lund-Regge expres-
sion. Also Friedman and Jack have obtained indepen-
dently an action which is identical to (28) when
N =const, by evaluating the continuum action for a
piecewise linear metric. ]

Variation of the action S with respect to g, determines
the time development of g~, i.e., the time evolution of the
edge lengths:



33 THREE-PLUS-ONE FORMULATION OF REGGE CALCULUS 1625

as
~ga

d BS
dt gg

aab ..[(9' '—2l' ')gbg, —29' gb] 2——9 gb + —,
' g N„g, '~e, +gN„g gb' eb',

cGa a p, Ca p b E'pc

(29)

this simplification does not hold when N is included, i.e.,

gN„g gb'~ eb'+0 in general.
bEp,

Variation of S with respect to N& gives the Hamiltoni-
an constraint at each vertex

=+, g & g.gb g—g""e. .
16K~

This constraint is not conserved in time:

(30)

where the superscript, a denotes differentiation with
respect to g, . Note that although Regge showed' that

1/2e, b
Oa ea' =

sure of the Hamiltonian constraints is obtained via the
momentum constraints. ' This suggests that the introduc-
tion of momentum constraints may solve the problem
here. A procedure for writing the momentum constraints
using the integral of m &dSJ over surfaces of simplices was
suggested by Friedmann and Jack and wi11 be discussed
elsewhere, but as yet it is not clear whether this will
indeed lead to a closure. Alternatively one may try anoth-
er definition of a Regge calculus 3 + 1 Lagrangian.

We may use the methods described here to study the
time development of general space-times. Two examples
are described in Sec. VI. Lund and Regge applied their
formalism for homogeneous spaces to a number of cosmo-
logical models, including the Friedmann universe, the
Kantowski-Sachs universe, and Bianchi Type-1 cosmolo-
gles.

dt y Paabg g
SN~

+ z g (~ ' gagbge+2~ gagb)

—1/2 1/2, b '—T g ga gaea —g ga +&a' gb
a6p, aFp b

(31)

IV. FIRST-ORDER FORMALISM FOR
3+ 1 REGGE CALCULUS

In the previous section, we wrote down a lattice approx-
imation to the Lagrangian and in this section we write
down a lattice approximation to the Hamiltonian. How-
ever the two approximations are not related by a I,egendre
transformation. For example, variation of the action (28)
(without the matter term) with respect to ga gives

However we may show that, under a global summation,

(32)
as
~ga

y ~b.
N

(33)

This means that although the individual constraints
H& —Oare not autom—atically conserved in time, a weight-
ed average of their time derivatives is zero. Moreover if
we consider the sum of N&dH /dt over a finite region,
only terms arising from the surface of this region will not
cancel. When we approach the continuum limit and the
number of points inside this fixed volume increases, the
ratio of the number of noncanceling surface terms to the
number of canceling volume terms vanishes. In this
sense, the continuum limit is recovered.

The fact that H is not conserved is not new in discrete
versions of Einstein's equations" and so it is not nax:s-
sarily an obstacle to the use of this theory as another
discrete approximation to general relativity. However it
would still be much preferable to obtain a formalism in
which the constraints are satisfied identically. The non-
vanishing of dH/dt is related to the fact that [H,H)+0
(see discussion in Sec. IV). In the continuum theory clo-

S= t x & g,J
—PfH —N;0'

where

(34)

H=
& &&z

[Tr(m ) ,'(Trm) )—(g)'~ R——(35)

(36)

We again set the shift vector to zero to obtain

However, defining the Regge-calculus conjugate variable
by such an expression would produce an impossibly
cumbersome formalism, although (as we shall see later)
there is indeed a relationship between our conjugate vari-
able and the expression above.

The continuuin form for the action in its Hamiltonian
form is
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S=fdtd'x n'('((I —3,~~
[Tr(n ( ——,'(Trw(']

iN( g)' R

The extrinsic curvature K,J is related to m;J by

1 i 3
EiJ 3 i /2 [—, gj (Tr]r) n —

ij ](g)

(37)

(38)

g'j[Tr(H) ——,
' (Tr~) ]

(3g )
i/2

—2, [n' m j——,'(Trm)ir'j]

N(3 )1/2(3Rij ] 3gij 3R )

+(3g)i/2(N ~ij 3gijN ~

m
)(m

For the Regge-calculus variable conjugate to g„we de-
fine a quantity n analogous to n'j. Note that this is not
obtained from a quantity na by raising the index by G~b.
On the other hand, we may define a quantity m by

we express 9'~ in terms of g„G~b, and Va to obtain

ir'=-, g g™[(Trn)a —,
'—(Trm) 2]

~, V

m~ =G~bir

The action then takes the form

S=fdt Qadi'ga —QNa9 ~be'n +2+Naga / e'a

a a a

(39) —2 g [—,
'

G b, 'm m' ——,
' (Trn ) n ]

V

+N, g, '/'s, +2+N g '/'E '.
b

(45)

(40)

Variation of the action with respect to m then gives

g, = —2 QNa9' ~bVr = —2 g Nal(:aa, (4l)
aEa

where

Notice again that the leg ge-calculus equation con-
tains weighted averages from the relevant tetrahedra.
The term , G b

'vr"—m must play the role of
m' ir j and 2g Nbgb ]/2mb" must be related to
(3g )1/2(N ) ij 3gijN tm

)
rn

The constraint equations follow from variation of the
action with respect to N&

..

K,= [ zg, (Ter) —n', ]aa V g a

which is the analogue of the continuum equation

plyJ
~ 0 ~ ~2pfKS ~

lJ

Note that in the Regge-calculus expression, we obtain a
weighted average of E~ for the simplices on the edge a.

After integration by parts of the first term in (40), vari-
ation with respect to g, gives

ir'= —g Na& ~'ri ri'+Naga ' e,

0= —=H„=—,
' g 9' bm'0 gg, ]—/2e,

id a6]d aCp,

=+ —,
' g [(Trm') ——,'(Trn) 2]

age, a

g g I/2~

aGp,
(46)

This is a semilocal constraint as each vertex, correspond-
ing to the continuum constraint

+2 +Nbgb]/2~b'.
b

(43)
()=+, , [Trm ——,'(Trir) ]—('g)' R .

(3g )
i/2 (47)

To see the correspondence with the continuum equation
The sense in which the constraints are preserved in time

is the same as in the second-order formalism. We have

=+ d g (~aab, cgcir ir +2aab'ir 'ir ) z Q ga gaEa —g ga +&a' gb
a6p, aEp aEp, b

=+—, g g g 9~b'n m Np9'jj, ~m" —, g g g 9'~—bm Np9Ii, g'vr'm"
aEp c Ea pic aEpaGa pea

+ 2 g g aab+Naga &a g g ga &aNaaabir

a E'p, c pE-caEp a&a c
+ g g g 9~m N, g, ]/2e, '+2 g g g g, ]~/'e, 'NP& b„H . (48)
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Although this expression does not vanish, we may multi-

ply it by N„and sum over all vertices, and after an ela-
borate series of cancellations between terms, we obtain

dH~"=o.
dt

(49)

Thus we see again that a weighted average of the time
derivates of the constraints is zero.

A further examination of (48) reveals that the six terms
appear in pairs which look identical but with opposite
signs. However these pairs do not cancel since the sum-
mation is over different elements of the lattice. Part of
the summation is over the same elements, and this part, of
course, cancels; the rest, which is like a surface term,
remains. If we consider g„~UN„dH„ldt with the sum-

mation over a small region, U, we notice that terms asso-
ciated with internal elements of U cancel. We can write

gu=+Ni [g. Hi ]

and

tr, =QN~ [n;,H~ ] (52)

In the limit when there are many vertices within U, the
ratio of these surface terms to the other terms, that can-
cel, becomes small. In this sense the constraints are con-
served in the continuum limit of our formalism.

Additional insight on the structure of this formalism is
obtained from consideration of the Poisson brackets, in
particular the Poisson brackets with H„. Simple calcula-
tion reveals that

H~
=surface terms .

dt
(50) as required. The Poisson bracket between two constraints

1s

5H„ 5H„ 5H„ 5H„
[Hp RHv ]

L

=
8 g g g (&nab'"&P a &ace&—P b' )++~'

d a6p, PEv
a,PCd

n'(g '~'e 5~+2g '~'e ~)
d aEpc6v a6vc6p,

(53)

This expression vanishes if the simplices containing p, and
the simplices containing v have no edge in common
(p, 'Av*=p}. However [H„,H„]&0 if jb*Av'&p, i.e., if
p and v are nearest neighbors or next-nearest neighbors.
Again we find that

Hq QN„[Hq, H„——]
v

(54)

V. THE INITIAL-VALUE EQUATION
AND CONFORMAL TRANSFORMATIONS

Before studying the time development of a system, one
must solve the constraint equations on the initial slice.
This is likely to be a nontrivial problem for simplicial

and the nonconservation of the constraints follows, in this
context, from the nonvanishing of their commutators. In
the continuum theory, the momentum constraints ensure
the closure of the commutation relation between the Ham-
iltonian constraints. This can potentially suggest that ex-
amination of (53) will provide a clue to the formulation of
the momentum constraints. However one has to
remember that whatever constraint is chosen, it should be
conserved by itself. It is not clear that a choice that will
lead to a closed system is possible here.

y4 y5
(56)

where Clg=y'JP~;j and
~

denotes a covariant derivative
with respect to y,j.. For an initial slice with K,J.——0, the
Hamiltonian constraint reduces to

R (g) =0
and so we solve

Clg= —,
' RP

(57)

decompositions involving more than two edge lengths (see
Ref. 13 for examples where only two edge lengths are in-
volved).

In the continuum theory, there are four initial-value
equations, the Hamiltonian constraint and the momentum
constraints. A standard way of solving the Hamiltonian
constraint in the continuum cases' is by using a confor-
mal transformation. The idea is to start with a simple tri-
al metric y;; and make a conformal transformation P to

gij 0 yij ~ (55)

where g;j is the required solution. (Note that we have

dropped superscripts 3 on three-dimensional quantities. }
The scalar curvatures for g j and y;j are related by
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for P and then use (55) to obtain g& on the initial slice.
The momentum constraints do not exist in our formal-

ism. To solve the Hamiltonian constraint, when E =0,
we start with some trial set of edge lengths 1,' '=(g,' ')'/
with deficit angles e,' '. We then make a "conformal
transformation" {as described later in this section) to edge
lengths 1, =g, '/, with deficit angles e„which satisfy the
Hamiltonian constraint at each point. At vertex (M, for a
slice with E =0, this is given by Regge-calculus terms, by

y g )/2~

0=8 = (59)

ga ~gu =(I)» 4v ga
2 2 (61)

(we require g, to transform like the metric tensor, i.e.,
with P; taking the geometric mean of the (()'s at either end
of the edge gives the required group property for infini-
tesimal conformal transformations' ). Note that the con-
formal factors ((}» must be restricted so that the new edge
lengths do not violate the triangle or tetrahedral inequali-
ties. (This is analogous in the continuum case to the con-
dition that (}) does not vanish since this leads to a singular-
ity in gl. ) To solve the Hamiltonian constraint we insert
this conformal transformation into Eq. (55) to obtain a
nonlinear equation for the P»'s.

The Regge-calculus form for the derivative term in (52)
at the vertex p is"

1 (0).(0) g l(u (4»
us~

(62)

where v—=v(p, a) is the vertex connected to (M, by the edge
a. The quantity l(,,' ' is the trial value of A,„which is
given by

where V»
———,

' g, ~„V,
' is the "volume per vertex" at p.

(See p. 472 of Ref. 2. The usual factor of 2 in the defini-
tion of R is not needed here; it reappears when we sum
over vertices. ) Similarly the scalar curvature for the trial
edge lengths is given by

(
(0)

)
) /2~(0)

go &a

~(o) «I
(60)y(gi(0)

The Regge-calculus analogues of conformal transforma-
tions' are defined as follows. We assign a scalar field (()»

to each vertex p, . An edge variable g, =1, between ver-
tices p and v, then transforms according to

(65)

Collecting the information in Eqs. (60)—(65) we see that
the Regge-calculus analogue of Eq. (58) is

(o) X 6(go' ')' & +24 (o) ((('».e» gu
a6»

(66)

g g i/2~

NGP,

QV.'
ye(0)

(1+y )5+V+(0) (0)
(ib —&„) (68)

and we must now shaw that this holds to lowest order in

f, at each vertex tu.
Por simplicity, we take the triangulation in the neigh-

borhood of a vertex, the origin say, to be a cubic lattice di-
vided into tetrahedra. ' Let the length scale be I [the ver-
tices of the flat-space lattice are then of the form 1(p,q, r)
where p, q, and r are integers]. We study Eq. (68) at the
origin. Since the right-hand side of the equation is linear
in g v+0, we take only three typical nonzero P„'s: ((!) at
( 1,0,0), $2 at (1,1,0), and f3 at (l, l, l) [and of course $07-'0
at (0,0,0)]. After evaluation of g„e„and V,

' for all the
edges hami on the origin, we obtain

at each vertex ((t, .
Equation (66) is not identical to Eq. (59). E(Iuation (66)

involves a linear function of (1)», divided by (()», while Eq.
(59) is a very complicated function of P& involving
arccosines. However the equations become equivalent in
the continuum limit, when the simplicial decomposition
becomes finer and finer. In this limit all edges and all de-
ficit angles became small. At any point, space is almost
flat (assuming that we are approaching a smooth Rieman-
nian manifold). Therefare we may take the trial edge
length variables g,' ' to correspond to flat space (which
means that e( '=0) and the transformed edge length vari-
ables g, to differ only slightly from their flat-space
values. This is equivalent [see Eq. (61)] to allowing each
conformal transformation to differ from unity by only a
small amount. Thus we set

(t)» = 1+f» with
~

i!)»
~
((1 . (67)

Under these circumstances, the Regge-calculus analague
of Eq. (56) becomes

where A,
' is the area of the dual loop' ' associated with

the edge a, which is related to the dual volume by

1

V~ =TH~I, .

aCO

=—2(6/0 —()())+0(g')
V, !

24 y+(0)

aCO

Note that it is not strictly necessary to define the volume
per vertex in terms of dual volumes; one could also use,
for example, the volumes per hinge obtained from a
barycentric subdivision. However Eq. (64) must involve
the dual volume. We find then that

as required. Thus the Regge-calculus analogue of Eq. (56)
becomes exact in the continuum limit.

To summarize, we can find suitable initial data by solv-
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ing the nonlinear equation (59) or alternatively we can ob-
tain an approximate solution using (66) to solve for P„.

VI. EXAMPLES OF THE USE OF THE
SECOND-ORDER FORMALISM: THE TIME

DEVELOPMENT OF TWO MODEL UNIVERSES

We now illustrate the use of the second-order formal-
ism by studying the time development of two simple
model universes, ' both with the topology of a three-
sphere and containing a massive scalar field.

The continuum action for a massive scalar field:

3g ~ ~~
g &J

becomes

(70)

(b)

—1&rfdt gN„g A,,(P„—P„)
p a6p

y+ 2

+ —,
'

m gN„V„'$„, (71)

where the scalar field P (not to be confused with the con-
formal factor in the previous section) takes the value P& at
vertex p.

First we consider an anisotropic but homogeneous
universe, modeled by a4, the tessellation of S which con-
sists of five tetrahedra. The tetrahedra are identical, '

each having three edges with length squared g, and three
with length squared gb. Neither set of equal edges forms
a triangle [see Fig. 2(a)]. All five vertices are equivalent,
so there is only one N and one P. Also the vertex volume
is equal to the volume V of each tetrahedron. The action
for this model is

FIG. 2. Five tetrahedra, which form the surface of a four-
simplex. (a) A homogeneous but anisotropic configuration with
all vertices equal and two different edge lengths (solid lines and
dashed lines). (b) A configuration with one peculiar vertex and
two types of edge lengths (solid lines and dashed lines).

S=fdt — [,z(Vz) ~+2 , (Vz)''b'+ ~(V~) bb]5
1

12 ( gg +2gg gb+2g~gb —gb ) (73)

+10N(g ' e, +g ' eb)

'2
40nNV m P——

N
(72)

Instead of working with the squared edge lengths, we
find it more convenient to use the geometric mean of the
lengths, the scale factor r=(g, gb)'~, and their ratio,
co=(g, /gb)'~ which measures the anisotropy. We also
define the Hubble constant H=r/r. In terms of these
variables, the action (69) becomes

The deficit angles are given by'

2m —28~ —8~, eb ——2m —2' —Ob (72a)

3
S= fdt — H'+ 'H '—

2g 3

with

g. '"(3gb -2g. )

gb'"[(4g. gb)(4gb g. )l'—"—
(72b)

r

Eb
+10Nr Vrouw, +

2' —2' gb +gb
cosOg =

gb(4g. gb)—
rh ~——,mNar m P— (74)

and similar expressions for 8b and Ob, with a and b inter-
changed. The volume of each tetrahedron is with
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a(to) =(—co +2co+2co ' —u )'

p(co)=(3~0 +2co+2ai '+3' 2)/a,
(74a) + ~ ~ + ~

~ ~ +
1Zco & r a

26) —2Ctl + 1
e, =2m —arccos 4' —1

ai(3 —2' )

[(4ai —1)(4—ei )j'i

2 —2N +N
b =2s' —arccos

to (4—ei')

(74b)

3' —2

to[(4' —1)(4—co )]'~

Variation of (74) with respect to X leads to the constraint
equation

0

P+ 3H+ (()+m /=0.
C

(76)

Variation of (74) with respect to r and tu leads to evolu-
tion equations for H and t0. Since the space is homogene-
ous with all vertices identical, we see from (32) that the
constraint (75) is a first integral of these evolution equa-
tions so it is sufficient to use the constraint and one of the
evolution equations, that for the anisotropy factor say

3
(P +m P ), (75)

where a prime denotes differentiation with respect to co.
The equation of motion of the scalar field is

P

tea' p .
H

boa' 3p . 2 a"c0 p p' p
Q7 +, +coH +, +6)

3Q ~a a ~a 8~ S~t ~p

~co Eg — —
2

~co eg + . (77)
~b 2N fb

co pa N

Note that we have taken 2V = 1 throughout.
In the isotropic case, Eqs. (75) and (76) reduce to the

evolution equations for a Friedmann universe coupled to a
massive homogeneous scalar field:

8~H2 $2+ ~ P2 (75a)

$+3HP+m 2/ =0 . (76a)

The only difference is the numerical factor: 4(e, +eb)/a
which should be compared with k = —1 in the continuum
case. In any case this curvature term decreases rapidly
when the universe expands and, as we show later, its in-
clusion with or without the numerical factor leads to the
same evolution pattern, which was studied recently by Be-
linsky et al. ' and independently by us. '

If the initial energy density E& of the scalar field is
large enough, the configuration evolves into a de Sitter
(inflationary) phase. Only in a very limited range of ini-
tial (P,P) phase space, the size of which vanishes rapidly
as the energy density of the scalar field increases, an infla-
tionary phase does not exist. Later the configuration
evolves toward the massive dustlike configuration and the
universe goes out of the de Sitter phase. This happens
without an apparent phase transition or a change in the
scalar potential U ((f )=—,

'
m P .

An immediate feature of the anisotropic case is that
asymptotically, i.e., for large r, ai=ei=0 is an approxi-
mate solution of Eq. (77). Asymptotically the anisotropy
freezes at a given value (depending on the initial condi-
tions). A similar behavior occurs, incidentally, in a Kas-

ner universe when a cosmological constant is included;
eventually the anisotropy freezes and the universe expands
exponentially. Here this feature remains even after the
universe goes out of the inflationary phase provided that r
is large enough. When ai vamshes, Eqs. (75) and (76)
reduce to the isotropic equations (up to the curvature term
which is now small). H and the scalar field follow the
same pattern described earlier.

A typical evolution of this anisotropic universe is
shown in Fig. 3, in which the de Sitter phase, with an al-
most constant H, and the freezing of the anisotropy are
apparent. We have not neglected the curvature term in

I

0 i—

E

6 8 10 12

FIG. 3. Hubble's constant (solid line), the anisotropy parame-
ter (dashed line), and normalized P (dashed dotted line) d-uring a
typical evolution of an anisotropic but homogeneous toy
universe with a scalar field. The initial values were chosen so
that the universe will get into (at t = I) and out of (at t =9.5) an
inflationary phase.
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solving these equations; however the solution is not affect-
ed by it all.

Incidentally, in the isotropic case, one can replace the
massive scalar field by pressureless dust. The constraint
and evolution equations then reduce to the t.und-Regge
equations for the Friedman cosmology

the same form as the continuum theory equations (unlike
the four-dimensional Regge-calculus equations for the
Friedmann universe' ) but with different constants.

Our second model also uses a4. In this case, one vertex
p, is different from the other four v with all edges meeting
at p having length squared g, and all others gb [see Fig.
2(b)]. Four of the tetrahedra a have equal volumes

4~2 g'"

0=, +4g e— mM,
1 g (/2 16

4 2 gl/2

(78a)

(78b)

V.= ,', gb(—3g. gb }—'1/2

and the fifth P is equilateral with

1
VP —— gb

3/2

6 2

(79)

(80)

where M is the total rest mass. The equations again have The action for this model universe is given by

g fdr [2g g ( V 2),ah+a 2( V 2),bb] g 2( V 2),bb+4(N +N )g 1/2e. +12N~ I/2

a a v P

2 2

—8m[2(Nq+N„)A, ,(P„P„)+N—„V„' rn P„"—+4N„V„' m $„— (81)

with

1 1 1 3
4 N

ga gb 1 3 2 gb(244 14gogb+2gb

2(4g~ gb )(3g—~ —gb ) 24W2 24(4g~ gb )(3g~ —gb )'—
3gagb 2ga —gb

e, =2m —3 arccos
4(4g. gb }(3g—. gb }'"— 4ga —gb

Again we define new variables

P =gb r =g /gb

and the action (81) becomes

1

eb =2ir —arccos(-, ) —2 arccos
3(4g. —gb}

1/2

(82)

'2
S=fdt —

&
—, , [2ppr'+p (3r —1)]+4p' [(N„+N„)r' e, +3N„eb]

4 2N P1/3 2N~1/2(3r 1)i/3

( + )'
(N +N )p 1/2A(()2( 1 y)2+N~3/2B m 2y2g A' 4' P +N p 3/2( m 2y2

V
N N V

with

(83)

A (r)=,/, B(r)= A(r), C(r) =—— +3r r 1 1 (21r —14r +2)
(4r —1)(3r —1)'/ 3 3 v 2 (4r —1)(3r —1)'/2

The constraint equations are obtained by varying (83}with respect to N„and N„:

[2ppr+p (3r —1)]+4r'/ e, =4m IAP (1 P) +pB[m P P—+(Pg+PP) )I,

(83a)

(84)

'2

8p(3r —1}'/, /2 [2ppr'+p (3r —1)]+ +4(r / e, +3mb)=4n[AQ (1 if/) +pC(rn p +—p )] .
4 2 p

The evolution equations for P and g follow from variation of (83) with respect to these quantities:

0=2pb(BR+ C)+2BpAA+3p4(BR+ C)+3Bp4 A+2prd(B'0'+ C')+2B'prkA+4Bp44 0
+4AQ(1 f) +2pm P(Bg+—C),

0=2Bpp(ff+2PP+Pg}+P(3Bp+»'pr')(Pg+Pg) —4AQ (1 P)+2Bpm P f —.
Finally the action is varied with respect to p and r to obtain their evolution equations:

(86)

(87)
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1 +(3r 1)t~z +—~ + i — +—~ +—(2r e, +3mb)
3T 3 f 2

2V Q p 4li (3r 1)' 2(3r —1} 2 p p

2

(1—g) + ', B[—rn P f (P—/+PE) ]+ , —C(m P —Pi), (88)
L

(89)

Again we have set X =1 throughout.
As initial data we specify p, r, P, g, P, and P and then

use the constraint equations to solve for p and r'. (This is
equivalent to solving for g, and gb, having specified the
other variables. }

The evolution of this model resembles the previous
cases. Again a de Sitter phase appears naturally under
most initial conditions. As the radius of the universe in-
creases, the curvature terms (and the spatial gradient
terms) become unimportant and the inhomogeneity
freezes both in the different edge lengths and the values of
the scalar field. A typical evolution of this sort is shown
in Fig. 4.

The anisotropy and inhomogeneity that appear in these
toy models is very coarse. In other words we consider
here only a large-scale inhomogeneity or a large-scale an-
isotropy. This is due to the small number of edge lengths
involved. The observation that these become frozen does
not mean that the same will be true for small-scale devia-
tions from homogeneity. These may be better studied us-

ing perturbation calculations or much more detailed
Regge-calculus models.

VII. CONCLUSIONS AND OPEN QUESTIONS

We have described a way of extending the three-plus-
one formulation of Regge calculus set up by Lund and
Regge, to general space-times, using a second-order La-
grangian method. We have also set up a Hamiltonian for-
mulation for Regge calculus. Thus we have two methods

3

I
I

j/

of writing down the action and deriving the field equa-
tions, by constructing spacelike hypersurfaces composed
of tetrahedra, with edge lengths which vary with time.
We have also constructed a method of solving the con-
straint equations on the initial simplicial hypersurface.

Possible applications of our formalism fall into two
main categories. First, as we have seen from the examples
described here, it may be used to study the time evolution
of systems like model universes, in classical general rela-
tivity. Second, it might be possible to use the Hamiltoni-
an formulation to investigate the canonical quantization
of lattice gravity.

There are many open questions which need to be stud-
ied. In particular, this three-plus-one formulation of
Regge calculus is not really complete without the in-
clusion of the shift vector and the momentum constraints.
A prerequisite here is the representation of a vector field
within a simplex. Another aspect of formalism which is
lacking and would be specially useful for classical prob-
lems is a way of representing matter fiow between Regge-
calculus blocks, which is clearly necessary for inhomo-
geneous spaces containing perfect fluid or dust. These
questions and others will be addressed in future work.
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APPENDIX: PROOF OF TRACE
FORMULAS IN SEC. II

Formulas (6) and (7) may be proved as follows. ' For
the symmetric tensor T~J, define the quantity T,b by

T b ——T,jl,'1) (A1)
FIG. 4. Hubble's constant (solid line), the anisotropy parame-

ter (dashed hne), the scalar-field ratio (dotted-dashed line), and
the normalized average P {short dashed line) during a typical
evolution of the inhomogeneous toy universe rvith a scalar field.
The initial values were chosen so that the universe will get into
(at t = 1) and out of (at t =8) an inflationary phase.

det(T~) =(detl,') detT~,

and, in particular,

(A2)

in the simplex with edge vectors I,' and the volume V.
Then for all T,
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det[(1+zT}~]=(detl,' ) det[(1+zT);J ],
where z is a variable. This gives

det[(1+zT)~ ]det[(1+zT}J]=
det(l,' )

det[(1+zT) b]
det(1~ }

where

I) lt l2

det(1~}= l, l2 lz

(A3} det[(1+zT),, ]=gz'S, = g (1+zk,, ), (A7)

Sc——1, St ——g A,;=TrT,

St ——g Atkj ——,
' [(T—rT) Tr(—T2)],

(A8)

and so on. For the right-hand side, we have

where the A,; are the eigenvalues of TJ. The coefficients
S& are given by

(A6)

1
2

V (g t»g&&(»+1)/2}2 (A5}
(n!)

To obtain det[(1+zT)~] from this, we must replace l, ib

by l, lb+zT~. We then have

Vz(g, +zT, )
det[(1+zT) tj ]= V'(g, )

We now expand both sides in z: the left-hand side gives

V (l, +zT, )

V2(l 2)

Corn. paring sides, we obtain

p2 (A9)

(A10}

(Al 1)

'[T. Regge, Nuovo Cimento 19, 558 (1961).
2J. A. Wheeler, in Relativity, Groups and Topology, edited by C.

DeWitt and B. De%'itt (Gordon and Breach, New York,
1964).

3C. W. Misner, K. Thorne, and J. A. Wheeler, Gravitation (Free-
man, San Francisco, 1973), Chap. 42.

4S. M. Lewis, Ph.D. thesis, University of Maryland, 1982 (un-

published).
R. Arnowitt, S. Deser, and C. W. Misner, in Gravitation; An

Introduction to Current Research, edited by L. %'itten {Wiley,
New York, 1962).

6F. Lund and T. Regge (unpublished).
7J. Friedman and I. Jack (private communication).
A. Lichnerowicz, J. Math. Pures Appl. 23, 37 (1944).
J. W. York, in Sources of Gravitational Radiation, edited by L

Smarr (Cambridge University Press, England, 1979).
I H. %'. Hamber and Ruth M. %'illiams, Nucl. Phys. 8248, 392

{1984).
ttT. Piran, in Proceedings of the Second Marcel Grossmann

Meeting, edited by R. Ruffini (North-Holland, Amsterdam,

1980); Ann. N.Y. Acad. Sci. 375, 1 (1982).
t28. DeWitt, Phys. Rev. 160, 1113 (1967).
' Ruth M. %'illiams, Gen. Relativ. Gravit. 17, 559 (1985).
' M. Rocek and Ruth M. Williams, Phys. Lett. 1048, 31 {1981);

Z. Phys. C 21, 371 (1984); in Quantum Structure ofSpace and
Time, edited by M. J. Duff and C. J. Isham (Cambridge
University Press, England, 1982).

tsT. D. Lee, Mesons, Isobars, Quarks, and Nuciear Excitations,
proceedings of the International School of Subnuclear Phys-
ics, Erice, 1983 [Progress in Particle and Nuclear Physics,
edited by D. Wilkinson (Pergamon, London, 1984), Vol. 11].

tsT. Piran and Ruth M. Williams, Phys. Lett. 163B,331 (1985).
7V. A. Bebn~ky, L. P. Grishchuk, I. M. Khalatnikov, and Ya.

B. Zeldovich, Phys. Lett. 15', 232 (1985};lecture given by
V. A. Belinsky at the Fourth Marcel Grossmann Meeting,
Rome, 1985.
P. A. Collins and Ruth M. %'illiams, Phys. Rev. D 7, 965
(1973).

tsT. Regge (private communication).


