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Thermodynamic instability of de Sitter space
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The generalized second law of thermodynamics. is applied to fluctuations in the Hawking tem-

perature of the cosmological event horizon in de Sitter spacetime. Fluctuations which decrease the
temperature, thereby decreasing the scalar curvature, increase the generalized entropy S. Thus, the
generalized second law implies that de Sitter space is unstable to fluctuations which decrease the ef-
fective cosmological constant.

I. INTRODUCTION

In de Sitter spacetime, as in curved space generally, the
concept of "vacuum" for quantum field theory is not de-
fined in a unique, unambiguous way. Because of the high
degree of symmetry of de Sitter space, however, the wave
equation for a noninteracting scalar field propagating in
this curved background can be solved analytically in
terms of standard functions. These wave functions may
then be used to define the scattering states of the field
theory in the remote past and the remote future. The two
states of the field so defined,

~
in) and

~
out), are related

by a Bogliubov transformation which mixes particle and
antiparticle modes. According to the standard interpreta-
tion of this phenomenon in nongravitational background
fields, mode mixing implies that the

~
in) state is unstable

to the creation of particle-antiparticle pairs by the exter-
nal field, in this case the de Sitter geometry. '

A standard example of such a pair-creation instability
in a nongravitational background is that found by
Schwinger for charged matter in a uniform constant elec-
tric field. In that case few would suggest that the insta-
bility could or should be fixed" by arranging the state of
the field theory to be such that every pair created by the
electric field is exactly compensated by another pair com-
ing in from infinity and annihilating. Such a boundary
condition involving electric currents flowing from infinity
could be mathematically defined, of course, and the resul-
tant state should necessarily be time-reversal invariant.
Therefore the decay rate calculated in this state by
Schwinger's method must vanish. To conclude from this
that a uniform constant electric field is stable would be
like arguing that nuclear a decay does not occur because
Schrodinger s equation also possesses time-symmetric
solutions for which the net probability fiux at ao vanishes.
The point is that although the fundamental equations are
time-reversal invariant the physically correct boundary
conditions generally are not.

Consider now a gravitational example of the same
phenomenon —the Schwarzschild black hole. By canoni-
cally quantizing a scalar matter field in this background
and identifying the ap ropriate scattering states of the
field, Hawking showed that the Bogliubov transforma-
tion between the corresponding

~

in) and
~
out) states

(called Unruh vacua in the literature ) is a nontrivial mix-
ing one. Like Schwinger, he concluded that this back-
ground field —the black hole —must be unstable to the
creation of particle-antiparticle pairs. One member of the
pair is drawn into the hole while the other emerges as a
positive-energy flux at infinity with a Planck spectrum:
the black hole appears to radiate like a blackbody at tem-
perature P '=(gtrM)

Because of the appearance of temperature in the
Schwarzschild case it is natural to ask whether, in addi-
tion to the scattering states

~
in) and

~

out ), there also ex-
ists a time-reversal-invariant equilibrium state. That is,
can one arrange the boundary conditions far from the hole
such that the outgoing Hawking flux is precisely compen-
sated by an incoming fiux? Physically the answer is clear-
ly yes if one places the black hole in a very large container
( &&26 M/ c) which is also maintained at the Hawking
temperature by contact with an external heat bath.

Mathematically the same condition can be realized by
considering the Euclidean section t~it of the
Schwarzschild line element Since. the points it and it+P
are identified, it follows that any function of the coordi-
nates analytic under this continuation must have the same
periodicity P. If this condition is demanded of the Feyn-
man propagator of the scalar matter field, then the state
of the field is fixed uniquely. It is the explicitly time-
reversal-invariant Hartle-Hawking state which describes
a black hole in equilibrium with its own radiation. Does
the mere existence of this equilibrium state imply that the
black hole is stable after all?

Hawking subsequently showed that the answer to this
question is no Although i.t clearly possesses no decay
rate in the usual sense, Hawking found that the time-
symmetric equilibrium state is thermodynamically unsta
hie to macroscopic fluctuations in the temperature of the
horizon. This thermodynamic instability can be traced to
the fact that the black hole with temperature
TH ——I/8~M has a negatsue specific heat —a feature of
gravitational systems familiar from other contexts, even
in the nonrelativistic Newtonian limit. Thus, the rather
artificial choice of time-symmetric boundary conditions is
unstable to spontaneous fluctuations and time asymmetry
reappears in a different guise.

In de Sitter space, all of the same formal Euclidean
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periodicity structure of the classical metric is present.
There is an event horizon for every freely falling inertial
observer. The Feynman propagator can also be uniquely
defined by demanding analyticity under the continuation
to imaginary time. The corresponding state, sometimes
called the Tagirov or Bunch-Davies "vacuum, " is invari-
ant under the full de Sitter isometry group, including time
reversal. Therefore, like the Hartle-Hawking state in the
Schwarzschild case, it has no decay rate in the sense of
Schwinger or Ref. 1. Is this the stable ground state of
quantum field theory in de Sitter spacetime?

In this paper I show that the same formal arguments
made by Hawking for the equilibrium state in the
Schwarzschild case apply equally well to the de Sitter
case. The logical basis of both and the assumption upon
which both depend crucially is the existence of a general-
ized second law of thermodynamics as the condition for
spontaneous change. In order that no extraneous con-
siderations may enter, which might cause confusion and
cast doubt on the result, I will adopt a purposely formal
axiomatic presentation in the next section, in which this
generalized second law is assumed as an axiom. Inequali-

ty (9) is then derived as a sufficient condition on the quan-
tum matter energy density in order for the Bunch-Davies
state to be unstable. Actually, this condition is not a
necessary one. I postpone until Sec. III a fuller discussion
of this and the axioms of Sec. II—in particular the physi-
cal basis for the generalized second law.

time. For an observer with fixed x' the local temperature
e will obey the usual Tolman red-shift formula

O=Tst( —g«) '".
Second, the statement that the state is thermal is strictly
true only for certain observables d' (composed of opera-
tors with support localized within one horizon} for which
the quantum expectation value can be replaced by a
thermal density matrix.

(ii) The first law of thermodynamics. Let p be the incan
energy density of the matter in the state defined in (i) and

Est the mean energy with respect to the Killing time:

p—=—&To)tt,0

EM —=f & T't, )ttK dX, .

The expectation values may be defined by regularizing
and renormalizing the divergent matrix elements of To by
any of the several covariant methods discussed in the
literature. Also define the isotropic pressure p and "pro-
jected 3-volume" V by

V=——f E'dX, = f Q —g«v h dix .

Then under an arbitrary infinitesimal variation of the
background geometry and/or perturbation of the matter,

II. CONDITION FOR INSTASII. ITY

For the purposes of this section we will assume that the
following axioms are valid generalizations of the laws of
thermodynamics to arbitrary static backgrounds in gen-
eral relativity. s

(i) The zeroth laio of thermodynamics. Let quantum
matter fields propagate in a globally static background
solution of the classical Einstein equations (with or
without a cosmological term):

dsz= g«(x)dt +h J—(x)dx'dx J .

Denote the Killing field which generates the time transla-
tion 8/dt by K . Since g„and h; (i,j =1,2, 3) are func-
tions only of the spatial coordinates x', the line element
becomes that of a real Euclidean signature metric under
the replacement of t by it in (1). If the Feynman propaga-
tor for the matter field(s) is required to be analytic under
the continuation t~it then a unique state of the quantum
field is fixed by this requirement (in addition to requiring
vanishing at spacelike infinity if the space is noncompact).
Suppose that the orbits of the Killing field on the Euclide-
an section of the complexified manifold are periodic with
periodicity P. Then the state of the matter field(s) is a
thermal-equilibrium state ~ith temperature

where Sst is the total entropy of the matter in the same
volume V.

(iii) The generalized second laic of thermodynamics. If
the metric (1) possesses a horizon, where E'X, =g„van-
ishes, with finite area AH, define the generalized entropy
to

S=S~+SH =S~+ 4 AH .

Then it is S which must be maximized in stable equilibri-
um. Conversely, if there exist fluctuations of the matter
field(s) and geometry for which

then the state defined in (i) is unstable to fluctuations of
this kind. Based on these axioms it is possible to prove
the following theorem about quantum matter in de Sitter
spacetime.

Theorem.
Let p(TH, M, . . . ) be the energy density of some quan-

tum matter field(s) in de Sitter spacetime, defined by Eq.
(4} in the unique state with Feynman propagator regular
on the Euclidean section of the de Sitter manifold S4, i.e.,
in the Bunch-Davies vacuum. If

The expectation value of any operator d' in this state will

be denoted by & d')&.
Two clarifying points about this temperature may be

helpful. First, Tst refers to the Planck distribution of
quanta detected by any freely falling observer in the space- 5S&0 for 5TH &0. (10)

then fluctuations in the Hawking —de Sitter temperature
TH with 5TH &Oincrease the generalized entropy S:
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Proof.
We first check the applicability of the axioms to de

Sitter spacetime. The line element can be expressed in iso-
tropic state coordinates

But

5Stt
& 0 by (7) and (15),

2m-T~'

so that if 5p/5TH & 0 then
(11)

dT
ds = d—t(1—Hr)+ 2z+rdQ

1 —8 r
5S= + 5Ttt &05p V 5SH

for 5TH (0. Q.E.D.

with constant scalar curvature R =12H . This is of the
same form as (1). The timelike Ki11ing field K has com-
ponents (1,0,0,0) in these coordinates. On the Euclidean
section t it the line element (11) becomes that of a four-
sphere, so that the points

(19)

(it, r, 8,$), (it +I3,r, 8,$)

are identified with

H 1
TH =P

2S 2&PI
(12)

4mV= rH
3

(14)

AH —477 PH ~

2 (15)

Therefore (ii) and (iii} are applicable as well.
Because de Sitter space is homogeneous and isotropic p

and p must be independent of position, depending only on
TH„ the mass(es) of the field(s), and any other fixed pa-
rameters of the field theory. Thus

In addition we must have

by O(4, 1) invariance of ( T't, }ti.
With these elementary observations the proof is now

immediate, for

5EM ——5pV+p5V by (16)

=5pV —p5V by (17)

=T~5SM p5V by (ii) . —

Hence

5S=5S~+5SH by (iii)

+5SH by (18) .5pV
~M

the Hawking —de Sitter temperature. Thus the conditions
of (i) are satisfied. The surface X of (ii) may be chosen to
be any t=const slice extending from r =0 to r =rH
where E' becomes null:

E'E,
i „,„=0.

Thus

III. DISCUSSION

The fluctuations that we have been considering may be
thought of as fluctuations in the Hawking —de Sitter tem-
perature as determined by the geometry through Eq. (12)
or (15); alternately because of the zeroth law, we may re-
gard the fluctuations as the fluctuations of quantum
matter in the de Sitter background, which then drives the
geometry through Einstein's equations. The two points of
view are equivalent because the concept of temperature
for a gravitational field horizon makes sense only when
the quantum effects of the matter sources are taken into
account. The p and dp/dT appearing in our previous
analysis are not arbitrary, but instead must be determined
by the one-loop (semiclassical) properties of quantuin
fields in the de Sitter background. The T'I, of Eqs. (4)
and (5) will then be identified with the (properly regular-
ized and renormalized) equilibrium expectation value of
the quantum stress tensor of the matter field(s) in the de
Sitter-invariant thermal state. The variations and instabil-
ity condition of Sec. II can then be understood in terms of
familiar ideas of linear-response analysis. In particular,
the condition (9} for a spontaneous small variation aioay
from equilibrium can be calculated completely in terms of
quantities in the equilibrium state.

Actually this condition, though certainly sufficient, is
not necessary for the theorem's validity. The reason is
that ( V/TH )5p is always much less than 5SH in absolute
magnitude, so that the second term alone in (19) always
dominates. To see this recognize that p is of order
R —TH or higher, the lower powers of R having been
absorbed into renormalization counterterms for A and G.
Thus 5pV/Ttt —1 while 5SH-1/GR »1 provided the
curvature scale is far below the Planck scale. Thus for
curvatures small compared to the Planck scale the second
term in (19)—the gravitational horizon contribution to the
entropy —always dominates the matter term. Since this
term gives the horizon a negative specific heat, the cosmo-
logical horizon is always unstable to fluctuations in the
Hawking —de Sitter temperature in the limit GE. &~1,
provided the axioms of Sec. II are valid. %'e now proceed
to discuss those axioms.

Classical thermodynamics can be formulated in a self-
contained logically deductive way. Concepts such as tem-
perature and entropy are defined in an implicit manner
through the axioms of the system —the laws of classical
thermodynamics. This approach has been followed in
Sec. II. Of course, classical thermodynamics is supported
both by an enormous body of empirical evidence and by
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Rb , R—5b—+A5b=gn(T'b) . (20)

Whatever the ultimate form of a quantum theory of grav-
itation it is reasonable to suppose that there is a semiclas-
sical limit to the theory such that spacetime curvature can
be treated classically even in the presence of quantum
matter. This is, after all, an excellent approximation to
the world we live in. The formal divergences of the ma-
trix element in (20) can be handled by absorbing them into
redefinitions of A, in Newtonian constant, and coeffi-
cients of possible terms of order R in the gravitational
action. Provided we are dealing with curvatures much
less than the Planck scale, it is possible to neglect these
explicit R i contributions to Eq. (20).

The Feynman propagator for a (noninteracting) field in
curved space is the inverse of some Heixxatian differential
operator, such as —CI+Mi for a scalar field. If the Eu-
clidean section of the spacetime manifold is compact (S4
for example} this operator has a unique inverse in the
space of regular functions. If the Euclidean section is
noncompact (Ri XS2 in the Schwarzschild case) then "the
space of regular functions" must be defined by their
behavior at infinity as well. The quantum state of the
field theory in the given background is then fixed by the
analyticity requirement on the propagator under t~it.
Thus the matrix element in (20) is completely well defined
(and finite, once regularized and renormalized}.

If the Euclidean section of the classical manifold is
periodic in the imaginary-time coordinate it, then this
definition of the Feynman propagator ensures that it has
the same periodicity. Thus axiom (i) of Sec. II really
amounts to a definition of what temperature for the
matter field is in this particular curved space, and so is
trivial, in one sense. In a different sense, axiom (i) is quite
nontrivial, however, because it implies that this is the
unique value of temperature that can be assigned to the
field in this background, in contrast with the ordinary sit-
uation in fiat-space field theory where any temperature at
all is allowed. The curved spacetime has a natural tem-
perature scale associated with the surface gravity at the
horizon and consistency of the semiclassical equations
(20} forces the matter to be at the same temperature. This
is the only strictly static equilibrium configuration of
matter consistent with the given background. Any other
configuration and, in particular, a different temperature
for the matter would lead to singularities of ( T, ) on the
horizon or a time-dependent metric which no longer

the deeper theoretical understanding of its laws provided

by statistical mechanics. Since it is unlikely that the laws
of gravitational event horizons used in Sec. II will receive
experimental support of refutation in the near future, we
are forced to rely totally upon their logical cogency as evi-

dence of their truth. Any circumstantial evidence we can
obtain from considerations of Gedankenexperiniente in
curved spacetime will be extremely useful to this evalua-
tion.

The starting point for a deeper understanding of the
thermodynamic laws must be the semiclassical Einstein
equations

possesses a Killing field.
Axiom (ii) expresses the equivalent of energy conserva-

tion for the quantum matter, which results from the Kill-

ing symmetry of de Sitter spacetime. Actually it is possi-

ble to deriue this from the density matrix form that the
matrix elements (C')tt take in the Tagirov-Bunch-Davies
state:

( d') p
—Tr[pd'],

where

(21}

~ -PH
H= T bK X~, (22)

Z= Tre (23}

The fact that matrix elements of operators d' with sup-
port within one horizon volume actually takes this form
follows immediately from the Euclidean periodicity of the
Feynman function in this state. '0 The appearance of a
density matrix formula in what was originally a pure
quantum state should not cause surprise. It arises for the
simple reason that half of the fully Cauchy data of the
global de Sitter metric are outside the horizon volume V.
Thus, with respect to observables localized within V the
information represented by this data is totally inaccessible
and must be averaged over. It is this summing over inac-
cessible degrees of freedom, a kind of course graining en-
forced by the causality structure of the spacetime, that re-
sults in the density matrix (22}. Thus, for this restricted
class of physical observables d' it is possible to define an
entropy in the standard manner:

Sbt
—= —Tr[p lnp]

=pEbt+lnZ . (24)

X g grab X
4 g~ X

=(T'. )gV= 4pPV, — (25)

which follows from the definition of the one-loop trace of
the energy-momentum tensor as a conformal variation of
the Euclidean effective action, —lnZ.

Under such a variation of P,

5V=3V = —3V5p 5TH

P Ttt

from (12) and (14). Hence

(26)

But

5SM 5pp V+p5pV+ pp5——V 4p V5p= pV5p . —(27)

In order to relate the variation of Sbt to the energy-
momentum tensor we also require

P lnZ = —Ttt lnZ
d
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(28)

so

&Em =Tsf~SM p—»V

by (27). So, given the density matrix expression (21) for
expectation values in the Tagirov-Bunch-Davies state, the
first law (ii) follows from the usual defmition of matter
entropy associated with this density matrix and the loss of
information it represents.

For the generalized second law (iii) it is possible to give
both a formal argument based on the Euclidean approach
to quantum gravity and a more intuitive one. After the
matter degrees of freedom have been integrated out the ef-
fective action for the gravitational field in Euclidean sig-
nature is given by

—l~t& ~ —1~. t~ (30)

or

I,ff ——I~,„—lnZ

f vg d x(R —2A) —lnZ
16m ~4

1 2 A

24sr
—lnZ(P) . (31)

The first derivative of I,rr just gives the Euclidean form
of the trace of semiclassical Einstein equations (20):

P =0= P [—12(2mlP)~+4A —8m(T, ')] .
dP 48m

(32)

The second derivative of I,fr describes conformal fiuctua-
tions auey from the semiclassical solution of (20):

~
dP

13
dP eff

(32)
=4p+ + p' p

2ir 6Q dP

The term in large parentheses on the right-hand side in
(33) is equal to

dSH dp
dP dP

'

which shows that

pect that positivity of the second variation of the Euclide-
an action with respect to a real parameter to be a neces-
sary condition for the stability of the solution to (32).
However, the variation with respect to P is a conformal
variation and the Euchdean Einstein action (31) is un
bounded from beloiu with respect to local conformal varia-
tions: the kinetic term has the wrong sign. Hawking has
suggested that this may be remedied by integrating over
imaginary conformal variations instead. This prescription
would change the condition (34) to an instability condition
on the Euclidean de Sitter solution. Recently Hartle and
Schleich" have reexamined this issue and argue that
Hawking's suggestion is actually required by a canonical
approach to gravity in which only physical degrees of
freedom appear.

A very different sort of argument for the validity of the
generalized second law comes from considerations of
Gedankenexperimente of the kind familiar in black-hole
spacetimes. Davies has shown that these can equally well
be imagined in the de Sitter case. ' For example, a box
filled with radiation in thermal equilibrium can be
brought to the cosmological horizon and the lid opened.
The radiation fiows out through the horizon. To the ex-
perimenter remaining inside the horizon the entropy
would then seem to decrease spontaneously. One can easi-

ly construct a closed cycle representing a perpetual motion
machine which makes use of this fact—unless the term
—,
'
A~ is included in the entropy. Also from the work of

Gibbons and Hawking, ' extending the laws of event ho-
rizons to the cosmological case one can see that the ho-
rizon area there plays a role analogous to the
Schwarzschild case, increasing whenever the matter densi-

ty within decreases.
Thus the generalized second law receives support both

at the formal level and the intuitive level. If the imagi-
nary conformal prescription of the Euclidean path in-
tegral for quantum gravity is in fact correct the discus-
sion following Eq. (34) would actually constitute a proof
of the generalized second law (iii) as an (in)stability cri-
terion following directly from the path-integral approach
to canonical quantization. As in (34) the concept of en-

tropy would then be a derivative —nearly superfiuous
notion replaced by a more fundamental analysis of the
conformal degree(s) of freedom of the gravitational field.
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